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1 Introduction

This note is based on five lectures on the geometry of flag manifolds and the
representation theory of real semisimple Lie groups, delivered at the CIME
summer school “Representation theory and Complex Analysis”, June 10–17,
2004, Venezia.

The study of the relation of the geometry of flag manifolds and the repre-
sentation theory of complex algebraic groups has a long history. However, it
is rather recent that we realize the close relation between the representation
theory of real semisimple Lie groups and the geometry of the flag manifold
and its cotangent bundle. In these relations, there are two facets, complex
geometry and real geometry. The Matsuki correspondence is an example: it
is a correspondence between the orbits of the real semisimple group on the
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flag manifold and the orbits of the complexification of its maximal compact
subgroup.

Among these relations, we focus on the diagram below.

Real World Complex World

Representations of GR oo Harish-Chandra

correspondence
// Harish-Chandra modules

OO

B-B correspondence

��

(DX , K)-modules
OO

Riemann-Hilbert correspondence

��
GR-equivariant sheaves oo Matsuki

correspondence
//

OO

K-equivariant sheaves

Fig. 1. Correspondences

The purpose of this note is to explain this diagram.
In Introduction, we give the overview of this diagram, and we will explain

more details in the subsequent sections. In order to simplify the arguments,
we restrict ourselves to the case of the trivial infinitesimal character in Intro-
duction. In order to treat the general case, we need the “twisting” of sheaves
and the ring of differential operators. For them, see the subsequent sections.

Considerable parts of this note are a joint work with W. Schmid, and they
are announced in [21].

Acknowledgement. The author would like to thank Andrea D’Agnolo for the orga-
nization of Summer School and his help during the preparation of this note. He also
thanks Kyo Nishiyama, Toshiyuki Kobayashi and Akira Kono for valuable advises.

1.1 Harish-Chandra correspondence

Let GR be a connected real semisimple Lie group with a finite center, and KR
a maximal compact subgroup of GR. Let gR and kR be the Lie algebras of GR
and KR, respectively. Let g and k be their complexifications. Let K be the
complexification of KR.

We consider a representation of GR. Here, it means a complete locally
convex topological space E with a continuous action of GR. A vector v in E
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is called KR-finite if v is contained in a finite-dimensional KR-submodule of
E. Harish-Chandra considered

HC(E) := {v ∈ E ; v is KR-finite} .

If E has finite KR-multiplicities, i.e., dim HomKR(V,E) < ∞ for any finite-
dimensional irreducible representation V of KR, he called E an admissible
representation. The action of GR on an admissible representation E can be
differentiated on HC(E), and g acts on HC(E). Since any continuous KR-
action on a finite-dimensional vector space extends to a K-action, HC(E) has
a (g,K)-module structure (see Definition 3.1.1).

Definition 1.1.1. A (g,K)-module M is called a Harish-Chandra module if
it satisfies the conditions:

(a) M is z(g)-finite,
(b) M has finite K-multiplicities,
(c) M is finitely generated over U(g).

Here, U(g) is the universal enveloping algebra of g and z(g) is the center
of U(g). The condition (i) (a) means that the image of z(g) → End(M) is
finite-dimensional over C.

In fact, if two of the three conditions (a)–(c) are satisfied, then all of the
three are satisfied.

An admissible representation E is of finite length if and only if HC(E) is
a Harish-Chandra module.

The (g,K)-module HC(E) is a dense subspace of E, and hence E is the
completion of HC(E) with the induced topology on HC(E). However, for a
Harish-Chandra module M , there exist many representations E such that
HC(E) ' M . Among them, there exist the smallest one mg(M) and the
largest one MG(M).

More precisely, we have the following results ([24, 25]). Let T adm
GR

be the
category of admissible representations of GR of finite length. Let HC(g,K) be
the category of Harish-Chandra modules. Then, for any M ∈ HC(g,K), there
exist mg(M) and MG(M) in T adm

GR
satisfying:

HomHC(g,K)(M,HC(E)) ' HomT adm
GR

(mg(M), E),
HomHC(g,K)(HC(E),M) ' HomT adm

GR
(E,MG(M))(1.1.1)

for any E ∈ T adm
GR

. In other words, M 7→ mg(M) (resp. M 7→ MG(M)) is a
left adjoint functor (resp. right adjoint functor) of the functor HC: T adm

GR
→

HC(g,K). Moreover we have

M ∼−−→HC(mg(M)) ∼−−→HC(MG(M)) for any M ∈ HC(g,K).

For a Harish-Chandra module M and a representation E such that HC(E) '
M , we have
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M ⊂ mg(M) ⊂ E ⊂ MG(M) .

We call mg(M) the minimal globalization of M and MG(M) the maximal
globalization of M . The space mg(M) is a dual Fréchet nuclear space and
MG(M) is a Fréchet nuclear space (see Example 2.1.2 (ii)).

Example 1.1.2. Let PR be a parabolic subgroup of GR and Y = GR/PR.
Then Y is compact. The space A (Y ) of real analytic functions, the space
C∞(Y ) of C∞-functions, the space L2(Y ) of L2-functions, the space D ist(Y )
of distributions, and the space B(Y ) of hyperfunctions are admissible rep-
resentations of GR, and they have the same Harish-Chandra module M . We
have

mg(M) = A (Y ) ⊂ C∞(Y ) ⊂ L2(Y ) ⊂ D ist(Y ) ⊂ B(Y ) = MG(M) .

The representation MG(M) can be explicitly constructed as follows. Let
us set

M∗ = HomC(M,C)K-fini .

Here, the superscript “K-fini” means the set of K-finite vectors. Then M∗ is
again a Harish-Chandra module, and we have

MG(M) ' HomU(g)(M∗,C∞(GR)) .

Here, C∞(GR) is a U(g)-module with respect to the right action of GR on
GR. The module HomU(g)(M∗,C∞(GR)) is calculated with respect to this
structure. Since the left GR-action on GR commutes with the right action,
HomU(g)(M∗,C∞(GR)) is a representation of GR by the left action of GR on
GR. We endow HomU(g)(M∗,C∞(GR)) with the topology induced from the
Fréchet nuclear topology of C∞(GR). The minimal globalization mg(M) is
the dual representation of MG(M∗).

In § 10, we shall give a proof of the fact that M 7→ mg(M) and M 7→
MG(M) are exact functors, and mg(M) ' Γc(GR;DistGR) ⊗U(g) M . Here,
Γc(GR;DistGR) is the space of distributions on GR with compact support.

1.2 Beilinson-Bernstein correspondence

Beilinson and Bernstein established the correspondence between U(g)-modules
and D-modules on the flag manifold.

Let G be a semisimple algebraic group with g as its Lie algebra. Let X be
the flag manifold of G, i.e., the space of all Borel subgroups of G.

For a C-algebra homomorphism χ : z(g) → C and a g-module M , we say
that M has an infinitesimal character χ if a · u = χ(a)u for any a ∈ z(g) and
u ∈M . In Introduction, we restrict ourselves to the case of the trivial infinites-
imal character, although we treat the general case in the body of this note. Let
χtriv : z(g) → C be the trivial infinitesimal character (the infinitesimal char-
acter of the trivial representation). We set Uχtriv(g) = U(g)/U(g) Ker(χtriv).
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Then Uχtriv(g)-modules are nothing but g-modules with the trivial infinitesi-
mal character.

Let DX be the sheaf of differential operators on X. Then we have the
following theorem due to Beilinson-Bernstein [1].

Theorem 1.2.1. (i) The Lie algebra homomorphism g → Γ(X;DX) in-
duces an isomorphism

Uχtriv(g) ∼−−→Γ(X;DX) .

(ii) Hn(X;M ) = 0 for any quasi-coherent DX-module M and n 6= 0.
(iii) The category Mod(DX) of quasi-coherent DX-modules and the category

Mod(Uχtriv(g)) of Uχtriv(g)-modules are equivalent by

Mod(DX) 3M � // Γ(X;M ) ∈ Mod(Uχtriv(g)) ,

Mod(DX) 3 DX ⊗U(g) M M ∈ Mod(Uχtriv(g)) .�oo

In particular, we have the following corollary.

Corollary 1.2.2. The category HCχtriv(g,K) of Harish-Chandra modules with
the trivial infinitesimal character and the category ModK, coh(DX) of coherent
K-equivariant DX-modules are equivalent.

The K-equivariant DX -modules are, roughly speaking, DX -modules with an
action of K. (For the precise definition, see § 3.) We call this equivalence the
B-B correspondence.

The set of isomorphism classes of irreducible K-equivariant DX -modules is
isomorphic to the set of pairs (O,L) of a K-orbit O in X and an isomorphism
class L of an irreducible representation of the finite group Kx/(Kx)◦. Here Kx

is the isotropy subgroup of K at a point x of O, and (Kx)◦ is its connected
component containing the identity. Hence the set of isomorphism classes of
irreducible Harish-Chandra modules with the trivial infinitesimal character
corresponds to the set of such pairs (O,L).

1.3 Riemann-Hilbert correspondence

The flag manifold X has finitely many K-orbits. Therefore any coherent K-
equivariant DX -module is a regular holonomic DX -module (see [15]). Let
Db(DX) be the bounded derived category of DX -modules, and let Db

rh(DX)
be the full subcategory of Db(DX) consisting of bounded complexes of DX -
modules with regular holonomic cohomology groups.

Let Z 7−→ Zan be the canonical functor from the category of complex
algebraic varieties to the one of complex analytic spaces. Then there exists
a morphism of ringed space π : Zan → Z. For an OZ-module F , let F an :=
OZan ⊗π−1OZ

π−1F be the corresponding OZan-module. Similarly, for a DZ-
module M , let M an:=DZan⊗π−1DZ

π−1M ' OZan⊗π−1OZ
π−1M be the corre-

sponding DZan-module. For a DZ-module M and a DZan-module N , we write
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HomDZ
(M ,N ) instead of Homπ−1DZ

(π−1M ,N ) ' HomDZan (M an,N )
for short.

Let us denote by Db(CXan) the bounded derived category of sheaves
of C-vector spaces on Xan. Then the de Rham functor DRX : Db(DX) →
Db(CXan), given by DRX(M ) = RH om DX

(OX ,M an), induces an equiva-
lence of triangulated categories, called the Riemann-Hilbert correspondence
([12])

DRX : Db
rh(DX) ∼−−→Db

C-c(CXan) .

Here Db
C-c(CXan) is the full subcategory of Db(CXan) consisting of bounded

complexes of sheaves of C-vector spaces on Xan with constructible cohomolo-
gies (see [18] and also § 4.4).

Let RH(DX) be the category of regular holonomic DX -modules. Then it
may be regarded as a full subcategory of Db

rh(DX). Its image by DRX is a
full subcategory of Db

C-c(CXan) and denoted by Perv(CXan). Since RH(DX)
is an abelian category, Perv(CXan) is also an abelian category. An object of
Perv(CXan) is called a perverse sheaf on Xan.

Then the functor DRX induces an equivalence between ModK, coh(DX)
and the category PervKan(CXan) of Kan-equivariant perverse sheaves on Xan:

DRX : ModK, coh(DX) ∼−−→PervKan(CXan) .

1.4 Matsuki correspondence

The following theorem is due to Matsuki ([22]).

Proposition 1.4.1. (i) There are only finitely many K-orbits in X and also
finitely many GR-orbits in Xan.

(ii) There is a one-to-one correspondence between the set of K-orbits and the
set of GR-orbits.

(iii) A K-orbit U and a GR-orbit V correspond by the correspondence in (ii)
if and only if Uan ∩ V is a KR-orbit.

Its sheaf-theoretical version is conjectured by Kashiwara [14] and proved by
Mirković-Uzawa-Vilonen [23].

In order to state the results, we have to use the equivariant derived cate-
gory (see [4], and also § 4). LetH be a real Lie group, and let Z be a topological
space with an action of H. We assume that Z is locally compact with a finite
cohomological dimension. Then we can define the equivariant derived category
Db

H(CZ), which has the following properties:

(a) there exists a forgetful functor Db
H(CZ)→ Db(CZ),

(b) for any F ∈ Db
H(CZ), its cohomology group Hn(F ) is an H-equivariant

sheaf on Z for any n,
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(c) for anyH-equivariant morphism f : Z → Z ′, there exist canonical functors
f−1, f ! : Db

H(CZ′) → Db
H(CZ) and f∗, f! : Db

H(CZ) → Db
H(CZ′) which

commute with the forgetful functors in (a), and satisfy the usual properties
(see § 4),

(d) if H acts freely on Z, then Db
H(CZ) ' Db(CZ/H).

(e) if H is a closed subgroup of H ′, then we have an equivalence

IndH′

H : Db
H(CZ) ∼−−→Db

H′(C(Z×H′)/H) .

Now let us come back to the case of real semisimple groups. We have an
equivalence of categories:

IndGan

Kan : Db
Kan(CXan) ∼−−→Db

Gan(C(Xan×Gan)/Kan).(1.4.1)

Let us set S = G/K and SR = GR/KR. Then SR is a Riemannian symmetric
space and SR ⊂ S. Let i : SR ↪→ San be the closed embedding. Since (X ×
G)/K ' X × S, we obtain an equivalence of categories

IndGan

Kan : Db
Kan(CXan) ∼−−→Db

Gan(CXan×San) .

Let p1 : Xan × San → Xan be the first projection and p2 : Xan × San → San

the second projection. We define the functor

Φ: Db
Kan(CXan)→ Db

GR
(CXan)

by

Φ(F ) = Rp1!(IndGan

Kan(F )⊗ p−1
2 i∗CSR)[dS ].

Here, we use the notation

dS = dimS.(1.4.2)

Theorem 1.4.2 ([23]). Φ: Db
Kan(CXan) → Db

GR
(CXan) is an equivalence of

triangulated categories.

Roughly speaking, there is a correspondence between Kan-equivariant
sheaves on Xan and GR-equivariant sheaves on Xan. We call it the (sheaf-
theoretical) Matsuki correspondence.

1.5 Construction of representations of GR

Let H be an affine algebraic group, and let Z be an algebraic manifold with an
action ofH. We can in fact define two kinds ofH-equivariance on DZ-modules:
a quasi-equivariance and an equivariance. (For their definitions, see Defini-
tion 3.1.3.) Note that DZ⊗OZ

F is quasi-H-equivariant for any H-equivariant
OZ-module F , but it is not H-equivariant in general. The DZ-module OZ is
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H-equivariant. Let us denote by Mod(DZ ,H) (resp. ModH(DZ)) the category
of quasi-H-equivariant (resp. H-equivariant) DZ-modules. Then ModH(DZ)
is a full abelian subcategory of Mod(DZ ,H).

Let GR be a real semisimple Lie group contained in a semisimple algebraic
group G as a real form. Let FN be the category of Fréchet nuclear spaces
(see Example 2.1.2 (ii)), and let FNGR be the category of Fréchet nuclear
spaces with a continuous GR-action. It is an additive category but not an
abelian category. However it is a quasi-abelian category and we can define its
bounded derived category Db(FNGR) (see § 2).

Let Z be an algebraic manifold with a G-action. Let Db
coh(Mod(DZ , G)) be

the full subcategory of Db(Mod(DZ , G)) consisting of objects with coherent
cohomologies. Let Db

GR,R-c(CZan) be the full subcategory of the GR-equivariant
derived category Db

GR
(CZan) consisting of objects with R-constructible coho-

mologies (see § 4.4). Then for M ∈ Db
coh(Mod(DZ , G)) and F ∈ Db

GR,R-c(CZan),
we can define

RHomtop
DZ

(M ⊗ F,OZan)

as an object of Db(FNGR).
Roughly speaking, it is constructed as follows. (For a precise construction,

see § 5.) We can take a bounded complex DZ ⊗ V • of quasi-G-equivariant
DZ-modules which is isomorphic to M in the derived category, where each
Vn is a G-equivariant vector bundle on Z. On the other hand, we can rep-
resent F by a complex K • of GR-equivariant sheaves such that each Kn

has a form ⊕a∈In
La for an index set In, where La is a GR-equivariant

locally constant sheaf of finite rank on a GR-invariant open subset Ua of
Zan.1 Let E

(0, • )
Zan be the Dolbeault resolution of OZan by differential forms

with C∞ coefficients. Then, HomDZ
((DZ ⊗ V • ) ⊗ K • ,E

(0, • )
Zan ) represents

RHomDZ
(M ⊗ F,OZan) ∈ Db(Mod(C)). On the other hand, HomDZ

((DZ ⊗
Vn) ⊗ La,E

(0,q)
Zan ) = HomOZ

(Vn ⊗ La,E
(0,q)
Zan ) carries a natural topology of

Fréchet nuclear spaces and is endowed with a continuous GR-action. Hence
HomDZ

((DZ ⊗ V • ) ⊗ K • ,E
(0, • )
Zan ) is a complex of objects in FNGR . It is

RHomtop
DZ

(M ⊗ F,OZan) ∈ Db(FNGR).
Dually, we can consider the category DFNGR of dual Fréchet nuclear spaces
with a continuous GR-action and its bounded derived category Db(DFNGR).

Then, we can construct RΓtop
c (Zan;F ⊗ ΩZan

L
⊗DZ

M ), which is an object
of Db(DFNGR). Here, ΩZan is the sheaf of holomorphic differential forms
with the maximal degree. Let Dist(dZ , • ) be the Dolbeault resolution of
ΩZan by differential forms with distribution coefficients. Then, the complex
Γc

(
Zan;K • ⊗Dist(dZ , • )⊗DZ

(DZ⊗V • )
)

represents RΓc(Zan;F ⊗ΩZan⊗DZ

M ) ∈ Db(Mod(C)). On the other hand, since Γc

(
Zan;K • ⊗ Dist(dz, • ) ⊗DZ

1 In fact, it is not possible to represent F by such a K
•

in general. We overcome
this difficulty by a resolution of the base space Z (see § 5).
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(DZ ⊗ V • )
)

is a complex in DFNGR , it may be regarded as an object of

Db(DFNGR). It is RΓtop
c (Zan;F ⊗ΩZan

L
⊗DZ

M ). We have

RΓtop
c (Zan;F ⊗ΩZan

L
⊗DZ

M ) '
(
RHomtop

DZ
(M ⊗ F,OZan)

)∗
.

Let us apply it to the flag manifold X with the action of G. Let F be
an object of Db

GR, R-c(CXan). Then RHomtop
C (F,OXan) := RHomtop

DX
(DX ⊗

F,OXan) is an object of Db(FNGR). This is strict, i.e., if we represent
RHomtop

C (F,OXan) as a complex in FNGR , the differentials of such a complex
have closed ranges. Moreover, its cohomology group Hn(RHomtop

C (F,OXan))
is the maximal globalization of some Harish-Chandra module (see § 10). Sim-
ilarly, RHomtop

C (F,ΩXan) := RHomtop
DX

(
(DX ⊗ Ω⊗−1

X ) ⊗ F,OXan

)
is a strict

object of Db(FNGR) and its cohomology groups are the maximal globalization
of a Harish-Chandra module. Here ΩX is the sheaf of differential forms with
degree dX on X.
Dually, we can consider RΓtop

c (Xan;F ⊗OXan) as an object of Db(DFNGR),
whose cohomology groups are the minimal globalization of a Harish-Chandra
module.
This is the left vertical arrow in Fig. 1.

Remark 1.5.1. Note the works by Hecht-Taylor [11] and Smithies-Taylor [27]
which are relevant to this note. They considered the DXan-module OXan ⊗ F
instead of F , and construct the left vertical arrow in Fig. 1 in a similar way
to the Beilinson-Bernstein correspondence.

Let us denote by Modf (g,K) the category of (g,K)-modules finitely
generated over U(g). Then, Modf (g,K) has enough projectives. Indeed,
U(g)⊗U(k) N is a projective object of Modf (g,K) for any finite-dimensional
K-module N . Hence there exists a right derived functor

RHomtop
U(g)( • ,C

∞(GR)) : Db(Modf (g,K))op → Db(FNGR)

of the functor HomU(g)( • ,C∞(GR)) : Modf (g,K)op → FNGR . Similarly,
there exists a left derived functor

Γc(GR;DistGR)
L
⊗U(g) • : Db(Modf (g,K))→ Db(DFNGR)

of the functor Γc(GR;DistGR)⊗U(g) • : Modf (g,K)→ DFNGR .2 In § 10, we

prove Hn(RHomtop
U(g)(M,C∞(GR))) = 0, Hn(Γc(GR;DistGR)

L
⊗(g,KR)M) = 0

for n 6= 0, and

2 They are denoted by RHomtop
(g,KR)( • , C∞(GR)) and Γc(GR; DistGR)

L
⊗(g,KR) • in

Subsection 9.5.
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MG(M∗) ' RHomtop
U(g)(M,C∞(GR)),

mg(M) ' Γc(GR;DistGR)
L
⊗(g,KR)M

for any Harish-Chandra module M .

1.6 Integral transforms

Let Y and Z be algebraic manifolds, and consider the diagram:

Y × Z
p1

yysss
sss

ss p2

%%KKK
KKK

KK

Y Z .

We assume that Y is projective. For N ∈ Db(DY ) and K ∈ Db(DY×Z) we
define their convolution

N
D◦ K := Dp2∗(Dp∗1N

D
⊗K ) ∈ Db(DZ),

where Dp2∗, Dp∗1,
D
⊗ are the direct image, inverse image, tensor product

functors for D-modules (see § 3). Similarly, for K ∈ Db(CY an×Zan) and
F ∈ Db(CZan), we define their convolution

K ◦ F := R(pan
1 )!(K ⊗ (pan

2 )−1F ) ∈ Db(CY an) .

Let DRY×Z : Db(DY×Z)→ Db(CY an×Zan) be the de Rham functor. Then we
have the following integral transform formula.

Theorem 1.6.1. For K ∈ Db
hol(DY×Z), N ∈ Db

coh(DY ) and F ∈ Db(CZan),
set K = DRY×Z(K ) ∈ Db

C-c(CY an×Zan). If N and K are non-characteristic,
then we have an isomorphism

RHomDZ
((N

D◦K )⊗F,OZan) ' RHomDY
(N ⊗(K ◦F ),OY an)[dY − 2dZ ] .

Note that N and K are non-characteristic if
(
Ch(N ) × T ∗ZZ

)
∩ Ch(K ) ⊂

T ∗Y×Z(Y × Z), where Ch denotes the characteristic variety (see § 8).
Its equivariant version also holds.
Let us apply this to the following situation. Let G, GR, K, KR, X, S be

as before, and consider the diagram:

X × S
p1

yysss
sss

ss p2

%%KKK
KKK

KK

X S .
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Theorem 1.6.2. For K ∈ Db
G,coh(DX×S), N ∈ Db

coh(Mod(DX , G)) and
F ∈ Db

GR, R-c(CSan), set K = DRX×S(K ) ∈ Db
GR, C-c(CXan×San). Then we

have an isomorphism

RHomtop
DS

((N
D◦ K )⊗ F,OSan)

' RHomtop
DX

(N ⊗ (K ◦ F ),OXan)[dX − 2dS ]
(1.6.1)

in Db(FNGR).

Note that the non-characteristic condition in Theorem 1.6.1 is automatically
satisfied in this case.

1.7 Commutativity of Fig. 1

Let us apply Theorem 1.6.2 in order to show the commutativity of Fig. 1. Let
us start by taking M ∈ ModK, coh(DX). Then, by the Beilinson-Bernstein cor-
respondence, M corresponds to the Harish-Chandra module M := Γ(X;M ).
Let us set K = IndG

K(M ) ∈ ModG, coh(DX×S). If we set N = DX ⊗Ω⊗−1
X ∈

Mod(DX , G), then N
D◦ K ∈ Db

(
Mod(DS , G)

)
. By the equivalence of cate-

gories Mod(DS , G) ' Mod(g,K), N
D◦ K corresponds to M ∈ Mod(g,K).

Now we take F = CSR [−dS ]. Then the left-hand side of (1.6.1) coincides with

RHomtop
DS

(
N

D◦ K ,RH om (CSR [−dS ],OSan)
)
' RHomtop

DS
(N

D◦ K ,BSR) ,

where BSR is the sheaf of hyperfunctions on SR. Since N
D◦ K is an elliptic

DS-module, we have

RHomtop
DS

(N
D◦ K ,BSR) ' RHomtop

DS
(N

D◦ K ,C∞SR
),

where C∞SR
is the sheaf of C∞-functions on SR. The equivalence of categories

Mod(DS , G) ' Mod(g,K) implies

RHomtop
DS

(N
D◦ K ,C∞SR

) ' RHomtop
U(g)(M,C∞(GR)) .

Hence we have calculated the left-hand side of (1.6.1):

RHomtop
DS

((N
D◦ K )⊗ F,OSan) ' RHomtop

U(g)(M,C∞(GR)) .

Now let us calculate the right-hand side of (1.6.1). Since we have

K := DRX×SK = DRX×S

(
IndG

K(M )
)

' IndGan

Kan(DRX(M )),



12 Masaki Kashiwara

K ◦ F is nothing but Φ(DRX(M ))[−2dS ]. Therefore the right-hand side of
(1.6.1) is isomorphic to RHomtop

C (Φ(DRX(M )), ΩXan [dX ]). Finally we obtain

RHomtop
U(g)(Γ(X;M ) , C∞(GR))

' RHomtop
C (Φ(DRX(M )), ΩXan [dX ]),

(1.7.1)

or

MG(Γ(X;M )∗) ' RHomtop
C (Φ(DRX(M )), ΩXan [dX ]).(1.7.2)

By duality, we have

mg(Γ(X;M )) ' RΓtop
c (Xan ; Φ(DRX(M ))⊗ OXan).(1.7.3)

This is the commutativity of Fig. 1.

1.8 Example

Let us illustrate the results explained so far by taking SL(2,R) ' SU(1, 1) as
an example. We set

GR = SU(1, 1) =
{(

α β
β̄ ᾱ

)
; α, β ∈ C, |α|2 − |β|2 = 1

}
⊂ G = SL(2,C),

KR =
{(

α 0
0 ᾱ

)
; α ∈ C, |α| = 1

}
⊂ K =

{(
α 0
0 α−1

)
; α ∈ C \ {0}

}
,

X = P1.

Here G acts on the flag manifold X = P1 = C t {∞} by(
a b
c d

)
: z 7−→ az + b

cz + d
.

Its infinitesimal action LX : g→ Γ(X;ΘX) (with the sheaf ΘX of vector fields
on X) is given by

h :=
(

1 0
0 −1

)
7−→ −2z

d

dz
,

e :=
(

0 1
0 0

)
7−→ − d

dz
,

f :=
(

0 0
1 0

)
7−→ z2 d

dz
.

We have
Γ(X;DX) = U(g)/U(g)∆,

where ∆ = h(h− 2) + 4ef = h(h+ 2) + 4fe ∈ z(g).
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The flag manifold X has three K-orbits:

{0}, {∞} and X \ {0,∞} .

The corresponding three GR-orbits are

X−, X+ and XR,

where X± =
{
z ∈ P1 ; |z| ≷ 1

}
and XR = {z ∈ C ; |z| = 1}.

Let j0 : X\{0} ↪→ X, j∞ : X\{∞} ↪→ X and j0,∞ : X\{0,∞} ↪→ X be the
open embeddings. Then we have K-equivariant DX -modules OX , j0∗j−1

0 OX ,
j∞∗j

−1
∞ OX and j0,∞∗j

−1
0,∞OX . We have the inclusion relation:

j0,∞∗j
−1
0,∞OX

j0∗j
−1
0 OX

) 	

66mmmmmmmmm
j∞∗j

−1
∞ OX .

6 V

hhRRRRRRRRRR

OX

( �

55llllllllllll6 V

hhRRRRRRRRRRR

There exist four irreducible K-equivariant DX -modules:

M0 = H1
{0}(OX) ' j0∗j−1

0 OX/OX ' j0,∞∗j
−1
0,∞OX/j∞∗j

−1
∞ OX ,

M∞ = H1
{∞}(OX) ' j∞∗j−1

∞ OX/OX ' j0,∞∗j
−1
0,∞OX/j0∗j

−1
0 OX ,

M0,∞ = OX ,

M1/2 = OX

√
z = DX/DX(LX(h) + 1).

Here, M0 and M∞ correspond to the K-orbits {0} and {∞}, respectively,
while both M0,∞ and M1/2 correspond to the open K-orbit X \ {0,∞}.
Note that the isotropy subgroup Kz of K at z ∈ X \ {0,∞} is isomorphic
to {1,−1}, and M0,∞ corresponds to the trivial representation of Kz and
M1/2 corresponds to the non-trivial one-dimensional representation of Kz.
By the Beilinson-Bernstein correspondence, we obtain four irreducible Harish-
Chandra modules with the trivial infinitesimal character:

M0 = OX(X \ {0})/C = C[z−1]/C ' U(g)/(U(g)(h− 2) + U(g) f),

M∞ = OX(X \ {∞})/C ' C[z]/C ' U(g)/(U(g)(h+ 2) + U(g) e),

M0,∞ = OX(X) = C ' U(g)/(U(g)h+ U(g) e+ U(g) f),

M1/2 = C[z, z−1]
√
z ' U(g)/(U(g)(h+ 1) + U(g)∆).

Among them, M0,∞ and M1/2 are self-dual, namely they satisfy M∗ ' M .
We have (M0)∗ 'M∞.

By the de Rham functor, the irreducible K-equivariant DX -modules are
transformed to irreducible Kan-equivariant perverse sheaves as follows:
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DRX(M0) = C{0}[−1],
DRX(M∞) = C{∞}[−1],

DRX(M0,∞) = CXan ,

DRX(M1/2) = CXan
√
z.

Here CXan
√
z is the locally constant sheaf on Xan \ {0,∞} of rank one (ex-

tended by zero over Xan) with the monodromy −1 around 0 and ∞.
Their images by the Matsuki correspondence (see Proposition 9.4.3) are

Φ(DRX(M0)) ' CX− [1],
Φ(DRX(M∞)) ' CX+ [1],

Φ(DRX(M0,∞)) ' CXan ,

Φ(DRX(M1/2)) ' CXR

√
z.

Note that CXR

√
z is a local system on XR of rank one with the monodromy

−1.
Hence (1.7.2) reads as

MG(M∗0 ) ' MG(M∞) ' RHomtop
C (CX− [1], ΩXan [1]) ' ΩXan(X−),

MG(M∗∞) ' MG(M0) ' RHomtop
C (CX+ [1], ΩXan [1]) ' ΩXan(X+),

MG(M∗0,∞) ' MG(M0,∞)' RHomtop
C (CXan , ΩXan [1])

' H1(Xan;ΩXan) ' C,

MG(M∗1/2) ' MG(M1/2)' RHomtop
C (CXR

√
z,ΩXan [1])

' Γ
(
XR;BXR ⊗ΩXR ⊗ CXR

√
z
)
.

Here BXR is the sheaf of hyperfunctions on XR. Note that the exterior differ-
entiation gives isomorphisms

OXan(X±)/C ∼−−→
d

ΩXan(X±),

Γ(XR;BXR ⊗ CXR

√
z) ∼−−→

d
Γ(XR;BXR ⊗ΩXR ⊗ CXR

√
z).

In fact, we have

mg(M0) ' ΩXan(X+) ⊂ ΩXan(X+) ' MG(M0),
mg(M∞) ' ΩXan(X−) ⊂ ΩXan(X−) ' MG(M∞),

mg(M0,∞) ∼−−→ MG(M0,∞) ' C,
mg(M1/2) ' Γ

(
XR;AXR ⊗ CXR

√
z
)
⊂ Γ

(
XR;BXR ⊗ CXR

√
z
)
' MG(M1/2).

Here AXR is the sheaf of real analytic functions on XR.
For example, by (1.7.3), mg(M0) ' RΓtop

c (Xan; CX− [1]⊗OXan). The exact
sequence
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0→ CX− → CXan → CX+
→ 0

yields the exact sequence:

H0(Xan; CX− ⊗ OXan)→ H0(Xan; CXan ⊗ OXan)→ H0(Xan; CX+
⊗ OXan)

→ H0(Xan; CX− [1]⊗ OXan)→ H0(Xan; CXan [1]⊗ OXan),

in which H0(Xan; CX− ⊗ OXan) = {u ∈ OXan(Xan) ; supp(u) ⊂ X−} = 0,
H0(Xan; CXan ⊗ OXan) = OXan(Xan) = C and H0(Xan; CXan [1] ⊗ OXan) =
H1(Xan;OXan) = 0.

Hence we have

RΓtop
c (Xan; CX− [1]⊗ OXan) ' OXan(X+)/C.

The exterior differentiation gives an isomorphism

OXan(X+)/C ∼−−→
d
ΩXan(X+).

Note that we have

HC(ΩXan(X+)) ' HC(ΩXan(X+))

' ΩX(X \ {0}) ∼←−−
d

OX(X \ {0})/C 'M0.

1.9 Organization of the note

So far, we have explained Fig. 1 briefly. We shall explain more details in the
subsequent sections.

The category of representations of GR is not an abelian category, but it
is a so-called quasi-abelian category and we can consider its derived category.
In § 2, we explain the derived category of a quasi-abelian category following
J.-P. Schneiders [26].

In § 3, we introduce the notion of quasi-G-equivariant D-modules, and
studies their derived category. We construct the pull-back and push-forward
functors for Db(Mod(DX , G)), and prove that they commute with the forget-
ful functor Db(Mod(DX , G))→ Db(Mod(DX)).

In § 4, we explain the equivariant derived category following Bernstein-
Lunts [4].

In § 5, we define RHomtop
DZ

(M ⊗ F,OZan) and studies its functorial prop-
erties.

In § 6, we prove the ellipticity theorem, which says that, for a real form
i : XR ↪→ X, RHomtop

DX
(M ,C∞XR

) −→ RHomtop
DX

(M ⊗ i∗i!CXR ,OXan) is an
isomorphism when M is an elliptic D-module. In order to construct this
morphism, we use the Whitney functor introduced by Kashiwara-Schapira
[20].
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If we want to deal with non-trivial infinitesimal characters, we need to
twist sheaves and D-modules. In § 7, we explain these twistings.

In § 8, we prove the integral transform formula explained in the subsection
1.6.

In § 9, we apply these results to the representation theory of real semisimple
Lie groups. We construct the arrows in Fig. 1

As an application of § 9, we give a proof of the cohomology vanishing
theorem Hj(RHomtop

U(g)(M,C∞(GR)) = 0 (j 6= 0) and its dual statement

Hj(Γc(GR;DistGR)
L
⊗U(g)M) = 0 in § 10.

2 Derived categories of quasi-abelian categories

2.1 Quasi-abelian categories

The representations of real semisimple groups are realized on topological vec-
tor spaces, and they do not form an abelian category. However, they form a
so-called quasi-abelian category. In this section, we shall review the results of
J.-P. Schneiders on the theory of quasi-abelian categories and their derived
categories. For more details, we refer the reader to [26].

Let C be an additive category admitting the kernels and the cokernels. Let
us recall that, for a morphism f : X → Y in C, Im(f) is the kernel of Y →
Coker(f), and Coim(f) is the cokernel of Ker(f)→ X. Then f decomposes as
X → Coim(f) → Im(f) → Y . We say that f is strict if Coim(f) → Im(f) is
an isomorphism. Note that a monomorphism (resp. epimorphism) f : X → Y
is strict if and only if X → Im(f) (resp. Coim(f) → Y ) is an isomorphism.
Note that, for any morphism f : X → Y , the morphisms Ker(f) → X and
Im(f)→ Y are strict monomorphisms, and X → Coim(f) and Y → Coker(f)
are strict epimorphisms. Note also that a morphism f is strict if and only if
it factors as i ◦ s with a strict epimorphism s and a strict monomorphism i.

Definition 2.1.1. A quasi-abelian category is an additive category admitting
the kernels and the cokernels which satisfies the following conditions:

(i) the strict epimorphisms are stable by base changes,
(ii) the strict monomorphisms are stable by co-base changes.

The condition (i) means that, for any strict epimorphism u : X → Y and
a morphism Y ′ → Y , setting X ′ = X ×Y Y ′ = Ker(X ⊕ Y ′ → Y ), the
composition X ′ → X ⊕ Y ′ → Y ′ is a strict epimorphism. The condition (ii)
is the similar condition obtained by reversing arrows.

Note that, for any morphism f : X → Y in a quasi-abelian category,
Coim(f)→ Im(f) is a monomorphism and an epimorphism.

Remark that if C is a quasi-abelian category, then its opposite category
Cop is also quasi-abelian.
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We recall that an abelian category is an additive category such that it
admits the kernels and the cokernels and all the morphisms are strict.

Example 2.1.2. (i) Let Top be the category of Hausdorff locally convex
topological vector spaces. Then Top is a quasi-abelian category. For a
morphism f : X → Y , Ker(f) is f−1(0) with the induced topology from
X, Coker(f) is Y/f(X) with the quotient topology of Y , Coim(f) is f(X)
with the quotient topology of X and Im(f) is f(X) with the induced
topology from Y . Hence f is strict if and only if f(X) is a closed subspace
of Y and the topology on f(X) induced from X coincides with the one
induced from Y .

(ii) Let E be a Hausdorff locally convex topological vector space. Let us recall
that a subset B of E is bounded if for any neighborhood U of 0 there
exists c > 0 such that B ⊂ cU . A family {fi} of linear functionals on E
is called equicontinuous if there exists a neighborhood U of 0 ∈ E such
that fi(U) ⊂ {c ∈ C ; |c| < 1} for any i. For two complete locally convex
topological vector spaces E and F , a continuous linear map f : E → F is
called nuclear if there exist an equicontinuous sequence {hn}n≥1 of linear
functionals on E, a bounded sequence {vn}n≥1 of elements of F and a
sequence {cn} in C such that

∑
|cn| <∞ and f(x) =

∑
n cnhn(x)vn for

all x ∈ E.
A Fréchet nuclear space (FN space, for short) is a Fréchet space E such
that any homomorphism from E to a Banach space is nuclear. It is equiv-
alent to saying that E is isomorphic to the projective limit of a sequence
of Banach spaces F1 ← F2 ← · · · such that Fn → Fn−1 are nuclear for
all n. We denote by FN the full subcategory of Top consisting of Fréchet
nuclear spaces.
A dual Fréchet nuclear space (DFN space, for short) is the inductive limit
of a sequence of Banach spaces F1 → F2 → · · · such that Fn → Fn+1 are
injective and nuclear for all n. We denote by DFN the full subcategory
of Top consisting of dual Fréchet nuclear spaces.
A closed linear subspace of an FN space (resp. a DFN space), as well as
the quotient of an FN space (resp. a DFN space) by a closed subspace,
is also an FN space (resp. a DFN space). Hence, both FN and DFN are
quasi-abelian.
A morphism f : E → F in FN or DFN is strict if and only if f(E) is a
closed subspace of F .
The category DFN is equivalent to the opposite category FNop of FN
by E 7→ E∗, where E∗ is the strong dual of E.
Note that if M is a C∞-manifold (countable at infinity), then the space
C∞(M) of C∞-functions on M is an FN space. The space Γc(M ;DistM )
of distributions with compact support is a DFN space. If X is a complex
manifold (countable at infinity), the space OX(X) of holomorphic func-
tions is an FN space. For a compact subset K of X, the space OX(K) of
holomorphic functions defined on a neighborhood of K is a DFN space.
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(iii) Let G be a Lie group. A Fréchet nuclear G-module is an FN space E
with a continuous G-action, namely G acts on E and the action map
G×E → E is continuous. Let us denote by FNG the category of Fréchet
nuclear G-modules. It is also a quasi-abelian category. Similarly we define
the notion of dual Fréchet nuclear G-modules and the category DFNG.
The category (FNG)op and DFNG are equivalent.

2.2 Derived categories

Let C be a quasi-abelian category. A complex X in C consists of objects Xn

(n ∈ Z) and morphisms dn
X : Xn → Xn+1 such that dn+1

X ◦ dn
X = 0. The

morphisms dn
X are called the differentials of X. Morphisms between complexes

are naturally defined. Then the complexes in C form an additive category,
which will be denoted by C(C). For a complex X and k ∈ Z, let X[k] be the
complex defined by

X[k]n = Xn+k dn
X[k] = (−1)kdn+k

X .

Then X 7→ X[k] is an equivalence of categories, called the translation functor.
We say that a complex X is a strict complex if all the differentials dn

X are
strict. We say that a complex X is strictly exact if Coker(dn−1

X )→ Ker(dn+1
X )

is an isomorphism for all n. Note that dn
X : Xn → Xn+1 decomposes into

Xn � Coker(dn−1
X ) � Coim(dn

X)→ Im(dn
X)� Ker(dn+1

X )�Xn+1.

If X is strictly exact, then X is a strict complex and 0→ Ker(dn
X)→ Xn →

Ker(dn+1
X )→ 0 is strictly exact.

For a morphism f : X → Y in C(C), its mapping cone Mc(f) is defined by

Mc(f)n = Xn+1 ⊕ Y n and d n
Mc(f) =

(
−dn+1

X 0
fn+1 dn

Y

)
.

Then we have a sequence of canonical morphisms in C(C):

X
f−−→ Y

α(f)−−−→ Mc(f)
β(f)−−−→ X[1].(2.2.1)

Let K(C) be the homotopy category, which is defined as follows: Ob(K(C)) =
Ob(C(C)) and, for X,Y ∈ K(C), we define

HomK(C)(X,Y ) = HomC(C)(X,Y )/Ht(X,Y ),

where

Ht(X,Y ) = {f ∈ HomC(C)(X,Y ) ; there exist hn : Xn → Y n−1 such that

fn = dn−1
Y ◦ hn + hn+1 ◦ dn

X for all n}.

A morphism in Ht(X,Y ) is sometimes called a morphism homotopic to zero.
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A triangle in K(C) is a sequence of morphisms

X
f−→ Y

g−→ Z
h−→ X[1]

such that g ◦ f = 0, h ◦ g = 0, f [1] ◦ h = 0. For example, the image of (2.2.1)
in K(C) is a triangle for any morphism f ∈ C(C). A triangle in K(C) is called
a distinguished triangle if it is isomorphic to the image of the triangle (2.2.1)
by the functor C(C)→ K(C) for some morphism f ∈ C(C). The additive cat-
egory K(C) with the translation functor • [1] and the family of distinguished
triangles is a triangulated category (see e.g. [19]).

Note that if two complexes X and Y are isomorphic in K(C), and if X
is a strictly exact complex, then so is Y . Let E be the subcategory of K(C)
consisting of strictly exact complexes. Then E is a triangulated subcategory,
namely it is closed by the translation functors [k] (k ∈ Z), and if X → Y →
Z → X[1] is a distinguished triangle and X,Y ∈ E , then Z ∈ E .

We define the derived category D(C) as the quotient category K(C)/E . It is
defined as follows. A morphism f : X → Y is called a quasi-isomorphism (qis

for short) if, embedding it in a distinguished triangle X
f−→ Y → Z → X[1],

Z belongs to E . For a chain of morphisms X
f−→ Y

g−→ Z in K(C), if two of f ,
g and g ◦ f are qis, then all the three are qis.

With this terminology, Ob(D(C)) = Ob(K(C)) and for X,Y ∈ D(C),

HomD(C)(X,Y ) ' lim−→
X′

qis−−→X

HomK(C)(X ′, Y )

∼−−→ lim−→
X′

qis−−→X, Y
qis−−→Y ′

HomK(C)(X ′, Y ′)

∼←−− lim−→
Y

qis−−→Y ′

HomK(C)(X,Y ′).

The composition of morphisms f : X → Y and g : Y → Z is visualized by the
following diagram:

X
f // Y

g //

''OOOOOOOOOO Z

qis
��

X ′ //
qis

OO 77pppppppppp
Z ′.

A morphism in K(C) induces an isomorphism in D(C) if and only if it is a
quasi-isomorphism.

A triangle X → Y → Z → X[1] in D(C) is called a distinguished triangle
if it is isomorphic to the image of a distinguished triangle in K(C). Then D(C)
is also a triangulated category.

Note that if X
f−→ Y

g−→ Z is a sequence of morphisms in C(C) such that
0 → Xn → Y n → Zn → 0 is strictly exact for all n, then the natural
morphism Mc(f)→ Z is a qis, and we have a distinguished triangle
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X → Y → Z → X[1]

in D(C).
We denote by C+(C) (resp. C−(C), Cb(C)) the full subcategory of C(C)

consisting of objects X such that Xn = 0 for n � 0 (resp. n � 0, |n| � 0).
Let D∗(C) (∗ = +,−,b) be the full subcategory of D(C) whose objects are
isomorphic to the image of objects of C∗(C). Similarly, we define the full
subcategory K∗(C) of K(C).

We call Db(C) the bounded derived category of C.

2.3 t-structure

Let us define various truncation functors for X ∈ C(C):

τ≤nX : · · · −→ Xn−1 −→ Ker dn
X −→ 0 −→ 0 −→ · · ·

τ≤n+1/2X : · · · −→ Xn−1 −→ Xn −→ Im dn
X −→ 0 −→ · · ·

τ≥nX : · · · −→ 0 −→ Coker dn−1
X −→ Xn+1 −→ Xn+2 −→ · · ·

τ≥n+1/2X : · · · −→ 0 −→ Coim dn
X −→ Xn+1 −→ Xn+2 −→ · · ·

for n ∈ Z. Then we have morphisms

τ≤sX −→ τ≤tX −→ X −→ τ≥sX −→ τ≥tX

for s, t ∈ 1
2Z such that s ≤ t. We can easily check that the functors

τ≤s, τ≥s : C(C)→ C(C) send the morphisms homotopic to zero to morphisms
homotopic to zero and the quasi-isomorphisms to quasi-isomorphisms. Hence,
they induce the functors

τ≤s, τ≥s : D(C)→ D(C)

and morphisms τ≤s → id→ τ≥s. We have isomorphisms of functors:

τ≤s ◦ τ≤t ' τ≤min(s,t) , τ≥s ◦ τ≥t ' τ≥max(s,t) , and
τ≤s ◦ τ≥t ' τ≥t ◦ τ≤s for s, t ∈ 1

2Z.

We set τ>s = τ≥s+1/2 and τ<s = τ≤s−1/2.
We have a distinguished triangle in D(C):

τ≤sX −→ X −→ τ>sX −→ (τ≤sX)[1].

For s ∈ 1
2Z, set

D≤s(C) =
{
X ∈ D(C) ; τ≤sX → X is an isomorphism

}
=
{
X ∈ D(C) ; τ>sX ' 0

}
,

D≥s(C) =
{
X ∈ D(C) ; X → τ≥sX is an isomorphism

}
=
{
X ∈ D(C) ; τ<sX ' 0

}
.
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Then {D≤s(C)}s∈ 1
2 Z is an increasing sequence of full subcategories of D(C),

and {D≥s(C)}s∈ 1
2 Z is a decreasing sequence of full subcategories of D(C).

Note that D+(C) (resp. D−(C)) is the union of all the D≥n(C)’s (resp. all
the D≤n(C)’s), and Db(C) is the intersection of D+(C) and D−(C).

The functor τ≤s : D(C)→ D≤s(C) is a right adjoint functor of the inclusion
functor D≤s(C) ↪→ D(C), and τ≥s : D(C)→ D≥s(C) is a left adjoint functor of
D≥s(C) ↪→ D(C).

Set D>s(C) = D≥s+1/2(C) and D<s(C) = D≤s−1/2(C).
The pair (D≤s(C),D>s−1(C)) is a t-structure of D(C) (see [3] and also

[18]) for any s ∈ 1
2Z. Hence, D≤s(C) ∩ D>s−1(C) is an abelian category. The

triangulated category D(C) is equivalent to the derived category of D≤s(C) ∩
D>s−1(C). The full subcategory D≤0(C) ∩D≥0(C) is equivalent to C.

For X ∈ C(C) and an integer n, the following conditions are equivalent:

(i) dn
X is strict,

(ii) τ≤nX → τ≤n+1/2X is a quasi-isomorphism,

(iii) τ≥n+1/2X → τ≥n+1X is a quasi-isomorphism.

Hence, for an object X of D(C), X is represented by some strict complex
if and only if all complexes in C(C) representing X are strict complexes. In
such a case, we say that X is strict. Then, its cohomology group Hn(X) :=
Coker(Xn−1 → Ker(dn

X)) ' Ker(Coker(dn−1
X ) → Xn+1) has a sense as an

object of C. The following lemma is immediate.

Lemma 2.3.1. Let X → Y → Z
+1−−→ X[1] be a distinguished triangle, and

assume that X and Y are strict. If Hn(X)→ Hn(Y ) is a strict morphism for
all n, then Z is strict. Moreover we have a strictly exact sequence:

· · · −→ Hn(X) −→ Hn(Y ) −→ Hn(Z) −→ Hn+1(X) −→ Hn+1(Y ) −→ · · · .

Remark 2.3.2. When C is either FN or DFN, a complex X in C is strictly
exact if and only if it is exact as a complex of vector spaces forgetting the
topology. A complex X is strict if and only if the image of the differential dn

X

is closed in Xn+1 for all n. Hence, denoting by F the functor from D(FN)
(resp. D(DFN)) to D(Mod(C)), a morphism f in D(FN) (resp. D(DFN)) is
an isomorphism if and only if so is F (u).

3 Quasi-equivariant D-modules

3.1 Definition

For the theory of D-modules, we refer the reader to [16].
Let us recall the definition of quasi-equivariant D-modules (cf. [15]).
Let G be an affine algebraic group over C and g its Lie algebra. A G-

module is by definition a vector space V endowed with an action of G such
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that g 7→ gv is a regular function on G for any v ∈ V , i.e., there exist finitely
many {vi}i of vectors in V and regular functions {ai(g)}i on G such that
gv =

∑
i ai(g)vi for any g ∈ G. It is equivalent to saying that there is a

homomorphism V → OG(G) ⊗ V (i.e., v 7→
∑

i ai(g) ⊗ vi) such that for any

g ∈ G the action µg ∈ EndC(V ) is given by V → OG(G)⊗V
i∗g−→ V , where the

last arrow i∗g is induced by the evaluation map OG(G) → C at g. Hence the
G-module structure is equivalent to the co-module structure over the cogebra
OG(G).

We denote by Mod(G) the category of G-modules, and by Modf (G) the
category of finite-dimensional G-modules. It is well-known that any G-module
is a union of finite-dimensional sub-G-modules.

Let us recall the definition of (g,H)-modules for a subgroup H of G.

Definition 3.1.1. Let H be a closed subgroup of G with a Lie algebra h. A
(g,H)-module is a vector space M endowed with an H-module structure and
a g-module structure such that

(i) the h-module structure on M induced by the H-module structure coin-
cides with the one induced by the g-module structure,

(ii) the multiplication homomorphism g⊗M →M is H-linear, where H acts
on g by the adjoint action.

Let us denote by Mod(g,H) the category of (g,H)-modules.
LetX be a smooth algebraic variety with aG-action (we call it algebraic G-

manifold). Let µ : G×X → X denote the action morphism and pr: G×X → X
the projection. We shall define pk : G×G×X → G×X (k = 0, 1, 2) by

p0(g1, g2, x) = (g1, g2x),
p1(g1, g2, x) = (g1g2, x),
p2(g1, g2, x) = (g2, x).

µ(g, x) = gx,

pr(g, x) = x,

Then we have a simplicial diagram

G×G×X
p0 //
p1 //
p2

// G×X
µ //
pr

// X.

It means that these morphisms satisfy the commutation relations:

µ ◦ p0 = µ ◦ p1,

pr ◦ p1 = pr ◦ p2,

µ ◦ p2 = pr ◦ p0.

Definition 3.1.2. A G-equivariant OX -module is an OX -module F endowed
with an isomorphism of OG×X -modules:

β : µ∗F ∼−−→pr∗F(3.1.1)
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such that the following diagram commutes (associative law):

p∗1µ
∗F

p∗1β // p∗1pr∗F

p∗0µ
∗F

p∗0β // p∗0pr∗F p∗2µ
∗F

p∗2β // p∗2pr∗F .

(3.1.2)

We denote by Mod(OX , G) the category of G-equivariant OX -modules which
are quasi-coherent as OX -modules.

For a G-equivariant OX -module F , we can define an action of the Lie
algebra g on F , i.e., a Lie algebra homomorphism:

Lv : g→ EndC(F )(3.1.3)

as follows. Let us denote by

LX : g→ ΘX(X)→ DX(X)(3.1.4)

the infinitesimal action of G on X. Here, ΘX denotes the sheaf of vector fields
on X, and DX denotes the sheaf of differential operators. It is a Lie algebra
homomorphism. Let us denote by

LG : g→ Γ (G;DG)(3.1.5)

the Lie algebra homomorphism derived by the left action of G on itself. Then
its image is the space of right invariant vector fields on G. Denoting by i : X →
G×X the map x 7→ (e, x), we define

Lv(A)s = i∗
(
(LG(A) � id)(βµ∗(s))

)
for A ∈ g and s ∈ F .(3.1.6)

It is a derivation, namely

Lv(A)(as) =
(
LX(A)a

)
s+ a

(
Lv(A)s

)
for A ∈ g, a ∈ OX and s ∈ F .

The notion of equivariance of D-modules is defined similarly to the one of
equivariant O-modules. However, there are two options in the D-module case.
Let OG �DX denote the subring OG×X ⊗pr−1OX

pr−1DX of DG×X . There are
two ring morphisms

pr−1DX → OG � DX and OG×X → OG � DX .

Definition 3.1.3. A quasi-G-equivariant DX -module is a DX -module M en-
dowed with an OG � DX -linear isomorphism

β : Dµ∗M ∼−−→Dpr∗M(3.1.7)

such that the following diagram commutes (associative law):
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Dp∗1Dµ
∗M

Dp∗1β // Dp∗1Dpr∗M

Dp∗0Dµ
∗M

Dp∗0β // Dp∗0Dpr∗M Dp∗2Dµ
∗M

Dp∗2β // Dp∗2Dpr∗M .

Here Dµ∗, Dp∗0, etc. are the pull-back functors for D-modules (see § 3.4). If
moreover β is DG×X -linear, M is called G-equivariant.

For quasi-G-equivariant DX -modules M and N , a G-equivariant morphism
u : M → N is a DX -linear homomorphism u : M → N such that

Dµ∗M

Dµ∗u

��

β // Dpr∗M

Dpr∗u

��
Dµ∗N

β // Dpr∗N

commutes. Let us denote by Mod(DX , G) the category of quasi-coherent
quasi-G-equivariant DX -modules, and by ModG(DX) the full subcategory
Mod(DX , G) consisting of quasi-coherent G-equivariant DX -modules. Then
they are abelian categories, and the functor ModG(DX) → Mod(DX , G)
is fully faithful and exact, and the functors Mod(DX , G) → Mod(DX) →
Mod(OX) and Mod(DX , G)→ Mod(OX , G) are exact.

Roughly speaking, quasi-equivariance means the following. For g ∈ G let
µg : X → X denotes the multiplication map. Then a DX -linear isomorphism
βg : µ∗gM ∼−−→M is given in such a way that it depends algebraically on g and
satisfies the chain condition βg1g2 = βg2 ◦ βg1 for g1, g2 ∈ G: the diagram

µ∗g2
µ∗g1

M
βg1 // µ∗g2

M

βg2

��
µ∗g1g2

M
βg1g2 // M

is commutative.

Example 3.1. (i) If F is a G-equivariant OX -module, then DX ⊗OX
F is a

quasi-G-equivariant DX -module.
(ii) Let P1, . . . , P` be a family of G-invariant differential operators on X.

Then DX/
(∑

i DXPi

)
is a quasi-G-equivariant DX -module.

Let M be a quasi-G-equivariant DX -module. Then the G-equivariant OX -
module structure on M induces the Lie algebra homomorphism

Lv : g→ EndC(M ).
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On the other hand, the DX -module structure on M induces the Lie algebra
homomorphism

αD : g→ Γ (X;DX)→ EndC(M ).

Hence we have:

αD(A)s = i∗
(
(LG(A) � 1)(µ∗(s))

)
Lv(A)s = i∗

(
(LG(A) � 1)(β ◦ µ∗(s))

) for s ∈M and A ∈ g.

Set
γM = Lv − αD : g→ EndC(M ).

Since we have

[Lv(A), P ] = [αD(A), P ] for any A ∈ g and P ∈ DX ,

the homomorphism γM sends g to EndDX
(M ). The homomorphism γM : g→

EndDX
(M ) vanishes if and only if LG(A) � 1 ∈ ΘG×X commutes with β for

all A ∈ g. Thus we have obtained the following lemma.

Lemma 3.1.4. Let M be a quasi-G-equivariant DX-module. Let γM be as
above. Then we have

(i) γM is a Lie algebra homomorphism g→ EndDX
(M ),

(ii) M is G-equivariant if and only if γM = 0.

Thus M has a (DX , U(g))-bimodule structure.
When G acts transitively on X, we have the following description of quasi-

equivariant D-modules.

Proposition 3.1.5 ([15]). Let X = G/H for a closed subgroup H of G, and
let i : pt → X be the map associated with e modH. Then M 7→ i∗M gives
equivalences of categories

Mod(DX , G) ∼−−→ Mod(g,H)⋃ ⋃
ModG(DX) ∼−−→ Mod(H/H◦),

where H◦ is the connected component of H containing the identity.

The g-module structure on i∗M is given by γM . We remark that Mod(H/H◦)
is embedded in Mod(g,H) in such a way that g acts trivially on the vector
spaces in Mod(H/H◦).

Remark 3.1.6. The inclusion functor ModG(DX)→ Mod(DX , G) has a left
adjoint functor and a right adjoint functor

M 7−→ C⊗U(g) M and M 7−→HomU(g)(C,M ).

Here U(g) acts on M via γM .
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3.2 Derived Categories

Recall that Mod(DX , G) denotes the abelian category of quasi-coherent quasi-
G-equivariant DX -modules. There are the forgetful functor

Mod(DX , G)→ Mod(OX , G)

and
DX ⊗OX

• : Mod(OX , G)→ Mod(DX , G).

They are adjoint functors to each other. Namely there is a functorial isomor-
phism in F ∈ Mod(OX , G) and M ∈ Mod(DX , G)

HomMod(OX ,G)(F ,M ) ∼= HomMod(DX ,G)(DX ⊗OX
F ,M ).(3.2.1)

Note that, for F ∈ Mod(OX , G), the morphism γM : g→ EndDX
(M ) for

M = DX ⊗OX
F is given by γM (A)(P ⊗s) = −PLX(A)⊗s+P ⊗Lv(A)s for

A ∈ g, P ∈ DX , s ∈ F . Hence DX ⊗OX
F is not a G-equivariant DX -module

in general.

Let Mod coh(DX , G) denote the full subcategory of Mod(DX , G) consist-
ing of coherent quasi-G-equivariant DX -modules. Similarly let us denote by
Mod coh(OX , G) the category of coherent G-equivariant OX -modules.

We shall introduce the following intermediate category.

Definition 3.2.1. A quasi-coherent OX -module (resp. DX -module) is called
countably coherent if it is locally generated by countably many sections.

Note that if F is a countably coherent OX -module, then there exists locally
an exact sequence O⊕I

X → O⊕J
X → F → 0 where I and J are countable sets.

Note also that any coherent DX -module is countably coherent over OX .
Hence a quasi-coherent DX -module is countably coherent, if and only if so is
it as an OX -module.

Note that countably coherent O-modules are stable by inverse images,
direct images and tensor products.

Let Mod cc(DX , G) denote the full subcategory of Mod(DX , G) consisting
of countably coherent quasi-G-equivariant DX -modules.

Let us denote by D(DX , G) the derived category of Mod(DX , G). Let
Dcc(DX , G) (resp. Dcoh(DX , G)) denotes the full subcategory of D(DX , G)
consisting of objects whose cohomologies belong to Mod cc(DX , G) (resp.
Mod coh(DX , G)).

Let us denote by Db(DX , G) the full subcategory of D(DX , G) consisting
of objects with bounded cohomologies. We define similarly Db

cc(DX , G) and
Db

coh(DX , G).

Proposition 3.2.2. The functors

Db(Mod cc(DX , G))→ Db
cc(DX , G) and

Db(Mod coh(DX , G))→ Db
coh(DX , G)

are equivalences of categories.
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This follows easily from the following lemma and a standard argument
(e.g. cf. [19])

Lemma 3.2.3. Any quasi-coherent G-equivariant OX-module is a union of
coherent G-equivariant OX-submodules. Similarly, any quasi-coherent quasi-
G-equivariant DX-module is a union of coherent quasi-G-equivariant DX-
submodules.

3.3 Sumihiro’s result

Hereafter we shall assume that X is quasi-projective, i.e., X is isomorphic to a
subscheme of the projective space Pn for some n. In such a case, Mod(DX , G)
has enough objects so that Db(DX , G) is a desired derived category, namely,
the forgetful functor Db(DX , G) → Db(DX) commutes with various functors
such as pull-back functors, push-forward functors, etc. This follows from the
following result due to Sumihiro [28].

Proposition 3.3.1. Let X be a quasi-projective G-manifold.

(i) There exists a G-equivariant ample invertible OX-module.
(ii) There exists a G-equivariant open embedding from X into a projective

G-manifold.

In the sequel, we assume

X is a quasi-projective G-manifold.(3.3.1)

Let L be a G-equivariant ample invertible OX -module.

Lemma 3.3.2. Let F be a coherent G-equivariant OX-module. Then, for n�
0, there exist a finite-dimensional G-module V and a G-equivariant surjective
homomorphism

L ⊗−n ⊗ V � F .(3.3.2)

Proof. For n � 0, F ⊗L ⊗n is generated by global sections. Take a finite-
dimensional G-submodule V of the G-module Γ (X;F ⊗ L ⊗n) such that
V ⊗OX → F ⊗L ⊗n is surjective. Then this gives a desired homomorphism.

Q.E.D.

Lemma 3.3.2 implies the following exactitude criterion.

Lemma 3.3.3. Let M ′ → M → M ′′ be a sequence in Mod(OX , G). If
HomMod(OX ,G)(E ,M ′) → HomMod(OX ,G)(E ,M ) → HomMod(OX ,G)(E ,M ′′)
is exact for any locally free G-equivariant OX-module E of finite rank, then
M ′ →M →M ′′ is exact.
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Let us denote by Mod lf (DX , G) the full subcategory of Mod coh(DX , G)
consisting of objects of the form DX ⊗OX

E for a locally free coherent G-
equivariant OX -module E . By Lemma 3.3.2, for any M ∈ Mod coh(DX , G),
there exists a surjective G-equivariant homomorphism N → M with N ∈
Mod lf (DX , G).

Lemma 3.3.2 together with standard arguments (see e.g. [19]), we obtain

Proposition 3.3.4. For any M ∈ K−
(
Mod coh(DX , G)

)
there exist N ∈

K−
(
Mod lf (DX , G)

)
and a quasi-isomorphism N →M .

The abelian category Mod(DX , G) is a Grothendieck category. By a gen-
eral theory of homological algebra, we have the following proposition (see e.g.
[19]).

Proposition 3.3.5. Any object of Mod(DX , G) is embedded in an injective
object of Mod(DX , G).

Injective objects of Mod(DX , G) have the following properties.

Lemma 3.3.6. The forgetful functor Mod(DX , G)→ Mod(OX , G) sends the
injective objects to injective objects.

This follows from (3.2.1) and the exactitude of F 7→ DX ⊗OX
F .

Lemma 3.3.7. Let I be an injective object of Mod(OX , G). Then the func-
tor F 7→ HomOX

(F ,I ) is an exact functor from Mod coh(OX , G)op to
Mod(OX , G).

Proof. By Lemma 3.3.3, it is enough to remark that, for any locally free
E ∈ Mod coh(OX , G),

HomMod(OX ,G)

(
E ,HomOX

(F ,I )
) ∼= HomMod(OX ,G)(E ⊗OX

F ,I )

is an exact functor in F . Q.E.D.

Proposition 3.3.8. Let I be an injective object of Mod(OX , G). Then for
any F ∈ Mod coh(OX , G),

E xtkOX
(F ,I ) = 0 and Extk

OX
(F ,I ) = 0 for k > 0.(3.3.3)

Proof. Let us prove first the global case.
(1) Projective case. Assume first that X is projective. We have

Extk
OX

(F ,I ) = lim−→
E

Extk
OX

(F ,E )

where E ranges over the set of coherent G-equivariant OX -submodules of I .
Hence it is enough to show that for such an E
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β : Extk
OX

(F ,E )→ Extk
OX

(F ,I )

vanishes. We shall prove this by the induction on k > 0.
For n� 0, there exists a G-equivariant surjective morphism V ⊗L ⊗−n →

F → 0 by Lemma 3.3.2, which induces an exact sequence 0 → F ′ → V ⊗
L ⊗−n → F → 0. We may assume that n is so large that Hm(X;E ⊗L ⊗n) =
0 for any m > 0. Then Extm

OX
(V ⊗L ⊗−n,E ) = V ∗ ⊗Hm(X;E ⊗L ⊗n) = 0

for m > 0, and hence we obtain a commutative diagram with exact rows:

Extk−1
OX

(V ⊗L ⊗−n,E ) //

��

Extk−1
OX

(F ′,E ) α
//

��

Extk
OX

(F ,E ) //

β

��

0.

Extk−1
OX

(V ⊗L ⊗−n,I ) γ
// Extk−1

OX
(F ′,I )

δ
// Extk

OX
(F ,I ).

The homomorphism γ is surjective, because I is injective for k = 1 and the
induction hypothesis implies Extk−1

OX
(F ′,I ) = 0 for k > 1. Hence we have

δ = 0, and the surjectivity of α implies β = 0.

(2) General case. Let us embed X in a projective G-manifold X̄ and let
j : X ↪→ X̄ be the open embedding. Since

HomOX̄
(N , j∗I ) = HomOX

(j−1N ,I )

for N ∈ Mod(OX̄ , G), j∗I is an injective object of Mod(OX̄ , G). Let J be
the defining ideal of X̄ \X. Then J is a coherent G-equivariant ideal of OX̄ .
Let us take a coherent G-equivariant OX̄ -module F such that F |X ' F .
Then, the isomorphism (see [6])

Extk
OX

(F ,I ) = lim−→
n

Extk
OX̄

(F ⊗OX
Jn, j∗I )

implies the desired result.
The local case can be proved similarly to the proof in (1) by using

Lemma 3.3.7. Q.E.D.

Proposition 3.3.9. Let f : X → Y be a G-equivariant morphism of quasi-
projective G-manifolds. Then for any injective object I of Mod(OX , G) and
F ∈ Mod coh(OX , G), we have

Rkf∗
(
HomOX

(F ,I )
)

= 0 for k > 0.

Proof. The proof is similar to the proof of the preceding proposition. The
morphism f : X → Y can be embedded in f̄ : X̄ → Ȳ for projective G-
manifolds X̄ and Ȳ . Let j : X → X̄ be the open embedding. Let J be the
defining ideal of X̄ \X. Then, extending F to a coherent G-equivariant OX̄ -
module F , one has



30 Masaki Kashiwara

Rkf∗
(
HomOX

(F ,I )
)
' lim−→

n

Rkf̄∗
(
HomOX

(F̄ ⊗ Jn, j∗I )
)
|Y .

Hence, we may assume from the beginning that X and Y are projective.
Then we can argue similarly to (1) in the proof of Proposition 3.3.8, once we
prove

F 7→ f∗HomOX
(F ,I ) is an exact functor in F ∈ Mod coh(OX , G).(3.3.4)

This follows from Lemma 3.3.3 and the exactitude of the functor

HomMod(OY ,G)(E , f∗HomOX
(F ,I )) ' HomMod(OX ,G)(f∗E ⊗OX

F ,I )

in F for any locally free G-equivariant coherent OY -module E . Q.E.D.

By this proposition, we obtain the following corollary.

Corollary 3.3.10. Let I be an injective object of Mod(DX , G). Then for
any morphism f : X → Y of quasi-projective G-manifolds and a coherent
locally free G-equivariant OX-module E

Rkf∗(E ⊗OX
I ) = 0 for k > 0.(3.3.5)

Lemma 3.3.11. For any morphism f : X → Y and M ∈ Mod cc(DX , G) and
a coherent locally free G-equivariant OX-module E , there exists a monomor-
phism M → M ′ in Mod cc(DX , G) such that Rkf∗(E ⊗OX

M ′) = 0 for any
k 6= 0.

Proof. Let us take a monomorphism M → I where I is an injective object of
Mod(DX , G). Let us construct, by the induction on n, an increasing sequence
{Mn}n≥0 of countably coherent subobjects of I such that M0 = M and

Rkf∗(E ⊗Mn)→ Rkf∗(E ⊗Mn+1) vanishes for k 6= 0.(3.3.6)

Assuming that Mn has been constructed, we shall construct Mn+1. We
have

lim−→
N ⊂I

Rkf∗(E ⊗N ) ∼= Rkf∗(E ⊗I ) = 0 for k 6= 0.

Here N ranges over the set of countably coherent subobjects of I . Since
Rkf∗(E ⊗Mn) is countably coherent, there exists a countably coherent sub-
object Mn+1 of I such that Mn ⊂Mn+1 and the morphism Rkf∗(E⊗Mn)→
Rkf∗(E ⊗Mn+1) vanishes for k 6= 0.

Then M ′ := lim−→
n

Mn satisfies the desired condition, because (3.3.6) implies

Rkf∗(E ⊗M ′) ' lim−→
n

Rkf∗(E ⊗Mn) ' 0

for k 6= 0. Q.E.D.
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3.4 Pull-back functors

Let f : X → Y be a morphism of quasi-projective algebraic manifolds. Set
DX→Y = OX⊗f−1OY

f−1DY . Then DX→Y has a structure of a (DX , f
−1DY )-

bimodule. It is countably coherent as a DX -module. Then

f∗ : N 7→ DX→Y ⊗DY
N = OX ⊗OY

N

gives a right exact functor from Mod(DY ) to Mod(DX). It is left derivable,
and we denote by Df∗ its left derived functor:

Df∗ : Db(DY )→ Db(DX).

Now let f : X → Y be a G-equivariant morphism of quasi-projective alge-
braic G-manifolds. Then f∗ : N 7→ DX→Y ⊗DY

N = OX ⊗OY
N gives also

a right exact functor:

f∗ : Mod(DY , G)→ Mod(DX , G).

Lemma 3.3.2 implies that any quasi-coherent quasi-G-equivariant DY -
module has a finite resolution by quasi-coherent quasi-G-equivariant DY -
modules flat over OY . Hence the functor f∗ : Mod(DY , G) → Mod(DX , G)
is left derivable. We denote its left derived functor by Df∗:

Df∗ : Db(DY , G)→ Db(DX , G).(3.4.1)

By the construction, the diagram

Db(DY , G)

Df∗

��

// Db(DY )

Df∗

��

// Db(OY )

Lf∗

��
Db(DX , G) // Db(DX) // Db(OX)

commutes. The functor Df∗ sends Db
cc(DY , G) to Db

cc(DX , G). If f is a smooth
morphism, then Df∗ sends Db

coh(DY , G) to Db
coh(DX , G).

3.5 Push-forward functors

Let f : X → Y be a morphism of quasi-projective algebraic manifolds. Recall
that the push-forward functor

Df∗ : Db(DX)→ Db(DY )(3.5.1)

is defined by Rf∗(DY←X

L
⊗DX

M ). Here DY←X is an (f−1DY ,DX)-bimodule
f−1DY ⊗f−1OY

ΩX/Y , where we use the notations:

ΩX :=ΩdX

X and ΩX/Y :=ΩX ⊗Ω⊗−1
Y .



32 Masaki Kashiwara

Let f : X → Y be a G-equivariant morphism of quasi-projective algebraic
G-manifolds. Let us define the push-forward functor

Df∗ : Db(DX , G)→ Db(DY , G)(3.5.2)

in the equivariant setting.

In order to calculate DY←X

L
⊗DX

M , let us take a resolution of DY←X by
flat DX -modules:

0← DY←X ← f−1(DY ⊗Ω⊗−1
Y )⊗ΩdX

X ⊗DX

← f−1(DY ⊗Ω⊗−1
Y )⊗ΩdX−1

X ⊗DX

← . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ←

← f−1(DY ⊗Ω⊗−1
Y )⊗Ω0

X ⊗DX ← 0.

(3.5.3)

It is an exact sequence of (f−1DY ,DX)-bimodules. Thus, for a complex M of

DX -modules, DY←X

L
⊗DX

M is represented by the complex of f−1DY -modules

f−1(DY ⊗OY
Ω⊗−1

Y )⊗f−1OY
Ω

•
X ⊗OX

M [dX ] .(3.5.4)

The differential of the complex (3.5.4) is given as follows. First note that
there is a left DY -linear homomorphism

d : DY ⊗OY
Ω⊗−1

Y → DY ⊗OY
Ω⊗−1

Y ⊗OY
Ω1

Y

given by

d(P ⊗ dy⊗−1) = −
∑

j

P
∂

∂yi
⊗ dy⊗−1 ⊗ dyj .

Here (y1, . . . , ym) is a local coordinate system of Y , dy⊗−1 = (dy1 ∧ · · · ∧
dym)⊗−1 and P ∈ DY . We define the morphism

ϕ : f−1(DY ⊗Ω⊗−1
Y ⊗Ω •

Y )⊗Ω •
X → f−1(DY ⊗Ω⊗−1

Y )⊗Ω •
X

by a ⊗ θ ⊗ ω 7→ a ⊗ (f∗θ ∧ ω) for a ∈ DY ⊗ Ω⊗−1
Y , θ ∈ Ω •

Y and ω ∈ Ω •
X .

Then, taking a local coordinate system (x1, . . . , xn) of X, the differential d of
(3.5.4) is given by

d(a⊗ ω ⊗ u)
= ϕ(da⊗ ω)⊗ u+ a⊗ dω ⊗ u

+
∑

i

a⊗ (dxi ∧ ω)⊗ ∂

∂xi
u+ (−1)pa⊗ ω ⊗ du

for a ∈ DY ⊗OY
Ω⊗−1

Y , ω ∈ Ωp
X and u ∈M .
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We now define the functor

K f∗ : K+(Mod(DX , G))→ K+(Mod(DY , G))

by
K f∗(M ) := f∗

(
f−1(DY ⊗OY

Ω⊗−1
Y )⊗f−1OY

Ω
•
X ⊗OX

M
)
[dX ]

∼= DY ⊗OY
Ω⊗−1

Y ⊗OY
f∗(Ω

•
X ⊗OX

M )[dX ].

For an injective object M of Mod(DX , G), Corollary 3.3.10 implies

Rkf∗(Ω
p
X ⊗OX

M ) = 0 for any p and any k > 0.(3.5.5)

Hence if I • is an exact complex in Mod(DX , G) such that all I n are injec-
tive, then K f∗(I

• ) is exact. Hence K f∗ is right derivable. Let Df∗ be its
right derived functor:

Df∗ : D+(Mod(DX , G))→ D+(Mod(DY , G)).

For a complex M in Mod(DX , G) bounded from below, we have

K f∗M ∼−−→Df∗(M )

as soon as Rkf∗(Ω
p
X ⊗OX

M n) = 0 for all k 6= 0 and p, n.
(3.5.6)

By the construction, the following diagram commutes.

D+(Mod(DX , G))
Df∗ //

��

D+(Mod(DY , G))

��
D+(Mod(DX))

Df∗ // D+(Mod(DY )).

Since Df∗ sends Db(Mod(DX)) to Db(Mod(DY )), we conclude that Df∗
sends Db(DX , G) to Db(DY , G), and Db

cc(DX , G) to Db
cc(DY , G).

Proposition 3.5.1. The restriction

Kcc f∗ : Kb(Mod cc(DX , G))→ Kb(Mod cc(DY , G))

of K f∗ is right derivable and the diagram

Db(Mod cc(DX , G))

R(Kcc f∗)

��

∼ // Db
cc(DX , G)

Df∗

��
Db(Mod cc(DY , G))

∼ // Db
cc(DY , G)

quasi-commutes.
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Proof. It is enough to show that, for any M ∈ Kb(Mod cc(DX , G)), we can find
a quasi-isomorphism M →M ′ such that the morphism Kf∗(M ′)→ Df∗(M )
is an isomorphism in Db(DY , G). In order to have such an isomorphism, it is
enough to show that M ′ satisfies the condition in (3.5.6). By Lemma 3.3.11,
we have a quasi-isomorphism M → M ′ such that M ′ is a complex in
Mod cc(DX , G) bounded below and satisfies the condition in (3.5.6). Since the
cohomological dimension of Rf∗ is finite, by taking n sufficiently large, the
truncated complex τ≤nM ′ satisfies the condition in (3.5.6), and M → τ≤nM ′

is a quasi-isomorphism. Q.E.D.

Note that, if f is projective, Df∗ sends Db
coh(DX , G) to Db

coh(DY , G) (see
[16]).

3.6 External and internal tensor products

Let X and Y be two algebraic G-manifolds. Let q1 : X × Y → X and
q2 : X × Y → Y be the projections. Then for M1 ∈ Mod(DX , G) and
M2 ∈ Mod(DY , G), M1 � M2 = (OX×Y ⊗q−1

1 OX
q−1
1 M1) ⊗q−1

2 OY
q−1
2 M2

has a structure of quasi-G-equivariant DX×Y -module. Since this is an exact
bi-functor, we obtain

• � • : Db(DX , G)×Db(DY , G)→ Db(DX×Y , G).

Taking pt as Y , we obtain

• ⊗ • : Db(DX , G)×Db(Mod(G))→ Db(DX , G).

Here Mod(G) denotes the category of G-modules.
For two quasi-G-equivariant DX -modules M1 and M2, the OX -module

M1 ⊗OX
M2 has a structure of DX -module by

v(s1 ⊗ s2) = (vs1)⊗ s2 + s1 ⊗ (vs2) for v ∈ ΘX and sν ∈Mν .

Since this is G-equivariant, we obtain the right exact bi-functor

• ⊗ • : Mod(DX , G)×Mod(DX , G).→ Mod(DX , G).

Taking its left derived functor, we obtain

•
D
⊗ • : Db(DX , G)×Db(DX , G) −→ Db(DX , G).

We have
M1

D
⊗M2 'M1 ⊗OX

M2

if either M1 or M2 are complexes in Mod(DX , G) flat over OX .

The functor •
D
⊗ • sends Db

cc(DX , G)×Db
cc(DX , G) to Db

cc(DX , G).
Note that, denoting by δ : X → X ×X the diagonal embedding, we have

M1

D
⊗M2 ' Dδ∗(M1 � M2).
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Lemma 3.6.1. For F ∈ Mod(OX , G) and M ∈ Mod(DX , G), there exists a
canonical isomorphism in Mod(DX , G) :

(DX ⊗OX
F )⊗M ' DX ⊗OX

(F ⊗OX
M ).(3.6.1)

Here F ⊗OX
M in the right-hand side is regarded as a G-equivariant OX-

module.

The proof is similar to the one in [16] in the non-equivariant case.

3.7 Semi-outer hom

Let M ∈ Mod coh(DX , G) and M ′ ∈ Mod(DX , G). Then the vector space
HomDX

(M ,M ′) has a structure of G-modules as follows:

HomDX
(M ,M ′)→ HomDG×X

(µ∗M , µ∗M ′)
→ HomOG�DX

(µ∗M , µ∗M ′) ' HomOG�DX
(pr∗M ,pr∗M ′)

' HomDX
(M ,pr∗pr∗M ′) ' HomDX

(M ,OG(G)⊗C M ′)
' OG(G)⊗HomDX

(M ,M ′).

Here the last isomorphism follows from the fact that M is coherent.
We can easily see that for any V ∈ Mod(G)

HomMod(G)(V,HomDX
(M ,M ′)) ∼= HomMod(DX ,G)(V ⊗M ,M ′).(3.7.1)

Since V 7→ V ⊗M is an exact functor, (3.7.1) implies the following lemma.

Lemma 3.7.1. Let I be an injective object of Mod(DX , G) and M ∈
Mod coh(DX , G). Then HomDX

(M ,I ) is an injective object of Mod(G).

Let RHomDX
(M , • ) be the right derived functor of HomDX

(M , • ):

RHomDX
( • , • ) : Db

coh(DX , G)op ×D+(DX , G)→ D+(Mod(G)).

By (3.7.1) and Lemma 3.7.1, we have

HomDb(DX ,G)(V ⊗M ,M ′) ∼= HomDb(Mod(G))(V,RHomDX
(M ,M ′))(3.7.2)

for V ∈ Db(Mod(G)), M ∈ Db
coh(DX , G) and M ′ ∈ D+(DX , G). In particular

we have

HomDb(DX ,G)(M ,M ′) ∼= HomDb(Mod(G))(C,RHomDX
(M ,M ′)).(3.7.3)

Lemma 3.7.2. (i) RHomDX
( • , • ) sends Db

coh(DX , G)op × Db(DX , G) to
Db(Mod(G)).
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(ii) Let FG denote the functors forgetting G-structures:

FG :
Db(DX , G)→ Db(DX),

Db(Mod(G))→ Db(C).

Then FG RHomDX
(M ,N ) ∼= RHomDX

(FG M ,FG N ) for any M ∈
Db

coh(DX , G) and N ∈ Db(DX , G).

Proof. We may assume that M ∈ Db(Mod coh(DX , G)) by Proposition 3.2.1.
Then, for an injective complex N in Mod(DX , G), we have

FG RHomDX
(M ,N ) ' HomDX

(M ,N ) ' RHomDX
(FG M ,FG N )

by Proposition 3.3.8. This shows (ii), and (i) follows from the fact that the
global homological dimension of Mod(DX) is at most 2 dimX (see [16]).

Q.E.D.

Remark that this shows that the global homological dimension of Mod(DX , G)
is finite. Indeed, the arguments of the preceding lemma shows that for
M ∈ Mod coh(DX , G) and N ∈ Mod coh(DX , G),Hn(RHomDX

(M ,N )) =
0 for n > 2 dimX. On the other hand, the global homological dimen-
sion of Mod(G) is at most dimG (or more precisely the dimension of
the unipotent radical of G). Thus (3.7.3) shows HomD(DX ,G)(M ,N [n]) '
HomD(Mod(G))(C,RHomDX

(M ,N )[n]) = 0 for n > dimG+2 dimX. There-
fore, the global homological dimension of Mod coh(DX , G) is at most dimG+
2 dimX. Hence so is Mod(DX , G),

3.8 Relations of Push-forward and Pull-back functors

Statements

Let f : X → Y be a G-equivariant morphism of quasi-projective G-manifolds.
Then Df∗ and Df∗ are adjoint functors in two ways. We use the notations:
dX/Y = dimX − dimY .

Theorem 3.8.1. Let f : X → Y be a G-equivariant morphism of quasi-
projective G-manifolds.

(i) Assume that f is smooth. Then there exists a functorial isomorphism in
M ∈ Db

coh(DX , G) and N ∈ Db
coh(DY , G) :

HomDb(DY ,G)(N ,Df∗M ) ∼= HomDb(DX ,G)(Df
∗N [−dX/Y ],M ).(3.8.1)

(ii) Assume that f is smooth and projective. Then there exists a functorial
isomorphism in M ∈ Db

coh(DX , G) and N ∈ Db
coh(DY , G) :

HomDb(DY ,G)(Df∗M ,N ) ∼= HomDb(DX ,G)(M ,Df∗N [dX/Y ]).(3.8.2)
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This theorem will be proved at the end of this subsection.

By Theorem 3.8.1, we obtain the following morphisms for a smooth and
projective morphism f : X → Y , M ∈ Db

coh(DX , G) and N ∈ Db
coh(DY , G).

Df∗Df∗M [−dX/Y ]→M ,(3.8.3)
M → Df∗Df∗M [dX/Y ],(3.8.4)
Df∗Df∗N [dX/Y ]→ N ,(3.8.5)
N → Df∗Df∗N [−dX/Y ].(3.8.6)

Residue morphism

In order to prove Theorem 3.8.1, we shall first define the morphism

Df∗OX [dX/Y ]→ OY .(3.8.7)

Let f : X → Y be a smooth and projective morphism. Let FG be the functor
from Db(DY , G) to Db(DY ). Then we have, by the theory of D-modules

FG(Df∗OX [dX/Y ])→ OY(3.8.8)

in Db(DY ). This morphism (3.8.8) gives a DY -linear homomorphism

HdX/Y (Df∗OX)→ OY .

Since this is canonical, this commutes with the action of any element of G(C).
Hence this is a morphism in Mod(DY , G). On the other hand, we have

Hj(Df∗OX) = 0 for j > dX/Y .

We have therefore a morphism in Db(DY , G).

Df∗OX [dX/Y ]→ τ≥0(Df∗OX [dX/Y ]) = HdX/Y (Df∗OX).

Therefore, we obtain a morphism Df∗OX [dX/Y ]→ OY in Db(DY , G).

Lemma 3.8.2 (Projection formula). There is a functorial isomorphism in
M ∈ Db(DX , G) and N ∈ Db(DY , G)

Df∗(M
D
⊗Df∗N ) ' (Df∗M )

D
⊗N .

Since this is proved similarly to the non-equivariant case, we omit the proof
(see e.g. [16]).

By this lemma, we obtain the residue morphism:

ResX/Y : Df∗Df∗N [dX/Y ]→ N ,(3.8.9)

as the compositions of a chain of morphisms

Df∗Df∗N [dX/Y ] ' Df∗(OX [dX/Y ]
D
⊗Df∗N )

' (Df∗OX [dX/Y ])
D
⊗N

→ OY

D
⊗N ' N .
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Proof of Theorem 3.8.1

We shall prove first the isomorphism (3.8.1) in Theorem 3.8.1. For N ∈
K+(Mod(DY , G)), we have a quasi-isomorphism

N ← DY ⊗Ω⊗−1
Y ⊗Ω •

Y ⊗N [dY ]

and a morphism

DY ⊗Ω⊗−1
Y ⊗Ω •

Y ⊗N → DY ⊗Ω⊗−1
Y ⊗ f∗(Ω •

X ⊗ f∗N )
' K f∗(f∗N )[−dX ].

Thus we obtain a morphism in Db(DY , G):

N → Df∗Df∗N [−dX/Y ],(3.8.10)

even if f is not assumed to be smooth projective. This gives a chain of homo-
morphisms

HomDb(DX ,G)(Df
∗N [−dX/Y ],M )

→ HomDb(DY ,G)(Df∗Df
∗N [−dX/Y ],Df∗M )

→ HomDb(DY ,G)(N ,Df∗M ).

Let us prove that the composition is an isomorphism when f is smooth. Sim-
ilarly as above, we have a morphism in D(Mod(G))

RHomDX
(Df∗N [−dX/Y ],M )→ RHomDY

(N ,Df∗M ).

By the theory of D-modules, forgetting the equivariance, this is an isomor-
phism in Db(C), assuming that f is smooth (see [16]). Hence this is an iso-
morphism in Db(Mod(G)). Finally we obtain by (3.7.3)

HomDb(DX ,G)(Df
∗N [−dX/Y ],M )

' HomDb(Mod(G))

(
C,RHomDX

(Df∗N [−dX/Y ],M )
)

∼−−→HomDb(Mod(G))(C,RHomDY
(N ,Df∗M ))

' HomDb(DY ,G)(N ,Df∗M ).

The proof of (3.8.2) is similar using ResX/Y : Df∗Df∗N [dX/Y ] → N given
in (3.8.9) instead of (3.8.10).

3.9 Flag manifold case

We shall apply Theorem 3.8.1 when X = G/P and Y = {pt}, where P is
a parabolic subgroup of a reductive group G. Note that X is a projective
G-manifold. Then, we obtain the following duality isomorphism.
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Lemma 3.9.1. For any finite-dimensional G-module E and a (g, P )-module
M finitely generated over U(g), we have an isomorphism

Ext2 dim(G/P )−j
(g,P ) (M,E) ∼= HomC

(
Extj

(g,P )(E,M),C
)
.(3.9.1)

Proof. The category Mod coh(DX , G) is equivalent to the category Modf (g, P )
of (g, P )-modules finitely generated over U(g), and Mod coh(DY , G) is equiva-
lent to the category Modf (G) of finite-dimensional G-modules (see Proposi-
tion 3.1.5). The functor Df∗ is induced by the functor V 7→ V from Mod(G)
to Mod(g, P ). The right adjoint functor to the last functor is given by

M 7−→ ⊕
V
V ⊗Hom(g,P )(V,M).(3.9.2)

Here V ranges over the isomorphism classes of irreducible G-modules. Hence
the functor Df∗[−dX/Y ], the right adjoint functor of Df∗, is the right derived
functor of the functor (3.9.2). Hence (3.8.2) implies that∏

V

HomD(Mod(G))(V ⊗RHom (g,P )(V,M)[dX ], E[j])

' HomD(Mod(g,P ))(M,E[j][dX ]).

The last term is isomorphic to ExtdX+j
(g,P ) (M,E), and the first term is isomorphic

to HomC
(
ExtdX−j

(g,P ) (E,M),C
)

because, when E and V are irreducible, we have

HomD(Mod(G))(V,E[j]) =

{
C if V ' E and j = 0,
0 otherwise.

Q.E.D.

4 Equivariant derived category

4.1 Introduction

In the case of quasi-equivariant D-modules, the category has enough objects,
and it is enough to consider the derived category of the abelian category of
quasi-equivariant D-modules. However the categories of equivariant sheaves
have not enough objects, and the derived category of the abelian category
of equivariant sheaves is not an appropriate category. In order to avoid this
difficulty, we have to enrich spaces itself. In this paper, we follow a definition
of the equivariant derived categories due to Bernstein-Lunts [4].
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4.2 Sheaf case

Let G be a real Lie group and X a (separated) locally compact space with G-
action. We assume that X has a finite soft dimension (e.g. a finite-dimensional
topological manifold). We call such an X a G-space. If X is a manifold, we
call it a G-manifold.

In this paper, we say that G acts freely if the morphism µ̃ : G × X →
X × X ((g, x) 7→ (gx, x)) is a closed embedding. Therefore, if X is a G-
manifold with a free action of G, then X/G exists as a (separated) topological
manifold.

Let Mod(CX) be the category of sheaves of C-vector spaces on X. We
denote by Db(CX) the bounded derived category of Mod(CX).

Let µ : G×X → X be the action map and pr: G×X → X the projection.

Definition 4.2.1. A sheaf F of C-vector spaces is called G-equivariant if it is
endowed with an isomorphism µ−1F ∼−−→pr−1F satisfying the associative law
as in (3.1.2).

Let us denote by ModG(CX) the abelian categories of G-equivariant sheaves.
If G acts freely, then we have the equivalence of categories:

Mod(CX/G) ∼−−→ModG(CX).

We will construct the equivariant derived category Db
G(CX) which has

suitable functorial properties and satisfies the condition:

if G acts freely on X, then Db(CX/G) ' Db
G(CX).

Assume that there is a sequence of G-equivariant morphisms

V1 −→ V2 −→ V3 −→ · · ·

where Vk is a connected G-manifold with a free action and

(i) Hn(Vk; C) is finite-dimensional for any n,k,

(ii) for each n > 0, Hn(Vk; C) = 0 for k � 0.
(4.2.1)

Any real semisimple Lie group with finite center has such a sequence {Vk}.
If G is embedded in some GLN (C) as a closed subgroup, we can take Vk ={
f ∈ HomC(CN ,CN+k) ; f is injective

}
. If G is a connected real semi-simple

group with finite center, then we can take (G × Vk)/K as Vk, where K is a
maximal compact subgroup of G and Vk is the one for K. Note that G/K is
contractible.

The condition (4.2.1) implies

C ∼−−→ “lim←−”
k

RΓ (Vk; C).

This follows from the following lemma (see e.g. [19, Exercise 15.1]).
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Lemma 4.2.2. Let C be an abelian category. Let {Xn}n∈Z≥0 be a projective
system in Db(C). Assume that it satisfies the conditions:

(i) for any k ∈ Z, “lim←−”
n

Hk(Xn) is representable by an object of C,

(ii) one of the following conditions holds:
(a) there exist a ≤ b such that Hk(Xn) ' 0 for k > b and “lim←−”

n

Hk(Xn) '
0 for k < a,

(b) C has finite homological dimension, and there exist a ≤ b such that
“lim←−”

n

Hk(Xn) ' 0 unless a ≤ k ≤ b,

Then “lim←−”
n

Xn is representable by an object of Db(C).

For example, we say that “lim←−”
n

Xn is representable by X ∈ Db(C) if there

exists an isomorphism lim−→
n

HomDb(C)(Xn, Y ) ' HomDb(C)(X,Y ) functorially

in Y ∈ Db(C). In such a case, X is unique up to an isomorphism, and we write
X = “lim←−”

n

Xn.

Let us denote by pk : Vk ×X → X the second projection and by πk : Vk ×
X → (Vk ×X)/G the quotient map. Here the action of G on Vk ×X is the
diagonal action. We denote by the same letter ik the maps Vk×X → Vk+1×X
and (Vk ×X)/G→ (Vk+1 ×X)/G.

Definition 4.2.3. Let Db
G(CX) be the category whose objects are F =(

F∞, Fk, jk, ϕk (k = 1, 2, . . .)
)

where F∞ ∈ Db(CX), Fk ∈ Db
(
C(Vk×X)/G

)
and jk : i−1

k Fk+1
∼−−→Fk and ϕk : p−1

k F∞ ∼−−→π−1
k Fk such that the diagram

i−1
k p−1

k+1F∞
∼

ϕk+1

��

p−1
k F∞

ϕk

��
i−1
k π−1

k+1Fk+1
∼
jk

// π−1
k Fk

commutes. The morphisms in Db
G(CX) are defined in an evident way.

The category Db
G(CX) is a triangulated category in an obvious way, and the

triangulated category Db
G(CX) does not depend on the choice of a sequence

{Vk}k (see [4]). We call Db
G(CX) the equivariant derived category.

By the condition (4.2.1), we have

“lim←−”
k

Rpk∗π
−1
k Fk

∼= F∞.(4.2.2)
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Indeed, we have

“lim←−”
k

Rpk∗π
−1
k Fk

∼= “lim←−”
k

Rpk∗p
−1
k F∞ ∼= “lim←−”

k

(
F∞ ⊗RΓ(Vk; C)

)
and “lim←−”

k

RΓ(Vk; C) ' C by (4.2.1).

There exists a functor of triangulated categories (called the forgetful func-
tor):

FG : Db
G(CX)→ Db(CX).

Note that a morphism u in Db
G(CX) is an isomorphism if and only if FG(u)

is an isomorphism in Db(CX).
By taking the cohomology groups, we obtain cohomological functors:

Hn : Db
G(CX)→ ModG(CX).

Lemma 4.2.4. Assume that G acts freely on X. Then Db
G(CX) is equivalent

to Db(CX/G).

Proof. The functor Db(CX/G)→ Db
G(CX) is obviously defined, and its quasi-

inverse Db
G(CX) → Db(CX/G) is given by F 7→ “lim←−”

k

Rqk∗(Fk), where qk is

the map (Vk × X)/G → X/G. Note that “lim←−”
k

Rqk∗(Fk) ∼= τ≤aRql∗(Fl) for

l� a� 0. Q.E.D.

Since Mod(CX/G) is equivalent to ModG(CX) in such a case, we have

if G acts freely on X, then Db(ModG(CX)) ∼−−→Db
G(CX).(4.2.3)

For a G-equivariant map f : X → Y , we can define the functors

f−1, f ! : Db
G(CY )→ Db

G(CX)

and
Rf!, Rf∗ : Db

G(CX)→ Db
G(CY ).

The functors Rf! and f−1 are left adjoint functors of f ! and Rf∗, respectively.
Moreover they commute with the forgetful functor Db

G(CX)→ Db(CX).

4.3 Induction functor

The following properties are easily checked.



Equivariant derived category and representation of semisimple Lie groups 43

For a group morphism H → G and a G-manifold X,
there exists a canonical functor (restriction functor)

ResG
H : Db

G(CX)→ Db
H(CX).

(4.3.1)

If H is a closed normal subgroup of G and if H acts
freely on a G-manifold X, then

Db
G(CX) ' Db

G/H(CX/H).
(4.3.2)

For F ∈ Db
G(CX), we denote by F/H the corresponding object of

Db
G/H(CX/H).

Let H be a closed subgroup of G and X an H-manifold. Then we have a
chain of equivalences of triangulated categories

Db
H(CX) ' Db

H×G(CX×G) ' Db
G(C(X×G)/H)

by (4.3.2). Here H ×G acts on X ×G by (h, g)(x, g′) = (hx, gg′h−1). Let us
denote the composition by

IndG
H : Db

H(CX) ∼−−→Db
G(C(X×G)/H).(4.3.3)

When X is a G-manifold, we have (X × G)/H ' X × (G/H), and we
obtain an equivalence of categories

IndG
H : Db

H(CX) ∼−−→Db
G(CX×(G/H)) when X is a G-manifold.(4.3.4)

Note that the action of G on X × (G/H) is the diagonal action.

4.4 Constructible sheaves

Assume that X is a complex algebraic variety and a real Lie group G acts
real analytically on the associated complex manifold Xan. We denote by
Db

G,R-c(CXan) the full subcategory of Db
G(CXan) consisting of R-constructible

objects. Here F ∈ Db
G(CXan) is called R-constructible if it satisfies the follow-

ing two conditions:

(i) dimHj(F )x <∞ for any x ∈ Xan.
(ii) there exists a finite family {Zα} of locally closed subsets of Xan such

that
(a) Xan =

⋃
α
Zα,

(b) each Zα is subanalytic in (X)an for any (or equivalently, some) com-
pactification X ↪→ X of X,

(c) Hj(F )|Zα is locally constant .

For subanalyticity and R-constructibility, see e.g. [18].
We say that F is C-constructible (or constructible, for short) if we assume

further that each Zα is the associated topological set of a subscheme of X.
We denote by Db

G, R-c(CXan) (resp. Db
G, C-c(CXan)) the full subcategory of

Db
G(CXan) consisting of R-constructible (resp. constructible) objects.
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4.5 D-module case

The construction of the equivariant derived category for sheaves can be applied
similarly to the equivariant derived categories of D-modules.

Let G be an affine algebraic group. Let us take a sequence of connected
algebraic G-manifolds

V1 −→ V2 −→ V3 −→ · · ·(4.5.1)

such that

G acts freely on Vk, and

for any n > 0, Extn
DVk

(OVk
,OVk

) ∼= Hn(V an
k ; C) = 0 for k � 0.

(4.5.2)

Such a sequence {Vk}k exists. With the aid of {Vk}k, we can define the equi-
variant derived category of D-modules similarly to the sheaf case. Let X be
a quasi-projective algebraic G-manifold. Let us denote by pk : Vk × X → X
the second projection and by πk : Vk × X → (Vk × X)/G the quotient mor-
phism.3 We denote by the same letter ik the maps Vk ×X → Vk+1 ×X and
(Vk ×X)/G→ (Vk+1 ×X)/G.

Definition 4.5.1. Let Db
G(DX) be the category whose objects are M =(

M∞, Mk, jk, ϕk (k ∈ Z≥1)
)

where M∞ ∈ Db(DX), Mk ∈ Db
(
D(Vk×X)/G

)
and jk : Di∗kMk+1

∼−−→Mk and ϕk : Dp∗kM∞ ∼−−→Dπ∗kMk such that the dia-
gram

Di∗kDp
∗
k+1M∞

∼

ϕk+1

��

Dp∗kM∞

ϕk

��
Di∗kDπ

∗
k+1Mk+1

jk // Dπ∗kMk

commutes.

Note that we have a canonical functor

Db
G(DX)→ Db(DX , G).

We denote by Db
G,coh(DX) the full triangulated subcategory of Db

G(DX)
consisting of objects M with coherent cohomologies.

Similarly to the sheaf case, we have the following properties.
3 The quotient (Vk × X)/G may not exist as a scheme, but it exists as an al-

gebraic space. Although we do not develop here, we have the theory of D-
modules on algebraic spaces. Alternatively, we can use ModG(DVk×X) instead
of Mod(D(Vk×X)/G).
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For a morphism f : X → Y of quasi-projective G-manifolds,
we can define the pull-back functor Df∗ : Db

G(DY )→ Db
G(DX)

and the push-forward functor Df∗ : Db
G(DX)→ Db

G(DY ).
(4.5.3)

The canonical functor Db
G(DX) → Db(DX , G) commutes with

the pull-back and push-forward functors.
(4.5.4)

For a closed algebraic subgroup H of G and an algebraic G-
manifoldX, there exists a canonical functor ResG

H : Db
G(DX)→

Db
H(DX).

(4.5.5)

If H is a normal subgroup of G and if H acts freely on X and
if X/H exists, then Db

G(DX) ' Db
G/H(DX/H).(4.5.6)

If H is a closed algebraic subgroup of G and X is an algebraic
G-manifold, then we have

IndG
H : Db

H(DX) ∼−−→Db
G(DX×(G/H)).

(4.5.7)

4.6 Equivariant Riemann-Hilbert correspondence

Let X be a quasi-projective manifold. Let us denote by Xan the associated
complex manifold. Accordingly, OXan is the sheaf of holomorphic functions on
Xan. Then there exists a morphism of ringed spaces π : Xan → X. We denote
by DXan the sheaf of differential operators with holomorphic coefficients on
Xan. For a DX -module M , we denote by M an the associated DXan-module
DXan ⊗π−1DX

π−1M ' OXan ⊗π−1OX
π−1M .

Let us denote by Db
hol(DX) (resp. Db

rh(DX)) the full subcategory of
Db(DX) consisting of objects with holonomic cohomologies (resp. regular holo-
nomic cohomologies) (see [16]). Then the de Rham functor

DRX := RH om DXan (OXan , • an) : Db(DX)→ Db(CX)

sends Db
hol(DX) to Db

C-c(CXan).
Then we have the following Riemann-Hilbert correspondence.

Theorem 4.6.1 ([12]). The functor DRX gives an equivalence of categories:

DRX : Db
rh(DX) ∼−−→Db

C-c(CXan).(4.6.1)

Now, let G be an affine algebraic group and X a quasi-projective G-
manifold. Then we define similarly Db

G,hol(DX) and Db
G,rh(DX) as full sub-

categories of Db
G(DX). Then we can define the equivariant de Rham functor:

DRX : Db
G,hol(DX)→ Db

Gan, C-c(CXan).

Theorem 4.6.1 implies the following theorem.

Theorem 4.6.2. The functor DRX gives an equivalence of categories:

DRX : Db
G, rh(DX) ∼−−→Db

Gan, C-c(CXan).(4.6.2)
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5 Holomorphic solution spaces

5.1 Introduction

Let G be an affine complex algebraic group and let X be a quasi-projective
G-manifold. Recall that we denote by Xan the associated complex manifold
and, for a DX -module M , we denote by M an the associated DXan-module
DXan ⊗π−1DX

π−1M ' OXan ⊗π−1OX
π−1M . Here π : Xan → X is the canon-

ical morphism of ringed spaces.
Let GR be a real Lie group and let GR → Gan be a morphism of Lie groups.

Hence GR acts on Xan.
Recall that FNGR is the category of Fréchet nuclear GR-modules (see Ex-

ample 2.1.2 (iii)). We denote by Db
cc(DX , G) the full subcategory of Db(DX , G)

consisting of objects with countably coherent cohomologies, by Db
GR,ctb(CXan)

the full subcategory of Db
GR

(CXan) consisting of objects with countable sheaves
as cohomology groups (see § 5.2), and by Db(FNGR) the bounded derived cat-
egory of FNGR .

In this section, we shall define

RHomDX
(M ⊗K,OXan)

as an object of Db(FNGR) for M ∈ Db
cc(DX , G) and K ∈ Db

GR,ctb(CXan).
Here, we write RHomDX

(M ⊗ K,OXan) instead of RHomπ−1DX
(π−1M ⊗

K,OXan) ' RHomDXan (M an ⊗K,OXan) for short.
We also prove the dual statement. Let DFNGR be the category of dual

Fréchet nuclear GR-modules. We will define

RΓc(Xan;K ⊗ΩXan
L
⊗DX

M )

as an object of Db(DFNGR) for M and K as above. We then prove that

RHomDX
(M ⊗K,OXan) and RΓc(Xan;K ⊗ ΩXan

L
⊗DX

M )[dX ] are dual to
each other.

5.2 Countable sheaves

Let X be a topological manifold (countable at infinity).

Proposition 5.2.1. Let F be a sheaf of C-vector spaces on X. Then the fol-
lowing conditions are equivalent.

(i) for any compact subset K of X, Γ(K;F ) is countable-dimensional,
(ii) for any compact subset K of X, Hn(K;F ) is countable-dimensional for

all n,
(iii) for any x and an open neighborhood U of x, there exists an open neigh-

borhood V of x such that V ⊂ U and Im(Γ(U ;F ) → Γ(V ;F )) is
countable-dimensional,
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(iv) there exist a countable family of open subsets {Ui}i of X and an epimor-
phism ⊕iCUi

� F .

If X is a real analytic manifold, then the above conditions are also equivalent
to

(a) there exist a countable family of subanalytic open subsets {Ui}i of X and
an epimorphism ⊕iCUi

� F .

Proof. For compact subsets K1 and K2, we have an exact sequence

Hn−1(K1 ∩K2;F ) −→ Hn(K1 ∪K2;F ) −→ Hn(K1;F )⊕Hn(K2;F ).

Hence, if K1, K2 and K1 ∩K2, satisfy the condition (i) or (ii), then so does
K1∪K2. Hence the conditions (i) and (ii) are local properties. Since the other
conditions are also local, we may assume from the beginning that X is real
analytic.

(ii)⇒(i)⇒ (iii) are obvious.
(iii)⇒(iv) Let us take a countable base of open subsets {Us}s∈S of X. Then,
for each s ∈ S, there exists a countable open covering {Vi}i∈I(s) of Us such
that Im(Γ(Us;F ) → Γ(Vi;F )) is countable-dimensional. Then the natural
morphism ⊕

s∈S, i∈I(s)

Im(Γ(Us;F )→ Γ(Vi;F ))⊗ CVi
→ F

is an epimorphism.
(iv)⇒(a) follows from the fact that each CUi

is a quotient of a countable direct
sum of sheaves of the form CV with a subanalytic open subset V .
(a)⇒(ii) We shall prove it by the descending induction on n. Assume that
F satisfies the condition (a). Let us take an exact sequence

0→ F ′ → L→ F → 0,

such that L ' ⊕i CUi
for a countable family {Ui}i of subanalytic open

subsets of X. Then, for any relatively compact subanalytic open subset
W , Hk(W ; CUi

) is finite-dimensional (see e.g. [18]). Hence, the cohomology
group Hk(K; CUi) ∼= lim−→

K⊂W

Hk(W ; CUi) is countable-dimensional, and so is

Hk(K;L) ' ⊕iH
k(K; CUi

). Therefore L satisfies (i), which implies that F ′

also satisfies the condition (i) and hence the condition (a). By the induction
hypothesis, Hn+1(K;F ′) is countable-dimensional. By the exact sequence

Hn(K;L)→ Hn(K;F )→ Hn+1(K;F ′),

Hn(K;F ) is countable-dimensional. Q.E.D.

Definition 5.2.2. A sheaf F of complex vector spaces on X is called a count-
able sheaf if F satisfies the equivalent conditions in Proposition 5.2.1.
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Let us denote by Mod ctb(CX) the full subcategory of Mod(CX) consist-
ing of countable sheaves. Then, Mod ctb(CX) is closed by subobjects, quotients
and extensions. Moreover it is closed by a countable inductive limits. Let us de-
note by Db

ctb(CX) the full subcategory of Db(CX) consisting of objects whose
cohomology groups are countable sheaves. It is a triangulated subcategory of
Db(CX).

Lemma 5.2.3. (i) If F , F ′ ∈ Db
ctb(CX), then F ⊗ F ′′ ∈ Db

ctb(CX).
(ii) For F ∈ Db(CX), the following conditions are equivalent.

(a) F ∈ Db
ctb(CX),

(b) Hn(K;F ) is countable-dimensional for any compact subset K and
any integer n,

(c) Hn
c (U ;F ) is countable-dimensional for any open subset U and any

integer n.
(iii) Let f : X → Y is a continuous map of topological manifolds. Then

Rf!F ∈ Db
ctb(CY ) for any F ∈ Db

ctb(CX).

Proof. (i) follows from (iv) in Proposition 5.2.1.
(ii) (b)⇒(c) If U is relatively compact, it follows from the exact sequence
Hn−1(K \ U ;F ) → Hn

c (U ;F ) → Hn(K;F ) for a compact set K ⊃ U , and if
U is arbitrary, it follows from Hn

c (U ;F ) = lim−→
V⊂⊂U

Hn
c (V ;F ).

(c)⇒(b) follows from the exact sequence

Hn
c (X;F )→ Hn(K;F )→ Hn+1

c (X \K;F ).

(a)⇒(b) Let us show that Hn(K; τ≤kF ) is countable-dimensional by the in-
duction on k. If Hn(K; τ≤k−1F ) is countable-dimensional, the exact sequence

Hn(K; τ≤k−1F )→ Hn(K; τ≤kF )→ Hn−k(K;Hk(F ))

shows that Hn(K; τ≤kF ) is countable-dimensional.
(b)⇒(a) We shall show that Hk(F ) is a countable sheaf by the induction on
k. Assume that τ<kF ∈ Db

ctb(CX). Then, for any compact subset K, we have
the exact sequence

Hn(K;F )→ Hn(K; τ≥kF ))→ Hn+1(K; τ<kF ).

Since Hn+1(K; τ<kF ) is countable-dimensional by (a)⇒(b), Hn(K; τ≥kF ))
is also countable-dimensional. In particular, Γ(K;Hk(F )) = Hk(K; τ≥kF ) is
countable-dimensional.
(iii) For any open subset V of Y , Hn

c (V ;Rf!F ) ' Hn
c (f−1(V );F ) is

countable-dimensional. Q.E.D.

The following lemma is immediate.

Lemma 5.2.4. Let F be a countable sheaf and let H � F be an epimorphism.
Then there exist a countable sheaf F ′ and a morphism F ′ → H such that the
composition F ′ → H → F is an epimorphism.
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By Lemma 5.2.4, we have the following lemma.

Lemma 5.2.5. The functor Db(Mod ctb(CX))→ Db
ctb(CX) is an equivalence

of triangulated categories.

More precisely, we have the following.

Lemma 5.2.6. Let F be a bounded complex of sheaves such that all the co-
homology groups are countable. Then we can find a bounded complex F ′ of
countable sheaves and a quasi-isomorphism F ′ → F .

If a Lie group G acts on a real analytic manifold X, we denote by
ModG,ctb(CX) the category of G-equivariant sheaves of C-vector spaces which
are countable.

Remark 5.2.7. A sheaf F of C-vector spaces on X is not necessarily count-
able even if Fx is finite-dimensional for all x ∈ X. Indeed, the sheaf ⊕x∈XC{x}
on X is such an example.

5.3 C∞-solutions

Let X, G and GR be as in § 5.1. Let XR be a real analytic submanifold of Xan

invariant by the GR-action such that TxX ∼= C⊗R TxXR for any x ∈ XR. Let
M be a differentiable GR-manifold. Let us denote by C∞XR×M the sheaf of C∞-
functions on XR ×M . Then, C∞XR×M is an f−1DX -module, where f : Xan ×
M → X is a canonical map. For M ∈ Mod(DX) and K ∈ Mod(CXR×M ), we
write HomDX

(
M ⊗K,C∞XR×M

)
instead of Homf−1DX

(
f−1M ⊗K,C∞XR×M

)
for short.

Lemma 5.3.1. For any countable sheaf K on XR ×M and a countably co-
herent DX-module M , HomDX

(
M ⊗K,C∞XR×M

)
has a structure of Fréchet

nuclear space.

Proof. The topology is the weakest topology such that, for any open subset U
of X, any open subset V of (Uan ∩XR)×M and s ∈ Γ(U ;M ), t ∈ Γ(V ;K),
the homomorphism

HomDX

(
M ⊗K,C∞XR×M

)
3 ϕ 7→ ϕ(s⊗ t) ∈ C∞(V )(5.3.1)

is a continuous map. Here, C∞(V ) is the space of C∞-functions on V .
There exist a countable index set A and a family of open subsets {Ua}a∈A

of X, open subsets {Va}a∈A of XR ×M and sa ∈ Γ(Ua;M ), ta ∈ Γ(Va;K)
satisfying the following properties:

(i) Va ⊂ Uan
a ×M ,

(ii) {sa}a∈A generates M , namely, Mx =
∑

x∈Ua
(DX)x(sa)x for any x ∈ X,

(iii) {ta}a∈A generates K, namely, Kx '
∑

x∈Va
C(ta)x for any x ∈ XR×M .
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Then by the morphisms (5.3.1), {sa} and {ta} induce an injection

HomDX

(
M ⊗K,C∞XR×M

)
�
∏
a∈A

C∞(Va).

We can easily see that its image is a closed subspace of
∏

a∈A C∞(Va), and
the induced topology coincides with the weakest topology introduced in the
beginning. Since C∞(Va) is a Fréchet nuclear space and a countable product
of Fréchet nuclear spaces is also a Fréchet nuclear space,

∏
a∈A C∞(Va) is a

Fréchet nuclear space. Hence, its closed subspace HomDX

(
M ⊗K,C∞XR×M

)
is also a Fréchet nuclear space. Q.E.D.

Let E
(p,q,r)
Xan×M denote the sheaf of differential forms on Xan ×M with C∞-

coefficients which are (p, q)-forms with respect to Xan, and r-forms with re-
spect to M . We set E

(0,n)
Xan×M = ⊕n=q+rE

(0,q,r)
Xan×M . Then E

(0, • )
Xan×M is a com-

plex of p−1DXan-modules, and it is quasi-isomorphic to p−1OXan , where
p : Xan ×M → Xan is the projection.

Lemma 5.3.2. For any K ∈ ModGR,ctb(CXan×M ) and M ∈ Mod cc(DX , G),
HomDX

(
M ⊗K,E (0,q)

Xan×M

)
has a Fréchet nuclear GR-module structure.

The proof is similar to the previous lemma.
We denote by Homtop

DX

(
M⊗K,C∞XR×M

)
and Homtop

DX

(
M⊗K,E (0,n)

Xan×M

)
the

corresponding space endowed with the Fréchet nuclear GR-module structure.

5.4 Definition of RHomtop

Let us take a differentiable GR-manifold M with a free GR-cation. Then we
have an equivalence of categories:

ModGR(CXan×M ) ' Mod(C(Xan×M)/GR)⋃ ⋃
ModGR,ctb(CXan×M ) ' Mod ctb(C(Xan×M)/GR).

(5.4.1)

Definition 5.4.1. A countable GR-equivariant sheaf K on Xan×M is called
standard if K is isomorphic to

⊕
j∈J

(Ej)Uj , where {Uj}j∈J is a countable family

of GR-invariant open subsets of Xan and Ej is a GR-equivariant local system
on Uj of finite rank. Note the (Ej)Uj

is the extension of Ej to the sheaf on
Xan ×M such that (Ej)Uj |(Xan×M)\Uj

= 0.

Let us denote by ModGR,stand(CXan×M ) the full abelian subcategory of
ModGR(CXan×M ) consisting of standard sheaves. With this terminology, we
obtain the following lemma by (5.4.1) and Proposition 5.2.1.

Lemma 5.4.2. For any K ∈ C−
(
ModGR(CXan×M )

)
with countable sheaves

as cohomologies, there exist K ′ ∈ C−
(
ModGR,stand(CXan×M )

)
and a quasi-

isomorphism K ′ → K in C−
(
ModGR(CXan×M )

)
.
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Similarly we introduce the following notion.

Definition 5.4.3. A countably coherent quasi-G-equivariant DX -module M
is called standard if M is isomorphic to DX ⊗OX

E where E is a countably
coherent locally free G-equivariant OX -module.

We denote by Mod stand(DX , G) the full subcategory of Mod(DX , G) con-
sisting of standard modules.

For K ∈ Kb
(
ModGR,ctb(CXan×M )

)
and M ∈ Kb

(
Mod cc(DX , G)

)
, we

define the complex Homtop
DX

(
M ⊗K,E (0, • )

Xan×M

)
of Fréchet nuclear GR-modules

in Lemma 5.3.2.

Lemma 5.4.4. (i) Let N ∈ Mod stand(DX) and L ∈ Mod stand(CXan×M ).
Then, we have

Extj
DX

(N ⊗ L,E (0,q)
Xan×M ) = 0

for any j 6= 0 and any q.
(ii) We have isomorphisms in Db(C):

HomDX
(M ⊗K,E (0, • )

Xan×M ) ∼−−→ RHomDX
(M ⊗K,E (0, • )

Xan×M )

' RHomDX
(M ⊗K, p−1OXan)

for M ∈ K−(Mod stand(DX)) and K ∈ K−(Mod stand(CXan×M )). Here
p : Xan ×M → Xan is the projection.

Proof. (i) Since N is a locally free DX -module and E
(0,q)
Xan×M is a soft sheaf,

we have E xtjDX
(N ,E

(0,q)
Xan×M ) = 0 for j 6= 0. Hence, RH om DX

(N ,E
(0,q)
Xan×M )

is represented by HomDX
(N ,E

(0,q)
Xan×M ). Since HomDX

(N ,E
(0,q)
Xan×M ) has

locally a C∞Xan×M -module structure, it is a soft sheaf. Hence, we obtain
Extj

DX
(L,HomDX

(N ,E
(0,q)
Xan×M )) = 0 for j 6= 0. Finally, we conclude that

HomC(L,HomDX
(N ,E

(0,q)
Xan×M )) represents

RH om C(L,RH om DX
(N ,E

(0,q)
Xan×M )) ' RH om DX

(N ⊗ L,E (0,q)
Xan×M ).

(ii) follows immediately from (i). Q.E.D.

Proposition 5.4.5. Let us assume that K ∈ Kb
(
ModGR,ctb(CXan×M )

)
and

M ∈ Kb
(
Mod cc(DX , G)

)
. Then,

“lim
−→

”
M ′,K′

Homtop
DX

(
M ′ ⊗K ′,E (0, • )

Xan×M

)
is representable in Db(FNGR). Here, M ′ → M ranges over the quasi-
isomorphisms in K−

(
Mod cc(DX , G)

)
and K ′ → K ranges over the quasi-

isomorphisms in K−
(
ModGR,ctb(CXan×M )

)
. Moreover, forgetting the topology

and the equivariance, it is isomorphic to RHomDX
(M ⊗K, p−1OXan). Here

p : Xan ×M → Xan is the projection.
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Proof. There exist M ′ ∈ K−(Mod stand(DX , G)) and a quasi-isomorphism
M ′ →M . Similarly by Lemma 5.4.2, there exist K ′ ∈ K−(ModGR,stand(CX))
and a quasi-isomorphism K ′ → K.

Then

HomDX
(M ′ ⊗K ′,E (0, • )

Xan×M )→ RHomDX
(M ⊗K, p−1OXan)(5.4.2)

is an isomorphism in D(C) by the preceding lemma.
To complete the proof, it is enough to remark that, if a morphism in

K(FNGR) is a quasi-isomorphism in K(Mod(C)) forgetting the topology and
the equivariance, then it is a quasi-isomorphism in K(FNGR). Q.E.D.

Definition 5.4.6. Assume that GR acts freely on M . For M ∈ Db
cc(DX , G)

and K ∈ Db
GR,ctb(CXan×M ), we define RHomtop

DX
(M ⊗ K,E

(0, • )
Xan×M ) as the

object
“lim
−→

”
M ′,K′

Homtop
DX

(M ′ ⊗K ′,E (0, • )
Xan×M )

of Db(FNGR). Here, M ′ ranges over the set of objects of K−
(
Mod cc(DX , G)

)
isomorphic to M in Dcc(DX , G), and K ′ ranges over the set of objects of
K−
(
ModGR,ctb(CXan×M )

)
isomorphic to K in D

(
ModGR(CXan×M )

)
.

Let us take a sequence of GR-manifolds with a free GR-action:

V1 −→ V2 −→ V3 −→ · · ·(5.4.3)

as in (4.2.1).

Lemma 5.4.7. For M ∈ Db
cc(DX , G) and K ∈ Db

GR,ctb(CXan), Then

τ≤a RHomtop
DX

(M ⊗ p−1
k K,E

(0, • )
Xan×Vk

)

does not depend on k � a � 0 as an object of Db(FNGR). Here pk : Xan ×
Vk → Xan is the projection.

Proof. Forgetting the topology and the equivariance, we have

RHomtop
DX

(M ⊗ p−1
k K,E

(0, • )
Xan×Vk

) ' RHomDX
(M ⊗ p−1

k K, p−1
k OXan)

' RHomDX
(M ⊗K,OXan)⊗RΓ(Vk; C),

and

τ≤a
(
RHomDX

(M ⊗K,OXan)⊗RΓ(Vk; C)
)
' RHomDX

(M ⊗K,OXan)

for k � a� 0. Q.E.D.
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Definition 5.4.8. We define

RHomtop
DX

(M ⊗K,OXan)

as τ≤a RHomtop
DX

(M ⊗ p−1
k K,E

(0, • )
Xan×Vk

) for k � a� 0.

Note that

RHomtop
DX

(M ⊗K,OXan)

' “lim←−”
k

RHomtop
DX

(M ⊗ p−1
k K,E

(0, • )
Xan×Vk

).

Note that, forgetting the topology and the equivariance, RHomtop
DX

(M ⊗
K,OXan) is isomorphic to RHomDX

(M ⊗K,OXan) ∈ D(C).

5.5 DFN version

In this subsection, let us define RΓtop
c (Xan;K ⊗ΩXan

L
⊗DX

M ), which is the
dual of RHomtop

DX
(M ⊗K,OXan). Since the construction is similar to the one

of RHomtop
DX

(M ⊗K,OXan), we shall be brief.

Let us denote by Dist
(p,q)
Xan the sheaf of (p, q)-forms on Xan with distribu-

tions as coefficients. Then for any open subset U of Xan, Γc(U ;Dist(p,q)
Xan )

is endowed with a DFN-topology and it is the dual topological space of
the FN-space E

(dX−p,dX−q)
Xan (U). Hence for M ∈ K−(Mod stand(DX)) and

F ∈ K−(Mod stand(CXan)), Γc(Xan;K ⊗ Dist
(dX , • )
Xan ⊗DX

M )[dX ] is a com-
plex of DFN-spaces, and it is the dual of Homtop

DX
(M ⊗ K,E

(0, • )
Xan ). We

denote by Γtop
c (Xan;K ⊗ Dist

(dX , • )
Xan ⊗DX

M ) the complex of DFN-spaces
Γc(Xan;K ⊗ Dist

(dX , • )
Xan ⊗DX

M ). If we forget the topology, it is isomorphic
to RΓc(Xan;K ⊗ΩXan ⊗DX

M ) ∈ Db(C). Thus we have defined a functor:

RΓtop
c (Xan; • ⊗ΩXan

L
⊗DX

• ) : Db
ctb(CXan)×Db

cc(DX)→ Db(DFN).

WhenX is a quasi-projective G-manifold, we can define its equivariant version

RΓtop
c (Xan; • ⊗ΩXan

L
⊗DX

• ) : Db
GR,ctb(CXan)×Db

cc(DX , G)→ Db(DFNGR).

We have

RΓtop
c (Xan;K ⊗ΩXan

L
⊗DX

M )[dX ] ∼=
(
RHomtop

DX
(M ⊗K,OXan)

)∗
.(5.5.1)

Here ( • )∗ : Db(FNGR)op ∼−−→Db(DFNGR) is the functor induced by the du-
ality.

If we forget the topology and the equivariance, RΓtop
c (Xan;K⊗ΩXan⊗DX

M ) is isomorphic to RΓc(Xan;K ⊗ΩXan ⊗DX
M ) ∈ Db(C).
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5.6 Functorial Properties of RHomtop

Statements

We shall study how RHomtop behaves under G-equivariant morphisms of
G-manifolds. We shall keep the notations G,GR as in § 5.1.

Let f : X → Y be a G-equivariant morphism of quasi-projective algebraic
G-manifolds. Let fan : Xan → Y an be the associated holomorphic map.

Theorem 5.6.1. (i) Assume that f is smooth and projective. Then, there
exists a canonical isomorphism in Db(FNGR) :

RHomtop
DX

(M⊗(fan)−1L,OXan) ' RHomtop
DY

(Df∗M ⊗ L,OY an) [−dX/Y ]

for M ∈ Db
coh(DX , G) and L ∈ Db

GR,ctb(CY ).
(ii) Assume that f is smooth. Then, there exists a canonical isomorphism in

Db(FNGR):

RHomtop
DY

(N ⊗R(fan)!K,OY an) ' RHomtop
DX

(Df∗N ⊗K,OXan)[2dX/Y ]

for N ∈ Db
coh(DY , G) and K ∈ Db

GR,ctb(CX).

Preparation

Let us take a sequence {Vk} as in (4.2.1).
Let N ∈ Db

cc(DY , G) and L ∈ Db
GR,ctb(CY an). Then, by the definition, we

have

RHomtop
DY

(N ⊗ (L �× CVk
),E (0, • )

Y an×Vk
) = “lim−→”

N ′,L′
Homtop

DY
(N ′ ⊗ L′,E (0, • )

Y an×Vk
).

Here, N ′ ranges over the objects of K−
(
Mod cc(DY , G)

)
isomorphic to N in

D(Mod(DY , G)), and L′ ranges over the objects of K−
(
ModGR,ctb(CY an×Vk

)
)

isomorphic to L �× CVk
in Db

GR,ctb(CY an×Vk
). Then the morphism

DX→Y ⊗
DY

E
(0, • )
Y an×Vk

→ E
(0, • )
Xan×Vk

induces morphisms in Db(FNGR):

Homtop
DY

(N ′ ⊗ L′,E (0, • )
Y an×Vk

)→ Homtop
DX

(f∗N ′ ⊗ (fan × idVk
)−1L′,E

(0, • )
Xan×Vk

)

→ RHomtop
DX

(
Df∗N ⊗ ((fan)−1L �× CVk

),E (0, • )
Xan×Vk

)
.

Thus we obtain a morphism

RHomtop
DY

(N ⊗ (L �× CVk
),E (0, • )

Y an×Vk
)

→ RHomtop
DX

(Df∗N ⊗ ((fan)−1L �× CVk
),E (0, • )

Xan×Vk
)
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for N ∈ Db
cc(DY , G) and L ∈ Db

GR,ctb(CYan). Taking the projective limit with
respect to k, we obtain

RHomtop
DY

(N ⊗ L,OY an)→ RHomtop
DX

(Df∗N ⊗ (fan)−1L,OXan).(5.6.1)

Here, f is arbitrary.

Proof of Theorem 5.6.1

Let us first prove (i). For M and L as in (i), we have morphisms

RHomtop
DY

(
Df∗M ⊗ L[dX/Y ],OY an

)
→ RHomtop

DX

(
Df∗Df∗M [dX/Y ]⊗ (fan)−1L,OXan

)
→ RHomtop

DX
(M ⊗ (fan)−1L,OXan).

Here, the first arrow is given by (5.6.1) and the last arrow is given by M →
Df∗Df∗M [dX/Y ] (see (3.8.4)).

We shall prove that the composition

RHomtop
DY

(
Df∗M [dX/Y ]⊗ L,OY an

)
→ RHomtop

DX
(M ⊗ (fan)−1L,OXan)

is an isomorphism in Db(FNGR).
In order to see this, it is enough to show that it is an isomorphism in

Db(C). Then the result follows from the result of D-modules:

RHomDY

(
Df∗M [dX/Y ],OY an

) ∼= R(fan)∗RHomDX
(M ,OXan).

The proof of (ii) is similar. Let N and K be as in (ii), then we have a
sequence of morphisms

RHomtop
DY

(N ⊗Rfan
!K,OY an)

→ RHomtop
DX

(Df∗N ⊗ (fan)−1Rfan
!K,OXan)

→ RHomtop
DX

(Df∗N ⊗K,OXan)[2dX/Y ].

Here the last arrow is obtained by

K → (fan)!R(fan)!K ∼= (fan)−1R(fan)!K[2dX/Y ].

The rest of arguments is similar to the proof of (i) by reducing it to the
corresponding result in the D-module theory:

RH om DX
(Df∗N ,OXan) ' (fan)−1 RH om DY

(N ,OY an).
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5.7 Relation with the De Rham functor

Let X be an algebraic G-manifold. First assume that G acts freely on X.
Let p : X → X/G be the projection. Let M ∈ Db

cc(DX , G) and K ∈
Db

GR,ctb(CXan). Let L be an object of Db
G,hol(DX). Let L /G be the object

of Db
hol(DX/G) corresponding to L . Set L = DRX(L ) ∈ Db

Gan, C-c(CXan) (see
Subsection 4.6). Then the corresponding object L/Gan ∈ Db

C-c(C(X/G)an) is
isomorphic to DRX/G(L /G).

Let us represent M by an object of K−stand(DX , G) and L /G by an object
L̃ ∈ K−(Mod stand(DX/G)). Then L is represented by p∗L̃ . Since L/Gan '

HomD(X/G)an (D(X/G)an ⊗
•∧
Θ(X/G)an , L̃

an) belongs to Db
ctb(C(X/G)an), there

exist F ∈ K−(Mod stand(C(X/G)an)) and a quasi-isomorphism

F →HomD(X/G)an (D(X/G)an ⊗
•∧
Θ(X/G)an , L̃

an)

by Lemma 5.2.6. Thus we obtain a morphism of complexes of D(X/G)an-
modules:

D(X/G)an ⊗
•∧
Θ(X/G)an ⊗ F → L̃ an.(5.7.1)

Let M be a differentiable manifold with a free GR-action. Then for any E ∈
K−GR,stand(CXan×M ), the morphism (5.7.1) induces morphisms

Homtop
DX

(M ⊗OX
L ⊗ E,E (0, • )

Xan×M )

' Homtop
DXan (M an ⊗(pan)−1O(X/G)an

(pan)−1L̃ an ⊗C E,E
(0, • )
Xan×M )

→ Homtop
DXan (M an⊗

(pan)−1O(X/G)an

(pan)−1(D(X/G)an ⊗
•∧
Θ(X/G)an ⊗ F )⊗C E,E

(0, • )
Xan×M )

' Homtop
DX

((
M ⊗

p−1OX/G

p−1(DX/G⊗
•∧
ΘX/G)

)
⊗
(
(pan)−1F ⊗ E

)
,E

(0, • )
Xan×M

)
.

On the other hand, we have an isomorphism in Db(FNGR):

RHomtop
DX

(M ⊗C (p−1F ⊗C E),E (0, • )
Xan×M )

' Homtop
DX

((
M ⊗

p−1OX/G

p−1(DX/G⊗
•∧
ΘX/G)

)
⊗
(
(pan)−1F ⊗ E

)
,E

(0, • )
Xan×M

)
,

because M ⊗p−1OX/G
p−1(DX/G ⊗

∧ •
ΘX/G) → M is a quasi-isomorphism,

and M ⊗p−1OX/G
p−1(DX/G ⊗

∧ •
ΘX/G) and (pan)−1F ⊗ E are standard

complexes. Thus we obtain a morphism in Db(FNGR)

RHomtop
DX

((M
D
⊗L )⊗ E,E (0, • )

Xan×M )

→ RHomtop
DX

(
M ⊗

(
DRX(L )⊗ E

)
,E

(0, • )
Xan×M

)(5.7.2)
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for M ∈ Db
cc(DX , G), L ∈ Db

G,hol(DX) and E ∈ Db
GR,ctb(CXan×M ).

Let us take a sequence {Vk} as in (4.2.1). Let K ∈ Db
GR,ctb(CXan). Setting

M = Vk, E = K � CVk
in (5.7.2), and then taking the projective limit with

respect to k, we obtain

RHomtop
DX

((M
D
⊗L )⊗K,OXan)

→ RHomtop
DX

(M ⊗ (DRX(L )⊗K),OXan).
(5.7.3)

When the action of G is not free, we can also define the morphism (5.7.3)
replacing X with Vk × X, and then taking the projective limit with respect
to k. Here {Vk} is as in (4.5.1). Thus we obtain the following lemma.

Lemma 5.7.1. Let M ∈ Db
cc(DX , G) and K ∈ Db

GR,ctb(CXan). Then for any
L ∈ Db

G,hol(DX), there exists a canonical morphism in Db(FNGR) :

RHomtop
DX

(
(M

D
⊗L )⊗K,OXan

)
→ RHomtop

DX
(M ⊗ (DRX(L )⊗K),OXan).

For a coherent DX -module N , let us denote by Ch(N ) ⊂ T ∗X the char-
acteristic variety of N (see [16]). For a submanifold Y of X, we denote by
T ∗Y X the conormal bundle to Y . In particular, T ∗XX is nothing but the zero
section of the cotangent bundle T ∗X.

Theorem 5.7.2. Let M ∈ Db
coh(DX , G), L ∈ Db

G,hol(DX). Assume that M
and L are non-characteristic, i.e.

Ch(M ) ∩ Ch(L ) ⊂ T ∗XX.(5.7.4)

Then, for any K ∈ Db
GR,ctb(CXan), we have an isomorphism in Db(FNGR):

RHomtop
DX

((M
D
⊗L )⊗K,OXan) ∼−−→RHomtop

DX
(M ⊗ (DRX(L )⊗K),OXan).

Proof. It is enough to show the result forgetting the topology and the equiv-
ariance. Then this follows from the well-known result

RH om DX
(M

D
⊗L ,OXan)

∼←−−RH om DX
(M ,OXan)⊗C RH om DX

(L ,OXan)
∼−−→RH om DX

(M ,OXan)⊗C RH om CXan (DRX(L ),CXan)
∼−−→RH om C

(
DRX(L ),RH om DX

(M ,OXan)
)

∼−−→RH om DX
(M ⊗DRX(L ),OXan).

Here, the first and the third isomorphisms need the non-characteristic condi-
tion (see [18]). Q.E.D.
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6 Whitney functor

6.1 Whitney functor

In § 5, we defined RHomtop
DX

(M ⊗K,OXan) as an object of Db(FNGR). In this
section, we introduce its C∞-version. We use the Whitney functor developed
in Kashiwara-Schapira [20].

Theorem 6.1.1 ([20]). Let M be a real analytic manifold. Then there exists
an exact functor

•
w
⊗ C∞M : ModR-c(CM )→ Mod(DM ).

Moreover, for any F ∈ ModR-c(CM ), Γ(M ;F
w
⊗C∞M ) is endowed with a Fréchet

nuclear topology, and

Γ(M ; •
w
⊗ C∞M ) : ModR-c(CM )→ FN

is an exact functor.

Remark 6.1.2. (i) For a subanalytic open subset U , Γ(M ; CU

w
⊗ C∞M ) is

the set of C∞-functions f defined on M such that all the derivatives of
f vanish at any point outside U . Its topology is the induced topology of
C∞(M).

(ii) For a closed real analytic submanifold N of M , the sheaf CN

w
⊗ C∞M is

isomorphic to the completion lim←−
n

C∞M /In, where I is the ideal of C∞M

consisting of C∞-functions vanishing on N .
(iii) In this paper, the Whitney functor is used only for the purpose of the

construction of the morphism in Proposition 6.3.2. However, with this
functor and Thom (see [20]), we can construct the C∞globalization and
the distribution globalization of Harish-Chandra modules.

Hence we can define the functor

•
w
⊗ C∞M : Db

R-c(CM )→ Db(DM ),

RΓtop(M ; •
w
⊗ C∞M ) : Db

R-c(CM )→ Db(FN).

For any F ∈ ModR-c(CM ), we have a morphism

F
w
⊗ C∞M →HomC(HomC(F,CM ),C∞M ),

which induces a morphism in Db(FN)

RΓtop(M ;F
w
⊗ C∞M ) −→ RHomtop

C (F ∗,C∞M )(6.1.1)
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for F ∈ Db
R-c(CM ), where F ∗ := RH om (F,CM ).

If a real Lie group H acts on M , we can define

Γtop(M ; •
w
⊗ C∞M ) : ModH,R-c(CM )→ FNH .

Note that, for a complex manifold X and F ∈ Db
R-c(CX), F

w
⊗ OX ∈

Db(DX) is defined as F
w
⊗ E

(0, • )
Xan .

6.2 The functor RHomtop
DX

( • , •
w
⊗ OXan)

Let X, G, GR be as in § 5.1.
For M ∈ Db

cc(DX), F ∈ Db
R-c(CX), let us define RHomtop

DX
(M , F

w
⊗OXan)

as an object of Db(FNGR), which is isomorphic to RHomDX
(M , F

w
⊗ OXan)

forgetting the topology and the equivariance. The construction is similar to
the one in § 5.

Let M be a GR-manifold with a free GR-action. For M ∈ Mod cc(DX , G)

and F ∈ ModGR,R-c(CXan×M ), we endow HomDX
(M , F

w
⊗ E

(0,p)
Xan×M ) with a

Fréchet nuclear GR-module structure as in Lemma 5.3.1. Hence, for M ∈
K−(Mod cc(DX , G)) and F ∈ K−(ModGR,R-c(CXan×M )), we can regard the

complex HomDX
(M , F

w
⊗ E

(0, • )
Xan×M ) as an object of Db(FNGR). Taking the

inductive limit with respect to M , we obtain RHomtop
DX

(M , F
w
⊗ E

(0, • )
Xan×M ) ∈

Db(FNGR) for M ∈ Db
cc(DX , G) and F ∈ Db

GR,R-c(CXan×M ).
Let us take a sequence {Vk} as in (4.2.1). Let M ∈ Db

cc(DX , G) and
F ∈ Db

GR,R-c(CXan). Forgetting the topology and the equivariance, we have

RHomtop
DX

(M , (F �× CVk
)

w
⊗ E

(0, • )
Xan×Vk

)

' RHomDX
(M , F

w
⊗ OXan)⊗RΓ(Vk; C) in Db(C).

As in Definition 5.4.8, we define

RHomtop
DX

(M , F
w
⊗ OXan) = τ≤a RHomtop

DX
(M , (F �× CVk

)
w
⊗ E

(0, • )
Xan×Vk

)

for k � a� 0.
Thus we have defined the functor

RHomtop
DX

( • , •
w
⊗ OXan)

: Db
cc(DX , G)op ×Db

GR,R-c(CXan)→ Db(FNGR).
(6.2.1)

By (6.1.1), we have a morphism

RHomtop
DX

(M , F
w
⊗ OXan)→ RHomtop

DX
(M ⊗ F ∗,OXan)(6.2.2)

in Db(FNGR).
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6.3 Elliptic case

Let XR be a closed real analytic submanifold of Xan invariant by GR. Let
i : XR ↪→ Xan be the inclusion.

Assume that TxX ∼= C⊗R TxXR for any x ∈ XR.
In Lemma 5.3.2, we define Homtop

DX
(M ,C∞XR

) ∈ FNGR for a countably
coherent quasi-G-equivariant DX -module M . It is right derivable and we can
define the functor

RHomtop
DX

( • ,C∞XR
) : Db

cc(DX , G)op → Db(FNGR).

Proposition 6.3.1. For M ∈ Db
cc(DX , G), we have

RHomtop
DX

(M ,C∞XR
) ' RHomtop

DX
(M , i∗CXR

w
⊗ OXan).

Proof. Let {Vk} be as in the preceding section. The restriction map

(i∗CXR �× CVk
)

w
⊗ E

(0, • )
Xan×Vk

→ E
(0, • )
XR×Vk

induces Homtop
DX

(M , (i∗CXR �× CVk
)

w
⊗ E

(0, • )
Xan ) → Homtop

DX
(M ,E

(0, • )
XR×Vk

) in
Db(FNGR). It induces a morphism

RHomtop
DX

(M , (i∗CXR �× CVk
)

w
⊗ E

(0, • )
Xan×Vk

)→ RHomtop
DX

(M ,E
(0, • )
XR×Vk

).

Taking the projective limit with respect to k, we obtain

RHomtop
DX

(M , i∗CXR

w
⊗ OXan)→ RHomtop

DX
(M ,C∞XR

).

Forgetting the topology and the equivariance, it is an isomorphism since
i∗CXR

w
⊗ OXan ' C∞XR

(see [20]). Q.E.D.

Proposition 6.3.2. There exists a canonical morphism in Db(FNGR) :

RHomtop
DX

(M ,C∞XR
) −→ RHomtop

DX
(M ⊗ i∗i!CXan ,OXan)

for M ∈ Db
cc(DX , G).

Proof. This follows from the preceding proposition, (i∗CXR)∗ ' i∗i!CXan and
(6.2.2). Q.E.D.

Proposition 6.3.3. Let us assume that M ∈ Db
coh(DX , G) is elliptic i.e.

Ch(M ) ∩ T ∗XR
X ⊂ T ∗XX (cf. e.g. [16]). Then we have

RHomtop
DX

(M ,C∞XR
) ∼−−→RHomtop

DX
(M ⊗ i∗i!CXan ,OXan)

in Db(FNGR).
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Proof. Let BXR = RH om C(i∗i!CXan ,OXan) be the sheaf of hyperfunctions
on XR. Forgetting the topology and the equivariance, we have isomorphisms:

RHomDX
(M ⊗ i∗i!CXan ,OXan) ' RHomDX

(M ,BXR)
' RHomDX

(M ,C∞XR
).

Here, the last isomorphism follows from the ellipticity of M . Hence we obtain
the desired result. Q.E.D.

7 Twisted Sheaves

7.1 Twisting data

If we deal with the non-integral infinitesimal character case in the representa-
tion theory by a geometric method, we need to twist sheaves. In this note, we
shall not go into a systematic study of twisted sheaves, but introduce it here
in an ad hoc manner by using the notion of twisting data. (See [15] for more
details.)

A twisting data τ (for twisting sheaves) over a topological space X is a
triple (X0

π−→ X,L,m). Here π : X0 → X is a continuous map admitting a
section locally on X, L is an invertible CX0×XX0-module and m is an isomor-
phism

m : p−1
12 L⊗ p

−1
23 L

∼−−→ p−1
23 L on X2.

Here and hereafter, we denote by Xn the fiber product of (n+1) copies of X0

over X, by pi (i = 1, 2) the i-th projection from X1 to X0, by pij (i, j = 1, 2, 3)
the (i, j)-th projection from X2 to X1, and so on. We assume that the isomor-
phism m satisfies the associative law: the following diagram of morphisms of
sheaves on X3 is commutative.

p−1
12 L ⊗ p

−1
23 L⊗ p

−1
34 L p−1

12 L⊗ p
−1
234

(
p−1
12 L ⊗ p

−1
23 L

)
m

��
p−1
123

(
p−1
12 L ⊗ p

−1
23 L

)
⊗ p−1

34 L

m
��

p−1
12 L⊗ p

−1
234p

−1
13 L

p−1
123p

−1
13 L⊗ p

−1
34 L p−1

12 L⊗ p
−1
24 L

p−1
13 L⊗ p

−1
34 L p−1

124

(
p−1
12 L ⊗ p

−1
23 L

)
m

��
p−1
134

(
p−1
12 L⊗ p

−1
23 L

)
m

��

p−1
124p

−1
13 L

p−1
134p

−1
13 L p−1

14 L .

(7.1.1)
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In other words, for (x1, x2, x3) ∈ X0 ×X X0 ×X X0, an isomorphism

m(x1, x2, x3) : L(x1,x2) ⊗ L(x2,x3)
∼−−→L(x1,x3)

is given in a locally constant manner in (x1, x2, x3) such that the diagram

L(x1,x2) ⊗ L(x2,x3) ⊗ L(x3,x4)

m(x1,x2,x3)⊗L(x3,x4)

ttiiiiiiiiiiiiiii
L(x1,x2)⊗m(x2,x3,x4)

**UUUUUUUUUUUUUUU

L(x1,x3) ⊗ L(x3,x4)

m(x1,x3,x4) **UUUUUUUUUUUUUUUU
L(x1,x2) ⊗ L(x2,x4)

m(x1,x2,x4)ttiiiiiiiiiiiiiiii

L(x1,x4)

is commutative for (x1, x2, x3, x4) ∈ X0 ×X X0 ×X X0 ×X X0.
In particular, we have i−1L ∼= CX0 , where i : X0 ↪→ X1 is the diagonal

embedding. Indeed, for x′ ∈ X0,m(x′, x′, x′) gives L(x′,x′)⊗L(x′,x′)
∼−−→L(x′,x′)

and hence an isomorphism L(x′,x′)
∼−−→C.

7.2 Twisted Sheaf

Let τ = (X0
π−→ X,L,m) be a twisting data on X. A twisted sheaf F on X

with twist τ (or simply τ -twisted sheaf) is a sheaf F on X0 equipped with an
isomorphism β : L⊗p−1

2 F ∼−−→ p−1
1 F such that we have a commutative diagram

on X2

p−1
12 L⊗ p

−1
23 L⊗ p

−1
3 F

m

��

p−1
12 L⊗ p

−1
23 (L⊗ p−1

2 F )

β

��
p−1
13 L⊗ p

−1
3 F p−1

12 L⊗ p
−1
23 p
−1
1 F

p−1
13 (L⊗ p−1

2 F )

β

��

p−1
12 (L⊗ p−1

2 F )

β

��
p−1
13 p
−1
1 F p−1

12 p
−1
1 F.

In particular, F is locally constant on each fiber of π. We can similarly
define a twisted sheaf on an open subset U of X. Let Modτ (CU ) denote the
category of τ -twisted sheaves on U . Then Modτ (CX) : U 7→ Mod τ (CU ) is a
stack (a sheaf of categories) on X (see e.g. [19]).

If π : X0 → X admits a section s : X → X0, then the category Modτ (CX)
is equivalent to the category Mod(CX) of sheaves on X. Indeed, the functor
Mod τ (CX)→ Mod(CX) is given by F 7→ s−1F and the quasi-inverse is given
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by G 7→ s̃−1L ⊗ π−1G, where s̃ is the map x′ 7→
(
x′, sπ(x′)

)
from X0 to

X1. Hence the stack Modτ (CX) is locally equivalent to the stack Mod(CX)
of sheaves on X. Conversely, a stack locally equivalent to the stack Mod(CX)
is equivalent to Modτ (CX) for some twisting data τ (see [15]).

Let tr be the twisting data (X id−→ X,CX). Then Mod tr(CX) is equivalent
to Mod(CX).

For a twisting data τ on X, we denote by Db
τ (CX) the bounded derived

category Db(Mod τ (CX)).

7.3 Morphism of Twisting Data

Let τ = (X0
π−→ X,L,m) and τ ′ = (X ′0

π′−→ X,L′,m′) be two twisting data.
A morphism from τ to τ ′ is a pair u = (f, ϕ) of a map f : X0 → X ′0 over
X and an isomorphism ϕ : L ∼−−→ f1

−1L′ compatible with m and m′. Here f1
is the map f ×

X
f : X0×

X
X0 → X ′0×

X
X ′0. One can easily see that a morphism

u : τ → τ ′ gives an equivalence of categories u∗ : Mod τ ′(CX) ∼−−→Mod τ (CX)
by F 7→ f−1F . Hence we say that twisting data τ and τ ′ are equivalent in
this case.

Let us discuss briefly what happens if there are two morphisms u = (f, ϕ)
and u′ = (f ′, ϕ′) from τ to τ ′. Let g : X0 → X ′0×

X
X ′0 be the map x′ 7→(

f(x′), f ′(x′)
)
. Then an invertible sheaf K ′ = g−1L′ on X0 satisfies p−1

1 K ′ ∼=
p−1
2 K ′, and there exists an invertible sheaf K on X such that

π−1K ∼= g−1L′.

Then, • ⊗K gives an equivalence from Modτ (CX) to itself, and the diagram

Mod τ ′(CX)

u∗ ''OOOOOOOOOOO
u′∗ // Mod τ (CX)

•⊗K

��
Mod τ (CX)

quasi-commutes (i.e. ( • ⊗K) ◦ u′∗ and u∗ are isomorphic).

7.4 Tensor Product

Let τ ′ = (X ′0 → X,L′,m′) and τ ′′ = (X ′′0 → X,L′′,m′′) be two twisting data
on X. Then their tensor product τ ′⊗τ ′′ is defined as follows: τ ′⊗τ ′′ = (X0 →
X,L,m), where X0 = X ′0×

X
X ′′0 , L = q−1

1 L′ ⊗ q−1
2 L′′ with the projections

q1 : X1 ' X ′1 ×X ′′1 → X ′1 and q2 : X1 → X ′′1 , and m = m′ ⊗m′′. Then we can
define the bi-functor
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• ⊗ • : Modτ ′(CX)×Modτ ′′(CX)→Modτ ′⊗τ ′′(CX)(7.4.1)

by (F ′, F ′′) 7→ r−1
1 F ′⊗ r−1

2 F ′′, where r1 : X0 → X ′0 and r2 : X0 → X ′′0 are the
projections.

For a twisting data τ = (X0 → X,L,m), let τ⊗−1 be the twisting data
τ⊗−1 := (X0 → X,L⊗−1,m⊗−1). Note that L⊗−1 ' r−1L, where r : X1 →
X1 is the map (x′, x′′) 7→ (x′′, x′). Then we can easily see that τ ⊗ τ⊗−1 is
canonically equivalent to the trivial twisting data. Hence we obtain

• ⊗ • : Modτ (CX)×Modτ⊗−1(CX)→Mod(CX).

For twisting data τ and τ ′, we have a functor

Hom( • , • ) : Modτ (CX)op ×Modτ ′(CX)→Modτ⊗−1⊗τ ′(CX).(7.4.2)

They induce functors:

• ⊗ • : Db
τ (CY )⊗Db

τ ′(CY )→ Db
τ⊗τ ′(CY ) and

RH om ( • , • ) : Db
τ (CY )op ×Db

τ ′(CY )→ Db
τ⊗−1⊗τ ′(CY ).

(7.4.3)

7.5 Inverse and Direct Images

Let f : X → Y be a continuous map and let τ = (Y0
π−→ Y, LY ,mY ) be a

twisting data on Y . Then one can define naturally the pull-back f∗τ . This is
the twisting data (X0 → X,LX ,mX) on X, where X0 is the fiber product
X ×Y Y0, LX is the inverse image of LY by the map X1 → Y1 and mX is the
isomorphism induced by mY .

Then, similarly to the non-twisted case, we can define

f−1 : Modτ (CY )→ Modf∗τ (CX),

f∗, f! : Modf∗τ (CX)→ Mod τ (CY ).
(7.5.1)

They have right derived functors:

f−1 : Db
τ (CY )→ Db

f∗τ (CX),

Rf∗, Rf! : Db
f∗τ (CX)→ Db

τ (CY ).
(7.5.2)

The functor Rf! has a right adjoint functor

f ! : Db
τ (CY )→ Db

f∗τ (CX).(7.5.3)

7.6 Twisted Modules

Let τ = (X0
π−→ X,L,m) be a twisting data on X. Let A be a sheaf of

C-algebras on X. Then we can define the category Mod τ (A ) of τ -twisted A -
modules. A τ -twisted A -module is a pair (F, β) of a π−1A -module F on X0

and a p−1A -linear isomorphism β : L ⊗ p−1
2 F ∼−−→ p−1

1 F satisfying the chain
condition (7.2.1). Here p : X1 → X is the projection. The stack Modτ (A ) of
τ -twisted A -modules is locally equivalent to the stack Mod(A ) of A -modules.
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7.7 Equivariant twisting data

Let G be a Lie group, and let X be a topological G-manifold. A G-equivariant
twisting data on X is a twisting data τ = (X0

π−→ X,L,m) such that X0 is
a G-manifold, π is G-equivariant and L is G-equivariant, as well as m. Let
µ : G×X → X be the multiplication map and pr: G×X → X the projection.
Then the two twisting data µ∗τ and pr∗τ on G×X are canonically isomorphic.
We can then define the G-equivariant derived category Db

G,τ (CX), similarly
to the non-twisted case.

If G acts freely on X, then denoting by p : X → X/G the projection, we
can construct the quotient twisting data τ/G on X/G such that τ ∼= p∗(τ/G),
and we have an equivalence

Db
G,τ (CX) ' Db

τ/G(CX/G).

7.8 Character local system

In order to construct twisting data, the following notion is sometimes useful.
Let H be a real Lie group. Let µ : H × H → H be the multiplication

map and qj : H × H → H be the j-th projection (j = 1, 2). A character
local system on H is by definition an invertible CH -module L equipped with
an isomorphism m : q−1

1 L ⊗ q−1
2 L ∼−−→µ−1L satisfying the associativity law:

denoting by m(h1, h2) : Lh1 ⊗ Lh2 → Lh1h2 the morphism given by m, the
following diagram commutes for h1, h2, h3 ∈ H

Lh1 ⊗ Lh2 ⊗ Lh3

m(h1,h2) //

m(h2,h3)

��

Lh1h2 ⊗ Lh3

m(h1h2,h3)

��
Lh1 ⊗ Lh2h3

m(h1,h2h3)
// Lh1h2h3 .

(7.8.1)

Let h be the Lie algebra of H. For A ∈ h, let LH(A) and RH(A) denote
the vector fields on H defined by(

LH(A)f
)
(h) =

d

dt
f(e−tAh)

∣∣∣
t=0

and
(
RH(A)f

)
(h) =

d

dt
f(hetA)

∣∣∣
t=0

.(7.8.2)

Let us take an H-invariant element λ of HomR(h,C) ' HomC(C ⊗R h,C).
Hence λ satisfies λ([h, h]) = 0. Let Lλ be the sheaf of functions f on H
satisfying RH(A)f = λ(A)f for all A ∈ h, or equivalently LH(A)f = −λ(A)f
for all A ∈ h. Then Lλ is a local system on H of rank one. Regarding q−1

1 Lλ,
q−1
2 Lλ and µ−1Lλ as subsheaves of the sheaf OH×H of functions on H×H, the

multiplication morphism OH×H ⊗ OH×H → OH×H induces an isomorphism

m : q−1
1 Lλ ⊗ q−1

2 Lλ
∼−−→µ−1Lλ.(7.8.3)

With this data, Lλ has a structure of a character local system.
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If λ lifts to a character χ : H → C∗, then Lλ is isomorphic to the trivial
character local system CH = L0 by CH

∼−−→Lλ ⊂ OH given by χ.
For λ, λ′ ∈ HomH(h,C), we have

Lλ ⊗ Lλ′
∼= Lλ+λ′(7.8.4)

compatible with m.

7.9 Twisted equivariance

Let H,λ, Lλ be as in the preceding subsection. Let X be an H-manifold. Let
pr : H ×X → X and q : H ×X → H be the projections and µ : H ×X → X
the multiplication map.

Definition 7.9.1. An (H,λ)-equivariant sheaf on X is a pair (F, β) where F
is a CX-module and β is an isomorphism

β : q−1Lλ ⊗ pr−1F ' µ−1F(7.9.1)

satisfying the following associativity law: letting β(h, x) : (Lλ)h ⊗ Fx
∼−−→Fhx

be the induced morphism for (h, x) ∈ H×X, the following diagram commutes
for (h1, h2, x) ∈ H ×H ×X:

(Lλ)h1 ⊗ (Lλ)h2 ⊗ Fx

m(h1,h2)

uukkkkkkkkkkkkkk
β(h2,x)

))SSSSSSSSSSSSSS

(Lλ)h1h2 ⊗ Fx

β(h1h2,x) ))SSSSSSSSSSSSSSS
(Lλ)h1 ⊗ Fh2x

β(h1,h2x)uukkkkkkkkkkkkkkk

Fh1h2x .

.

Let us denote by Mod (H,λ)(CX) the category of (H,λ)-equivariant sheaves on
X. It is an abelian category.

If λ = 0, then Mod (H,λ)(CX) ' ModH(CX).

For x ∈ X and h ∈ H, we have a chain of isomorphisms

Fx
∼−−→
β

(Lλ)h−1 ⊗ Fhx
∼−−→C⊗ Fhx ' Fhx.(7.9.2)

Here (Lλ)h−1 ∼−−→C is induced by the evaluation map (OH)h−1 → C. Let Hx

be the isotropy subgroup at x ∈ X and hx its Lie algebra. Then, (7.9.2) gives
a group homomorphism

Hx → Aut(Fx).

Its infinitesimal representation coincides with hx
−λ−−→ C→ EndC(Fx).

Lemma 7.9.2 ([15]). Let X be a homogeneous space of H and x ∈ X. Then
Mod (H,λ)(CX) is equivalent to the category of Hx-modules M such that its

infinitesimal representation coincides with hx
−λ−−→ C→ EndC(M).
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7.10 Twisting data associated with principal bundles

Let π : X0 → X be a principal bundle with a real Lie group H as a structure
group. We use the convention that H acts from the left on X0. Let h be the
Lie algebra of H and λ an H-invariant element of HomR(h,C). Let Lλ be the
corresponding character local character system. Let us identify X0×XX0 with
H×X0 by the isomorphism H×X0

∼−−→X0×XX0 given by (h, x′) 7→ (hx′, x′).
Then the projection mapH×X0 → H gives q : X0×XX0 → H((hx′, x′) 7→ h).
Then the multiplication isomorphism (7.8.3) induces

p−1
12 (q−1Lλ)⊗ p−1

23 (q−1Lλ) ∼−−→ p−1
13 (q−1Lλ).

Thus (X0 → X, q−1Lλ) is a twisting data on X. We denote it by τλ. By the
definition, we have an equivalence of categories:

Mod τλ
(CX) ∼= Mod (H,λ)(CX0).(7.10.1)

For λ, λ′ ∈ HomH(h,C), we have

τλ ⊗ τλ′ ∼= τλ+λ′ .

Assume that X, X0 are complex manifolds, X0 → X and H are complex
analytic and λ is an H-invariant element of HomC(h,C). Let OX(λ) be the
sheaf on X0 given by

OX(λ) = {ϕ ∈ OX0 ; LX(A)ϕ = −〈A, λ〉ϕ for any A ∈ h} .(7.10.2)

Then OX(λ) is (H,λ)-equivariant and we regard it as an object of Mod τλ
(OX).

7.11 Twisting (D-module case)

So far, we discussed the twisting in the topological framework. Now let us
investigate the twisting in the D-module framework. This is similar to the
topological case. Referring the reader to [15] for treatments in a more general
situation, we restrict ourselves to the twisting arising from a principal bundle
as in § 7.10.

Let H be a complex affine algebraic group, h its Lie algebra and let
RH , LH : h → ΘH be the Lie algebra homomorphisms defined by (7.8.2).
For λ ∈ HomH(h,C), let us define the DH -module Lλ = DHuλ by the
defining relation RH(A)uλ = λ(A)uλ for any A ∈ h (which is equivalent
to the relation: LH(A)uλ = −λ(A)uλ for any A ∈ h). Hence we have
Lλ
∼= HomDH

(Lλ,OHan). Let µ : H × H → H be the multiplication mor-
phism. Then we have DH×H -linear isomorphism

m : Lλ

D
�Lλ

∼−−→Dµ∗Lλ(7.11.1)
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by m
(
uλ � uλ) = µ∗(uλ). It satisfies the associative law similar to (7.8.1)

(i.e., (7.11.2) with M = Lλ and β = m). For λ, λ′ ∈ HomH(h,C), there is an
isomorphism

Lλ

D
⊗Lλ′

∼= Lλ+λ′

that is compatible with m.

Let X be a complex algebraic H-manifold. Then we can define the notion
of (H,λ)-equivariant DX -module as in §7.9. Let us denote by µ : H ×X → X
the multiplication morphism.

Definition 7.11.1. An (H,λ)-equivariant DX -module is a pair (M , β) where
M is a DX -module and β is a DH×X -linear isomorphism

β : Lλ

D
�M ∼−−→Dµ∗M

satisfying the associativity law: the following diagram onH×H×X commutes.

Lλ

D
�Lλ

D
�M

mvvnnnnnnnnn β

((PPPPPPPPP

Dµ∗Lλ

D
�M Lλ

D
�Dµ∗M

D(µ× id)∗(Lλ

D
�M )

β
��

D(id×µ)∗(Lλ

D
�M )

β
��

D(µ× id)∗Dµ∗M ∼ D(id×µ)∗Dµ∗M .

(7.11.2)

Then the quasi-coherent (H,λ)-equivariant DX -modules form an abelian cat-
egory. We denote it by Mod (H,λ)(DX).

Note that any (H,λ)-equivariant DX -module may be regarded as a quasi-
H-equivariant DX -module since Lλ = OHuλ

∼= OH as an OH -module, and
m(uλ � uλ) = µ∗uλ. Thus we have a fully faithful exact functor

Mod (H,λ)(DX)→ Mod(DX ,H).

Similarly to Lemma 3.1.4, we can prove the following lemma (see [15]).
Lemma 7.11.2. An object M of Mod(DX ,H) is isomorphic to the image of
an object of Mod (H,λ)(DX) if and only if γM : h→ EndDX

(M ) coincides with

the composition h
λ−→ C→ EndDX

(M ).
Note that for λ, λ′ ∈ HomH(h,C), Lλ⊗Lλ′

∼= Lλ+λ′ gives the right exact
functor

•
D
⊗ • = • ⊗

OX

• : Mod (H,λ)(DX)×Mod (H,λ′)(DX)→ Mod (H, λ+λ′)(DX).

Note that for M ∈ Mod (H,λ)(DX), the sheaf HomDX
(M ,OXan) is an

(Han, λ)-equivariant sheaf on Xan.
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7.12 Ring of twisted differential operators

Let π : X0 → X be a principal H-bundle over X, and λ ∈ HomH(h,C). Let
Nλ = DX0vλ be the DX0-module defined by the defining relation LX0(A)vλ =
−λ(A)vλ. Then Nλ is an (H,λ)-equivariant DX0-module in an evident way.
We set

DX,λ =
{
f ∈ π∗E ndDX0

(Nλ) ; f is H-equivariant
}op

.

Here op means the opposite ring. Then DX,λ is a ring on X, and Nλ is a right
π−1DX,λ-module.

If there is a section s of π : X0 → X, then the composition DX,λ →
E ndDX

(s∗Nλ)op = E ndDX
(DX)op = DX is an isomorphism. Hence DX,λ is

locally isomorphic to DX (with respect to the étale topology), and hence it is
a ring of twisted differential operators on X (cf. e.g. [15]). We have

Lemma 7.12.1. We have an equivalence Mod (H,λ)(DX0) ∼= Mod(DX,λ). The
equivalence is given by:

Mod (H,λ)(DX0) 3 M̃ 7→ π∗Hom(DX0 ,H)(Nλ, M̃ ) ∈ Mod(DX,λ) and
Mod(DX0,λ) 3M 7→ Nλ⊗DX,λ

M ∈ Mod (H,λ)(DX0).

Here π∗Hom(DX0 ,H)(Nλ, M̃ ) is the sheaf which associates

HomMod (H,λ)(Dπ−1U )(Nλ|π−1U , M̃ |π−1U )

to an open set U of X.

Note that OXan(λ) ∼= HomDX0
(Nλ,OXan

0
) is an (Han, λ)-equivariant sheaf

and it may be regarded as a τλ-twisted DXan,λ-module:

OXan(λ) ∈ Mod τλ
(DXan,λ).

The twisted module OXan(λ) plays the role of OXan for DX -modules. For
example, defining by

DRX(M ) := RH om DXan,λ
(OXan(λ),M an) and

SolX(M ) := RH om DX,λ
(M ,OXan(λ)),

we obtain the functors

DRX : Db(DX,λ)→ Db
τ−λ

(CXan),

SolX : Db(DX,λ)op → Db
τλ

(CXan).
(7.12.1)

Note that we have

Mod(DXan,λ) ' Mod τ−λ
(DXan)

by M 7→ OXan(−λ)⊗M .
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7.13 Equivariance of twisted sheaves and twisted D-modules

Let π : X0 → X be a principal bundle with an affine group H as a structure
group, and let λ ∈ HomH(h,C). Assume that an affine group G acts onX0 and
X such that π is G-equivariant and the action of G commutes with the action
of H. Then, as we saw in §7.6, we can define the notion of Gan-equivariant τλ-
twisted CXan-modules, and the equivariant derived category Db

Gan,τλ
(CXan).

Let g be the Lie algebra ofG. Then, for any A ∈ g, Nλ 3 vλ 7→ LX0(A)vλ ∈
Nλ extends to a DX0-linear endomorphism of Nλ and it gives an element of
DX,λ. Hence we obtain a Lie algebra homomorphism

g→ Γ(X;DX,λ).

We can define the notion of quasi-G-equivariant DX,λ-modules and G-
equivariant DX,λ-modules. Moreover the results in the preceding sections for
non-twisted case hold with a suitable modification, and we shall not repeat
them. For example, for λ, µ ∈ HomH(h,C), we have a functor

•
D
⊗ • : Db(DX,λ, G)×Db(DX,µ, G)→ Db(DX,λ+µ, G).

If GR is a real Lie group with a Lie group morphism GR → Gan,

RHomtop
DX,λ

(M ⊗ F,OXan(λ)) ∈ Db(FNGR)

is well-defined for M ∈ Db
cc(DX,λ, G) and F ∈ Db

GR,τλ,ctb(CXan). Note that
HomC(F,OXan(λ)) ∈ Mod(DXan,λ) because OXan(λ) ∈ Mod τλ

(DXan,λ).

7.14 Riemann-Hilbert correspondence

Let π : X0 → X, H, G and λ ∈ HomH(h,C) be as in the preceding subsection.
Assume that λ vanishes on the Lie algebra of the unipotent radical of H. Then
Lλ is a regular holonomic DH -module. Hence we can define the notion of
regular holonomic DX,λ-module (i.e. a DX,λ-module M is regular holonomic
if Nλ ⊗DX,λ

M is a regular holonomic DX0-module).
Assume that there are finitely many G-orbits in X. Then any coherent

holonomic G-equivariant DX,λ-module is regular holonomic (see [15]). Hence
the Riemann-Hilbert correspondence (see Subsection 4.6) implies the following
result.

Theorem 7.14.1. Assume that λ vanishes on the Lie algebra of the unipotent
radical of H. If there are only finitely many G-orbits in X, then the functor

DRX := RH om DXan,λ
(OXan(λ), • an) : Db

G,coh(DX,λ)→ Db
Gan,τ−λ, C-c(CXan)

is an equivalence of triangulated categories.
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8 Integral transforms

8.1 Convolutions

Let X, Y and Z be topological manifolds.
Let us consider a diagram

X × Y × Z
p12

vvmmmmmmmmmmmmm
p23

((QQQQQQQQQQQQQ
p13

��
X × Y X × Z Y × Z.

For F ∈ Db(CX×Y ) and G ∈ Db(CY×Z), we define the object F ◦ G of
Db(CX×Z) by

F ◦G := Rp13!(p12
−1F ⊗ p23

−1G).(8.1.1)

We call it the convolution of F and G.
Hence we obtain the functor

• ◦ • : Db(CX×Y )×Db(CY×Z) −→ Db(CX×Z).

In particular, letting X or Z be {pt}, we obtain

• ◦ • :
Db(CY )×Db(CY×Z) −→ Db(CZ)
Db(CX×Y )×Db(CY ) −→ Db(CX).

This functor satisfies the associative law

(F ◦G) ◦H ' F ◦ (G ◦H)

for F ∈ Db(CX×Y ), G ∈ Db(CY×Z) and H ∈ Db(CZ×W ).
This can be generalized to the twisted case. Let τX (resp. τY , τZ) be a

twisting data on X (resp. Y , Z). Then we have a functor

• ◦ • : Db
τX�(τY )⊗−1(CX×Y )×Db

τY �(τZ)⊗−1(CY×Z) −→ Db
τX�(τZ)⊗−1(CX×Z).

Similarly, we can define the convolutions of D-modules. Let X, Y and Z
be algebraic manifolds. Then we can define, for M ∈ Db(DX×Y ) and N ∈
Db(DY×Z), the object M

D◦ N of Db(DX×Z) by

M
D◦ N := Dp13∗(Dp12

∗M
D
⊗Dp23

∗N ).(8.1.2)

We call it the convolution of M and N .
Hence we obtain the functor

•
D◦ • : Db(DX×Y )×Db(DY×Z) −→ Db(DX×Z).

If X, Y and Z are quasi-projective G-manifolds, we can define

•
D◦ • : Db(DX×Y , G)×Db(DY×Z , G) −→ Db(DX×Z , G).

These definitions also extend to the twisted case.
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8.2 Integral transform formula

Let G be an affine algebraic group, and let GR be a real Lie group with a Lie
group morphism GR → Gan.

Let X be a projective algebraic G-manifold and Y a quasi-projective G-
manifold. Let us consider the diagram

X × Y
p1

{{ww
ww

ww
ww

w
p2

##GG
GG

GG
GG

G

X Y.

For M ∈ Db
coh(DX , G), K ∈ Db

G,hol(DX×Y ) and F ∈ Db
GR,ctb(CY an), let us

calculate RHomtop
DY

(
(M

D◦K )⊗F,OY an

)
. Note that M

D◦K ∈ Db
coh(DY , G).

We have by Theorem 5.6.1

RHomtop
DY

((M
D◦ K )⊗ F,OY an)

= RHomtop
DY

(Dp2∗(Dp1
∗M

D
⊗K )⊗ F,OY an)

' RHomtop
DX×Y

((Dp1
∗M

D
⊗K )⊗ (pan

2 )−1F,O(X×Y )an)[dX ].

(8.2.1)

If we assume the non-characteristic condition:(
Ch(M )× T ∗Y Y

)
∩ Ch(K ) ⊂ T ∗X×Y (X × Y ),

Theorem 5.7.2 implies that

RHomtop
DX×Y

((Dp1
∗M

D
⊗K )⊗ (pan

2 )−1F,O(X×Y )an)

' RHomtop
DX×Y

(Dp1
∗M ⊗ (K ⊗ (pan

2 )−1F ),O(X×Y )an).
(8.2.2)

Here,K :=DRX×Y (K ) ∈ Db
Gan, C-c(C(X×Y )an). Then, again by Theorem 5.6.1,

we have

RHomtop
DX×Y

(Dp1
∗M ⊗ (K ⊗ (pan

2 )−1F ),O(X×Y )an)

' RHomtop
DX

(M ⊗R(pan
1 )!(K ⊗ (pan

2 )−1F ),OXan)
)
[−2dY ]

= RHomtop
DX

(M ⊗ (K ◦ F ),OXan

)
[−2dY ].

Combining this with (8.2.1) and (8.2.2), we obtain

RHomtop
DY

((M
D◦ K )⊗ F,OY an)

' RHomtop
DX

(M ⊗ (K ◦ F ),OXan)[dX − 2dY ].

Thus we obtain the following theorem.
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Theorem 8.2.1 (Integral transform formula). Let G be an affine alge-
braic group, and let GR be a Lie group with a Lie group morphism GR → Gan.
Let X be a projective G-manifold and Y a quasi-projective G-manifold. Let
M ∈ Db

coh(DX , G), K ∈ Db
G,hol(DX×Y ) and F ∈ Db

GR,ctb(CY ), If the non-
characteristic condition(

Ch(M )× T ∗Y Y
)
∩ Ch(K ) ⊂ T ∗X×Y (X × Y )(8.2.3)

is satisfied, then we have an isomorphism in Db(FNGR)

RHomtop
DY

((M
D◦ K )⊗ F,OY an)

' RHomtop
DX

(M ⊗ (DRX×Y (K ) ◦ F ),OXan)[dX − 2dY ].
(8.2.4)

Remark 8.2.2. If G acts transitively onX, then the non-characteristic condi-
tion (8.2.3) is always satisfied. Indeed, let µX : T ∗X → g∗, µY : T ∗Y → g∗ and
µX×Y : T ∗(X × Y ) → g∗ be the moment maps. Then we have µX×Y (ξ, η) =
µX(ξ) + µY (η) for ξ ∈ T ∗X and η ∈ T ∗Y . Since K ∈ Db

G,hol(DX), we have
Ch(K ) ⊂ µ−1

X×Y (0) (see [15]). Hence we have (T ∗X × T ∗Y Y ) ∩ Ch(K ) ⊂
µ−1

X (0)× T ∗Y Y . Since G acts transitively on X, we have µ−1
X (0) = T ∗XX.

Remark 8.2.3. Although we don’t repeat here, there is a twisted version of
Theorem 8.2.1.

9 Application to the representation theory

9.1 Notations

In this section, we shall apply the machinery developed in the earlier sections
to the representation theory of real semisimple Lie groups.

Let GR be a connected real semisimple Lie group with a finite center,
and let KR be a maximal compact subgroup of GR. Let gR and kR be the Lie
algebra of GR and KR, respectively. Let g and k be their complexifications. Let
K be the complexification of KR. Let G be a connected semisimple algebraic
group with the Lie algebra g, and assume that there is an injective morphism
GR → Gan of real Lie groups which induces the embedding gR ↪→ g.4

Thus we obtain the diagrams:

KR
� � //

� _

��

K� _

��
GR

� � // G

and kR
� � //

� _

��

k � _

��
gR

� � // g.

4 In this note, we assume that GR → G is injective. However, we can remove this
condition, by regarding G/K as an orbifold.



74 Masaki Kashiwara

Let us take an Iwasawa decomposition

GR = KR AR NR,

gR = kR ⊕ aR ⊕ nR.
(9.1.1)

Let a, n be the complexification of aR and nR. Let A and N be the connected
closed subgroups of G with Lie algebras a and n, respectively.

Let MR = ZKR(aR) and mR = ZkR(aR). Let M and m be the complexifi-
cation of MR and mR. Then we have M = ZK(A). Let P be the parabolic
subgroup of G with m⊕ a⊕ n as its Lie algebra, and PR = MRARNR ⊂ GR.

Let us fix a Cartan subalgebra t of g such that

t = C⊗R tR where tR = (t ∩mR)⊕ aR.(9.1.2)

Let T be the maximal torus of G with t as its Lie algebra.
We take a Borel subalgebra b of g containing t and n, and let B be the

Borel subgroup with b as its Lie algebra.
We have

K ∩ P = M and K ∩B = M ∩B, K ∩ T = M ∩ T,

and M/(M ∩B) ' P/B is the flag manifold for M .
Let ∆ be the root system of (g, t), and take the positive root system

∆+ = {α ∈ ∆ ; gα ⊂ b}. Let ∆k = {α ∈ ∆ ; gα ⊂ k} = {α ∈ ∆ ; gα ⊂ m} =
{α ∈ ∆ ; α|a = 0} be the set of compact roots, and set ∆+

k = ∆k ∩∆+. Let ρ
be the half sum of positive roots.

An element λ of t∗ is called integral if it can be lifted to a character of T .
We say that λ|k∩t is integral if it can be lifted to a character of K∩T = M∩T .

Let z(g) denote the center of the universal enveloping algebra U(g) of g.
Let χ : z(g)→ C[t∗] = S(t) be the ring morphism given by:

a− (χ(a))(λ) ∈ Ker(b λ−→ C)U(g) for any λ ∈ t∗ and a ∈ z(g).

It means that a ∈ z(g) acts on the lowest weight module with lowest weight
λ through the multiplication by the scalar (χ(a))(λ). For λ ∈ t∗, let

χλ : z(g)→ C

be the ring homomorphism given by χλ(a) := (χ(a))(λ). Note that

for λ, µ ∈ t∗, χλ = χµ if and only if w ◦λ = µ for some w ∈W .(9.1.3)

Here w ◦ λ = w(λ− ρ) + ρ is the shifted action of the Weyl group W . We set

Uλ(g) = U(g)/
(
U(g) Ker(χλ)

)
.

Then Uλ(g)-modules are nothing but g-modules with infinitesimal character
χλ.
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Let X be the flag manifold of G (the set of Borel subgroups of G).
Then X is a projective G-manifold and X ' G/B. For x ∈ X, we set
B(x) = {g ∈ G ; gx = x}, b(x) = Lie(B(x)) the Lie algebra of B(x), and
n(x) = [b(x), b(x)] the nilpotent radical of b(x). Let x0 ∈ X be the point of X
such that b(x0) = b. Then, for any x ∈ X, there exists a unique Lie algebra

homomorphism b(x)→ t which is equal to the composition b(x)
Ad(g)−−−−→ b→ t

for any g ∈ G such that gx = x0.
Let Xmin = G/P . Let

π : X → Xmin

be the canonical projection. We set xmin
0 = π(x0) = e mod P .

Let p̃ : G→ X be the G-equivariant projection such that p̃(e) = x0. Then
this is a principal B-bundle. For λ ∈ t∗ = (b/n)∗ = HomB(b,C), let DX,λ be
the ring of twisted differential operators on X with twist λ. Let τλ denote the
Gan-equivariant twisting data on Xan corresponding to λ (see §7.10, 7.12).

Note the following lemma (see [15] and Lemma 7.9.2).

Lemma 9.1.1. (i) Let H be a closed algebraic subgroup of G with a Lie
algebra h ⊂ g, Z an H-orbit in X and x ∈ Z. Then the category
ModH(DZ,λ) of H-equivariant DZ,λ-modules is equivalent to the category
of H ∩B(x)-modules V whose infinitesimal representation coincides with
h ∩ b(x)→ b(x)→ t

λ−→ C→ EndC(V ).
(ii) Let H be a closed real Lie subgroup of Gan with a Lie algebra h ⊂ g,

Z an H-orbit in Xan and x ∈ Z. Then the category ModH,τλ
(CZ) of

H-equivariant τλ-twisted sheaves on Z is equivalent to the category of
H ∩ B(x)-modules V whose infinitesimal representation coincides with
h ∩ b(x)→ b(x)→ t

−λ−−→ C→ EndC(V ).

Note that, in the situation of (i), the de Rham functor gives an equivalence

ModH(DZ,λ) ∼−−→ModHan,τ−λ
(CZan).

9.2 Beilinson-Bernstein Correspondence

Let us recall a result of Beilinson-Bernstein [1] on the correspondence of U(g)-
modules and D-modules on the flag manifold.

For α ∈ ∆, let α∨ ∈ t be the corresponding co-root.

Definition 9.2.1. Let λ ∈ t∗.

(i) We say that λ is regular if 〈α∨, λ〉 does not vanish for any α ∈ ∆+.
(ii) We say that a weight λ ∈ t∗ is integrally anti-dominant if 〈α∨, λ〉 6=

1, 2, 3, . . . for any α ∈ ∆+.
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Recall that p̃ : G→ X = G/B is the projection. For λ ∈ t∗ = HomB(b,C), we
have defined the twisting data τλ on Xan and the ring of twisted differential
operators DX,λ. We defined also OXan(λ). Recall that OXan(λ) is a twisted
DXan,λ-module, and it is an object of Mod τλ

(DXan,λ).
If λ is an integral weight, then the twisting data τλ is trivial and OXan(λ) is

the invertible OXan-module associated with the invertible OX -module OX(λ):

OX(λ) =
{
u ∈ p̃∗OG ; u(gb−1) = bλu(g) for any b ∈ B

}
.(9.2.1)

Here B 3 b 7→ bλ ∈ C∗ is the character of B corresponding to λ ∈ HomB(b,C).
Note that we have

DX,λ+µ = OX(µ)⊗DX,λ ⊗ OX(−µ)

for any λ ∈ t and any integral µ ∈ t.
(9.2.2)

If λ is an anti-dominant integral weight (i.e., 〈α∨, λ〉 ∈ Z≤0 for any α ∈
∆+), let V (λ) be the irreducible G-module with lowest weight λ. Then we
have

Γ (X;OX(λ)) ' V (λ).(9.2.3)

Here the isomorphism V (λ) ∼−−→Γ (X;OX(λ)) is given as follows. Let us fix a
highest weight vector u−λ of V (−λ) = V (λ)∗. Then, for any v ∈ V (λ), the
function 〈v, gu−λ〉 in g ∈ G is the corresponding global section of OX(λ).

The following theorem is due to Beilinson-Bernstein ([1]).

Theorem 9.2.2. Let λ be an element of t∗ ∼= HomB(b,C).

(i) We have

Hk(X;DX,λ) '

{
Uλ(g) for k = 0,
0 otherwise.

(ii) Assume that λ− ρ is integrally anti-dominant. Then we have
(a) for any quasi-coherent DX,λ-module M , we have

Hn(X;M ) = 0 for any n 6= 0,

(b) for any Uλ(g)-module M , we have an isomorphism

M ∼−−→Γ(X;DX,λ ⊗U(g) M),

namely, the diagram

Mod(Uλ(g))
DX,λ⊗U(g) • //

id **UUUUUUUUUUUUUUUU
Mod(DX,λ)

Γ(X; • )

��
Mod(Uλ(g))

(9.2.4)

quasi-commutes.
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(iii) Assume that λ− ρ is regular and integrally anti-dominant. Then

M ' DX,λ ⊗U(g) Γ (X;M ),

and we have an equivalence of categories

Mod(Uλ(g)) ' Mod(DX,λ).

9.3 Quasi-equivariant D-modules on the symmetric space

We set S = G/K. Let j : pt ↪→ S be the morphism given by the origin s0 ∈
S. By Proposition 3.1.5, j∗ : Mod(DS , G) ∼−−→Mod(g,K) is an equivalence of
categories. Since Db(DS , G) = Db(Mod(DS , G)) by the definition, j∗ induces
an equivalence

Lj∗ : Db(DS , G) ∼−−→Db(Mod(g,K)).(9.3.1)

Let
Ψ : Db(Mod(g,K)) ∼−−→Db(DS , G)

be its quasi-inverse.
Consider the diagram:

X × S
p1xxppppppp

p2 &&NNNNNNN

X S.

Set
M0 := DX,−λ ⊗OX

Ω⊗−1
X .

It is an object of Mod coh(DX,−λ, G).
For L ∈ Db

K, coh(DX,λ), set L0 = IndG
K(L ) ∈ Db

G,coh(DX×S,λ). Let us

calculate M0

D◦ L0 ∈ Db
coh(DS , G).

We have

M0

D◦ L0 = Dp2∗(Dp∗1M0

D
⊗L0)

' Rp2∗(DS←−X×S

L
⊗DX×S

(p∗1(DX,−λ ⊗Ω⊗−1
X )

L
⊗OX×S

L0)).

On the other hand, we have

DS←−X×S

L
⊗DX×S

(p∗1(DX,−λ ⊗Ω⊗−1
X )

L
⊗OX×S

L0)

' ΩX

L
⊗DX

(p∗1(DX,−λ ⊗Ω⊗−1
X )

L
⊗OX×S

L0)
' L0.

Hence we obtain
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M0

D◦ L0
∼= Rp2∗L0.(9.3.2)

It is an object of Db
coh(DS , G).

Let j̃ : X → X×S be the induced morphism (x 7→ (x, s0)). Then, we have

Lj∗Rp2∗L0 ' RΓ(X;Dj̃∗L0) ' RΓ(X;L ).

Thus we obtain the following proposition.

Proposition 9.3.1. The diagram

Db
K, coh(DX,λ)

(DX,−λ⊗Ω⊗−1
X )

D◦ IndG
K( • ) ++VVVVVVVVVVVVVVVVVVVV

RΓ(X; • ) // Db(Modf (g,K))

Ψ∼
��

Db
coh(DS , G)

quasi-commutes.

Proposition 9.3.2. For any λ ∈ t∗, any M ∈ Db
coh(DX,−λ, G), any L ∈

Db
K, coh(DX,λ) and any integer n,

Hn(M
D◦ IndG

K L ) ' Ψ(M)

for some Harish-Chandra module M .

Proof. We know that Hn(M
D◦ IndG

K L ) ' Ψ(M) for some M ∈ Modf (g,K).
Hence we need to show that M is z(g)-finite. Since M has a resolution whose
components are of the form DX,−λ⊗(Ω⊗−1

X ⊗OX(µ)⊗V ) for an integrable µ ∈
t∗ and a finite-dimensional G-module V , we may assume from the beginning
that M = DX,−λ ⊗

(
Ω⊗−1

X ⊗ OX(µ)
)
. In this case, we have by (9.2.2)

M '
(
OX(µ)⊗DX,−λ−µ ⊗ OX(−µ)

)
⊗
(
Ω⊗−1

X ⊗ OX(µ)
)

' OX(µ)
D
⊗(DX,−λ−µ ⊗Ω⊗−1

X ),

which implies that

Dp∗1M
D
⊗ IndG

K(L ) ' Dp∗1(DX,−λ−µ ⊗Ω⊗−1
X )

D
⊗Dp∗1OX(µ)

D
⊗ IndG

K(L )

' Dp∗1(DX,−λ−µ ⊗Ω⊗−1
X )

D
⊗ IndG

K(OX(µ)
D
⊗L ).

Hence, Proposition 9.3.1 implies

M
D◦ IndG

K(L ) ' (DX,−λ−µ ⊗Ω⊗−1
X )

D◦ IndG
K(OX(µ)

D
⊗L )

' Ψ
(
RΓ(X;OX(µ)

D
⊗L )

)
.

Since OX(µ)
D
⊗L ∈ Db

K, coh(DX,λ+µ), its cohomology Hn(X;OX(µ)
D
⊗L ) is

a Harish-Chandra module. Q.E.D.
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9.4 Matsuki correspondence

The following theorem is due to Matsuki ([22]).

Theorem 9.4.1. (i) There are only finitely many K-orbits in X and also
finitely many GR-orbits in Xan.

(ii) There is a one-to-one correspondence between the set of K-orbits in X
and the one of GR-orbits.

More precisely, a K-orbit E and a GR-orbit F correspond by the correspon-
dence above if and only if one of the following equivalent conditions are sat-
isfied:

(1) Ean ∩ F is a KR-orbit,
(2) Ean ∩ F is non-empty and compact.

Its sheaf-theoretic version is conjectured by the author [14] and proved by
Mirković-Uzawa-Vilonen [23]. Let SR = GR/KR be the Riemannian symmetric
space and set S = G/K. Then S is an affine algebraic manifold. The canonical
map i : SR ↪→ San is a closed embedding.

We have the functor

IndGan

Kan : Db
Kan,τλ

(CXan)→ Db
Gan,τλ

(C(X×S)an).(9.4.1)

We define the functor

Φ: Db
Kan,τλ

(CXan)→ Db
GR,τλ

(CXan)

by

Φ(F ) = IndGan

Kan(F ) ◦ i∗i!CSan [2dS ]

= R(pan
1 )!(IndGan

Kan(F )⊗ (pan
2 )−1i∗i

!CSan)[2dS ].

Here, pan
1 and pan

2 are the projections from Xan × San to Xan and San, re-
spectively. Note that i∗i!CSan is isomorphic to i∗CSR [−dS ] (once we give an
orientation of SR). Hence we have

Φ(F ) ' Rp1R!(IndGan

Kan(F )|X×SR)[dS ] ' Rp1R!(IndGR
KR

(F ))[dS ],(9.4.2)

where p1R : Xan × SR → Xan is the projection.

Theorem 9.4.2 ([23]). The functor Φ induces equivalences of triangulated
categories:

Φ :
Db

Kan,τλ
(CXan) ∼−−→ Db

GR,τλ
(CXan)⋃ ⋃

Db
Kan,τλ,C-c(CXan) ∼−−→ Db

GR,τλ,R-c(CXan) .
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We call Φ the Matsuki correspondence.
For some equivariant sheaves, the Matsuki correspondence is given as fol-

lows.

Proposition 9.4.3 ([23]). Let iZ : Z ↪→ X be a K-orbit in X and let
iZa : Za ↪→ Xan be the GR-orbit corresponding to Z.

(i) The restriction functors induce equivalences of categories:

ModKan,τλ
(CZan) ∼−−→ModKR,τλ

(CZan∩Za) ∼←−−ModGR,τλ
(CZa).

(ii) Assume that F ∈ ModKan,τλ
(CZan) and F a ∈ ModGR,τλ

(CZa) corre-
spond by the equivalence above. Then we have

Φ(R(ianZ )∗F ) ' R(iZa)!F a[2 codimX Z].

The K-orbit Kx0 ⊂ X is a unique open K-orbit in X and GRx0 ⊂ Xan is
a unique closed GR-orbit in Xan. Set XR

min = GR/PR. Then XR
min = GRx

min
0 =

KRx
min
0 and it is a unique closed GR-orbit in Xan

min. We have

(Kx0)an = (π−1(Kxmin
0 ))an ⊃ GRx0 = KRx0 = (πan)−1(XR

min).(9.4.3)

Let j : Kx0 ↪→ X be the open embedding and ja : GRx0 ↪→ Xan the
closed embedding. Then as a particular case of Proposition 9.4.3, we have an
isomorphism:

Φ(Rjan∗ F ) ' ja
∗ (F |GRx0)(9.4.4)

for any Kan-equivariant local system F on Kanx0.

9.5 Construction of representations

For M ∈ Modf (g,K), let Hom(g,KR)(M,C∞(GR)) be the set of homomor-
phisms from M to C∞(GR) which commute with the actions of g and KR.
Here, g and KR act on C∞(GR) through the right GR-action on GR. Then GR
acts on Hom(g,KR)(M,C∞(GR)) through the left GR-action on GR.

Let us write by C∞(GR)KR-fini the set of KR-finite vectors of C∞(GR).
Then C∞(GR)KR-fini is a (g,K)-module and

Hom(g,KR)(M,C∞(GR)) ' Hom(g,K)(M,C∞(GR)KR-fini).

Note that, in our context, KR is connected and hence the g-invariance implies
the KR-invariance. Therefore, we have

Hom(g,KR)(M,C∞(GR)) ' Homg(M,C∞(GR)) .

We endow Hom(g,KR)(M,C∞(GR)) with the Fréchet nuclear topology as in
Lemma 5.3.1.
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In any way, Hom(g,KR)(M,C∞(GR)) has a Fréchet nuclear GR-module
structure. We denote it by Homtop

(g,KR)(M,C∞(GR)). Let us denote by

RHomtop
(g,KR)( • ,C∞(GR)) : Db(Modf (g,K))→ Db(FNGR)

its right derived functor.5 Note that Modf (g,K) has enough projectives,
and any M can be represented by a complex P of projective objects in
Modf (g,K), and then RHomtop

(g,KR)(M,C∞(GR)) is represented by a complex

Homtop
(g,KR)(P,C

∞(GR)) of Fréchet nuclear GR-modules. Note that for a finite-
dimensional K-module V , U(g) ⊗k V is a projective object of Modf (g,K),
and Homtop

(g,KR)(U(g)⊗k V,C∞(GR)) ' HomKR(V,C∞(GR)).

Since we have Homtop
(g,KR)(M,C∞(GR)) ' Homtop

DS
(Ψ(M),C∞SR

) for anyM ∈
Modf (g,K), their right derived functors are isomorphic:

RHomtop
(g,KR)(M,C∞(GR)) ' RHomtop

DS
(Ψ(M),C∞SR

)

for any M ∈ Db(Modf (g,K)).

Lemma 9.5.1. Let M be a Harish-Chandra module. Then Ψ(M) is an elliptic
DS-module.

Proof. Let ∆ be a Casimir element of U(g). Then there exists a non-zero
polynomial a(t) such that a(∆)M = 0. Hence the characteristic variety
Ch(Ψ(M)) ⊂ T ∗S of Ψ(M) is contained in the zero locus of the principal
symbol of LS(∆). Then the result follows from the well-known fact that the
Laplacian LS(∆)|SR is an elliptic differential operator on SR. Q.E.D.

If the cohomologies ofM ∈ Db(Modf (g,K)) are Harish-Chandra modules,
then Ψ(M) is elliptic, and Proposition 6.3.3 implies

RHomtop
(g,KR)(M,C∞(GR)) ∼−−→RHomtop

DS
(Ψ(M)⊗ i∗i!CSan ,OSan).(9.5.1)

There is a dual notion. ForM ∈ Modf (g,K), let Γc(GR;D istGR)⊗(g,KR)M
be the quotient of Γc(GR;D istGR) ⊗C M by the linear subspace spanned by
vectors (RGR(A)u)⊗v+u⊗(Av) and (ku)⊗(kv)−u⊗v (u ∈ Γc(GR;D istGR),
v ∈ M , A ∈ g, k ∈ KR). Here, we consider it as a vector space (not consid-
ering the topology). In our case, KR is connected, and KR acts trivially on
Γc(GR;D istGR)⊗U(k) M . Therefore, we have

Γc(GR;D istGR)⊗(g,KR) M ' Γc(GR;D istGR)⊗U(g) M.

It is a right exact functor from Modf (g,K) to the category Mod(C) of
C-vector spaces. Let
5 We may write here Homtop

U(g)(M, C∞(GR)), but we use this notation in order to

emphasize that it is calculated not on Mod(U(g)) but on Modf (g, K).
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Γc(GR;D istGR)
L
⊗(g,KR) • : Db(Modf (g,K))→ Db(C)(9.5.2)

be its left derived functor.
For any M ∈ Db(Modf (g,K)), we can take a quasi-isomorphism P • →M

such that each Pn has a form U(g)⊗k V
n for a finite-dimensional K-module

V n. Then, we have

Γc(GR;D istGR)⊗(g,KR) P
n ' Γc(GR;D istGR)⊗U(k) V

n

' (Γc(GR;D istGR)⊗C V
n)KR ,

where the superscript KR means the set of KR-invariant vectors. The KR-
module structure on Γc(GR;D istGR) is by the right action of KR on GR. By
the left action of GR on GR, GR acts on Γc(GR;D istGR) ⊗(g,KR) P

n. Hence
it belongs to DFNGR . The object Γc(GR;D istGR)⊗(g,KR) P

• ∈ Db(DFNGR)
does not depend on the choice of a quasi-isomorphism P • → M , and we

denote it by Γc(GR;D istGR)
L
⊗(g,KR)M . Thus we have constructed a functor:

Γc(GR;D istGR)
L
⊗(g,KR) • : Db(Modf (g,K))→ Db(DFNGR) .(9.5.3)

If we forget the topology and the equivariance, (9.5.3) reduces to (9.5.2).
We have

Γc(GR;D istGR)
L
⊗(g,KR)M '

(
RHomtop

(g,KR)(M,C∞(GR))
)∗

(9.5.4)

in Db(DFNGR). (Here, we fix an invariant measure on GR.)

In general, RHomtop
(g,KR)(M,C∞(GR)) and Γc(GR;D istGR)

L
⊗(g,KR)M are

not strict (see Theorems 10.4.1 and 10.4.2).

9.6 Integral transformation formula

Since X has finitely many K-orbits, the Riemann-Hilbert correspondence
(Theorem 7.14.1) implies the following theorem.

Theorem 9.6.1. The de Rham functor gives an equivalence of categories:

DRX : Db
K, coh(DX,λ) ∼−−→Db

Kan,τ−λ,C-c(CXan).(9.6.1)

Recall that the de Rham functor is defined by

DRX : M 7→ RH om DXan,λ
(OXan(λ),M an),

where M an = DXan,λ ⊗DX,λ
M . Similarly to (9.4.1), we have the equivalence

of categories:

IndG
K : Db

K,coh(DX,λ) ∼−−→Db
G,coh(DX×S,λ)(9.6.2)
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and a quasi-commutative diagram

Db
K,coh(DX,λ)

IndG
K //

DRX

��

Db
G,coh(DX×S,λ)

DRX×S

��
Db

Kan,τ−λ,C-c(CXan)
IndGan

Kan // Db
Gan,τ−λ,C-c(C(X×S)an).

Consider the diagram:

X × S
p1

||xx
xx

xx
xx

x
p2

""EE
EE

EE
EE

E

X S SR.? _

i
oo

Let us take L ∈ Db
K,coh(DX,λ) and set L0 = IndG

K L ∈ Db
G(DX×S,λ).

Set L = DRX(L ) :=RH om DXan,λ
(OXan(λ),L an

0 ) ∈ Db
Kan,τ−λ,C-c(CXan)

and L0 = IndGan

Kan L = DRX×S(L0) ∈ Db
Gan,τ−λ,C-c(C(X×S)an). Let M ∈

Db
coh(DX,−λ, G).

Then Theorem 8.2.1 (see Remark 8.2.2) immediately implies the following
result.

Proposition 9.6.2. For M ∈ Db
coh(DX,−λ, G) and L ∈ Db

K,coh(DX,λ) and
L = DRX(L ) ∈ Db

Kan,τ−λ,C-c(CXan), we have

RHomtop
DS

(
(M

D◦ IndG
K(L ))⊗ i∗i!CSan ,OSan

)
' RHomtop

DX,−λ
(M ⊗ Φ(L),OXan(−λ))[dX ]

(9.6.3)

in Db(FNGR).

Let us recall the equivalence Lj∗ : Db
coh(DS , G) ∼−−→Db(Modf (g,K)) in

(9.3.1). Since Lj∗(M
D◦ IndG

K(L )) has Harish-Chandra modules as cohomolo-
gies by Proposition 9.3.2, the isomorphism (9.5.1) reads as

RHomtop
DS

(M
D◦ IndG

K(L )⊗ i∗i!CSan ,OSan)

' RHomtop
(g,KR)(Lj

∗(M
D◦ IndG

K(L )),C∞(GR))
(9.6.4)

in Db(FNGR). Thus we obtain the following proposition.

Proposition 9.6.3. For M ∈ Db
coh(DX,−λ, G) and L ∈ Db

K, coh(DX,λ), we
have

RHomtop
(g,KR)

(
Lj∗(M

D◦ IndG
K L ),C∞(GR)

)
' RHomtop

DX,−λ
(M ⊗ Φ(DRX(L )),OXan(−λ))[dX ].

(9.6.5)
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Now let us take as M the quasi-G-equivariant DX,−λ-module

M0 := DX,−λ ⊗Ω⊗−1
X .

Then we have by Proposition 9.3.1

Lj∗(M0

D◦ IndG
K(L )) ' RΓ(X;L ).

On the other hand, we have

RHomtop
DX,−λ

(M0 ⊗ Φ(L),OXan(−λ))

' RHomtop
C (Φ(L), ΩXan ⊗OXan OXan(−λ))

' RHomtop
C (Φ(L),OXan(−λ+ 2ρ)).

Here the last isomorphism follows from ΩX ' OX(2ρ).
Thus we obtain the following theorem.

Theorem 9.6.4. For L ∈ Db
K(DX,λ), we have an isomorphism

RHomtop
(g,KR)(RΓ(X;L ),C∞(GR))

' RHomtop
C (Φ(DRX(L )),OXan(−λ+ 2ρ))[dX ]

(9.6.6)

in Db(FNGR).

Taking their dual, we obtain the following theorem.

Theorem 9.6.5. For L ∈ Db
K(DX,λ), we have an isomorphism

Γc(GR;D istGR)
L
⊗(g,KR)RΓ(X;L )

' RΓtop
c (Xan; Φ(DRX(L ))⊗ OXan(λ))

(9.6.7)

in Db(DFNGR).

These results are conjectured in [14, Conjecture 3].

10 Vanishing Theorems

10.1 Preliminary

In this section, let us show that, for any Harish-Chandra moduleM , the object
RHomtop

(g,KR)(M,C∞(GR)) of Db(FNGR) is strict and

Extn
(g,KR)(M,C∞(GR)) :=Hn

(
RHomtop

(g,KR)(M,C∞(GR))
)

= 0 for n 6= 0.
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In order to prove this, we start by the calculation of the both sides of
(9.6.6) for a K-equivariant holonomic DX,λ-module L such that

L ∼−−→ j∗j
−1L ,(10.1.1)

where j : Kx0 ↪→ X is the open embedding of the open K-orbit Kx0 into X.
There exists a cartesian product

Kx0
� � j //

��
�

X

π

��
Kxmin

0
� � // Xmin.

Since Kxmin
0
∼= K/M is an affine variety, Kxmin

0 → Xmin is an affine mor-
phism, and hence j : Kx0 ↪→ X is an affine morphism. Therefore

Dnj∗j
−1M = 0 for n 6= 0 and an arbitrary M ∈ Mod(DX).(10.1.2)

Hence by the hypothesis (10.1.1), we have

L ∼−−→Dj∗j−1L .(10.1.3)

Let V be the stalk L (x0) regarded as a (K ∩ B)-module. Then its in-
finitesimal action coincides with k ∩ b → b

λ−→ C → EndC(V ) by Lemma
9.1.1.

Hence, if L 6= 0, then we have

λ|t∩k is integral, in particular 〈α∨, λ〉 ∈ Z for any α ∈ ∆+
k .(10.1.4)

Recall that we say λ|t∩k is integral if λ|t∩k is the differential of a character of
K ∩ T = M ∩ T .

Conversely, for a (K ∩ B)-module V whose infinitesimal action coincides
with k ∩ b → b

λ−→ C → EndC(V ), there exists a K-equivariant DX,λ-module
L such that it satisfies (10.1.1) and L (x0) ' V (see by Lemma 9.1.1).

10.2 Calculation (I)

Let L be a K-equivariant coherent DX,λ-module satisfying (10.1.1).
Recall that π : X ' G/B → Xmin = G/P is a canonical morphism. Let

s : X0 := π−1(xmin
0 )→ X be the embedding. Then X0 ' P/B 'M/(M ∩B)

is the flag manifold of M . Note that L |Kx0 is a locally free OKx0-module
(Kx0 = π−1(Kxmin

0 ) is an open subset of X). Hence we have Ds∗L ' s∗L .
Since X0 is the flag manifold of M and s∗L is a DX0,λ-module, we have by
Theorem 9.2.2

Hn(X0; s∗L ) = 0 for n 6= 0(10.2.1)
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under the condition:

λ|t∩k is integral and 〈α∨, λ〉 ∈ Z≤0 for α ∈ ∆+
k ,(10.2.2)

Hence Rnπ∗L
∣∣
Kxmin

0
= 0 for n 6= 0, and we have

Hn(X;L ) = Hn(Kx0;L ) = Hn(Kxmin
0 ;π∗(L )).(10.2.3)

Since Kxmin
0
∼= K/M is an affine variety, we obtain

Hn(X;L ) = 0 for n 6= 0
under the conditions (10.1.1) and (10.2.2).(10.2.4)

Now let us calculate Γ(Kx0;L ). The sheaf L is a K-equivariant vector
bundle on Kx0. We have Kx0 = K/(K ∩B). Hence L is determined by the
isotropy representation of K ∩ B on the stalk V := L (x0) of L at x0. We
have as a K-module

Γ(X;L ) = Γ(Kx0;L ) ∼= (OK(K)⊗ V )K∩B .(10.2.5)

Here the action of K∩B on OK(K)⊗V is the diagonal action where the action
on OK(K) is through the right multiplication of K∩B on K. The superscript
K ∩B means the space of (K ∩B)-invariant vectors. The K-module structure
on (OK(K)⊗ V )K∩B is through the left K-action on K.

Thus we obtain the following proposition.

Proposition 10.2.1. Assume that λ satisfies (10.2.2) and a K-equivariant
holonomic DX,λ-module L satisfies (10.1.1), and set V = L (x0). Then we
have

Hn(X;L ) ∼=

{
(OK(K)⊗ V )K∩B for n = 0,
0 for n 6= 0

(10.2.6)

as a K-module.

For a (g,K)-module M , we shall calculate Hom(g,K)(M,Γ(X;L )). We
have the isomorphism HomK(M,Γ(X;L )) ∼−−→HomK∩B(M,V ) by the evalu-
ation map ψ : Γ(X;L )→ L (x0) = V . Since L is a DX,λ-module, we have

ψ(At) = 〈λ,A〉ψ(t) for any A ∈ b and t ∈ Γ(X;L ).(10.2.7)

Indeed, LX(A)− 〈λ,A〉 ∈ mx0DX,λ for any A ∈ b, where mx0 is the maximal
ideal of (OX)x0 .

Lemma 10.2.2. For any (g,K)-module M , and L ∈ ModK(DX,λ) satisfying
(10.1.1), we have

Hom(g,K)(M,Γ(X;L ))
∼=
{
f ∈ HomK∩B(M,L (x0)) ;

f(As) = 〈λ,A〉f(s) for any A ∈ b and s ∈M
}
.

(10.2.8)



Equivariant derived category and representation of semisimple Lie groups 87

Proof. Set V = L (x0).
For h ∈ Hom(g,K)(M,Γ(X;L )), let f ∈ HomK∩B(M,V ) be the element

ψ◦h. Since h is g-linear, (10.2.7) implies that f satisfies the condition: f(As) =
ψ(h(As)) = ψ(Ah(s)) = 〈λ,A〉ψ(h(s)) = 〈λ,A〉f(s) for any A ∈ b and s ∈M .

Conversely, for f ∈ HomK∩B(M,V ) such that f(As) = 〈λ,A〉f(s) for
A ∈ b and s ∈M , let h ∈ HomK(M,Γ(X;L )) be the corresponding element:
ψ(h(s)) = f(s).

Then, we obtain

h(As) = Ah(s) at x = x0 for any A ∈ g.(10.2.9)

Indeed, we have g = k + b. The equation (10.2.9) holds for A ∈ k by the
K-equivariance of h, and also for A ∈ b because

f(As) = 〈λ,A〉f(s) = 〈λ,A〉ψ(h(s)) = ψ(Ah(s)).

Since h is K-equivariant, h(As) = Ah(s) holds at any point of Kx0. There-
fore we have h(As) = Ah(s). Q.E.D.

10.3 Calculation (II)

Let L ∈ ModK, coh(DX,λ), and set L = DRX(L ) ∈ Db
Kan,τ−λ

(CXan). Now,
we shall calculate RHomtop

C (Φ(L),OXan(−λ + 2ρ))[dX ], the right-hand side
of (9.6.6), under the conditions (10.1.1) and (10.2.2). We do it forgetting the
topology and the equivariance.

By the assumption (10.2.2), we can decompose λ = λ1 + λ0 where λ1

is integral and λ0|k∩t = 0. Then λ0 may be regarded as a P -invariant map
Lie(P ) = m⊕a⊕n→ C. Hence, we can consider the twisting data τλ0,Xan

min
on

Xan
min. Then, the twisting data τλ0 on Xan is isomorphic to π∗τλ0,Xan

min
. Since

the twisting data τλ1 is trivial, we have τλ ∼= π∗τλ0,Xan
min

.
Since L ' Dj∗j−1L , we have L ' Rj∗j−1L. Hence, (9.4.4) implies that

Φ(L) = ja
∗ (L|GRx0).(10.3.1)

Here, ja : GRx0 ↪→ X is the closed embedding. We can regard L|GRx0 as a
GR-equivariant (π∗τ−λ0,Xan

min
)-twisted local system

Then there exists a GR-equivariant (τ−λ0,Xan
min

)-twisted local system L̃ on
XR

min such that L|GRx0 ' (πan)−1L̃, because the fiber of πan is simply con-
nected.

Hence, we have

RHomC (Φ(L),OXan(−λ+ 2ρ)) [dX ]

' RHomC

(
(πan)−1L̃,OXan(−λ+ 2ρ)

)
[dX ]

' RHomC

(
L̃,R(πan)∗OXan(−λ+ 2ρ)

)
[dX ].
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On the other hand, we have

R(πan)∗OXan(−λ+ 2ρ) ' OXan
min

(−λ0)⊗R(πan)∗OXan(−λ1 + 2ρ),

and we have, by the Serre-Grothendieck duality,

Rπ∗OX(−λ1 + 2ρ)[dX ] ' Rπ∗RH om OX
(OX(λ1), ΩX)[dX ]

' RH om OXmin
(Rπ∗OX(λ1), ΩXmin)[dXmin ].

Since λ1|k∩t = λ|k∩t is anti-dominant, Rπ∗OX(λ1) is concentrated at degree
0 by Theorem 9.2.2 (ii), and V = π∗OX(λ1) is the G-equivariant locally free
OXmin -module associated with the representation

P →MA→ Aut(Vλ1),

where Vλ1 is the irreducible (MA)-module with lowest weight λ1 (see (9.2.3)).
Thus we obtain

RHomC(Φ(L),OXan(−λ+ 2ρ))[dX ]

' RHomOXmin
(Rπ∗OX(λ1)⊗ OXan

min
(λ0)⊗ L̃, ΩXan

min
)[dXmin ]

' RHomOXan
min

(Van ⊗ OXan
min

(λ0)⊗ L̃, ΩXan
min

)[dXmin ].

On the other hand, since L̃ is supported on XR
min,

RH om C(L̃,OXan
min

) [dXmin ] ' RH om C(L̃,RΓXR
min

(OXan
min

))[dXmin ]

' RH om C(L̃,BXR
min
⊗ orXR

min
).

Here, orXR
min

is the orientation sheaf of XR
min, and BXR

min
= orXR

min
⊗

RH om C(CXR
min
,OXan

min
)[dXmin ] is the sheaf of hyperfunctions. Thus we ob-

tain

RHomC
(
Φ(L),OXan(−λ+ 2ρ)

)
[dX ]

' RHomOXmin
(V ⊗Ω⊗−1

Xmin
⊗ OXan

min
(λ0)⊗ L̃⊗ orXR

min
,BXR

min
).

Note that OXan
min

(λ0) is a τλ0,Xan
min

-twisted sheaf and L̃ is a τ−λ0,Xan
min

-twisted
sheaf. Hence OXan

min
(λ0)⊗ L̃ is a (non-twisted) locally free OXan

min
|XR

min
-module.

Hence, so is Van ⊗Ω⊗−1
Xmin

⊗ OXan
min

(λ0)⊗ L̃⊗ orXR
min

. Since BXR
min

is a flabby
sheaf, we have

Hn
(
RHomOXan

min
(Van⊗Ω⊗−1

Xmin
⊗OXan

min
(λ0)⊗L̃⊗orXR

min
,BXR

min
)
)

= 0 for n 6= 0.

Hence, we obtain

Hn
(
RHomC(Φ(L),OXan(−λ+ 2ρ)[dX ])

)
= 0 for n 6= 0.
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Proposition 10.3.1. Assume that λ ∈ t∗ satisfies (10.2.2), and let L be a
K-equivariant DX,λ-module satisfying (10.1.1). Then we have

(i) RHomtop
(g,KR)(Γ(X;L ),C∞(GR)) ∈ Db(FNGR) is strict, and

(ii) Hn
(
RHomtop

(g,KR)(Γ(X;L ),C∞(GR))
)

= 0 for n 6= 0.

Proof. Set M = Γ(X;L ). By (9.6.6), we have

RHomtop
(g,KR)(M,C∞(GR)) ' RHomtop

C
(
Φ(L),OXan(−λ+ 2ρ)[dX ]

)
.

Hence, forgetting the topology and the equivariance, the cohomology groups of
RHomtop

(g,KR)(M,C∞(GR)) are concentrated at degree 0. On the other hand,

RHomtop
(g,KR)(M,C∞(GR)) is represented by a complex in FNGR whose neg-

ative components vanish. Hence it is a strict complex. Q.E.D.

10.4 Vanishing theorem

By using the result of the preceding paragraph, we shall prove the following
statement.

Theorem 10.4.1. Let N be a Harish-Chandra module. Then we have

(i) RHomtop
(g,KR)(N,C

∞(GR)) ∈ Db(FNGR) is strict,

(ii) Hn(RHomtop
(g,KR)(N,C

∞(GR))) = 0 for n 6= 0.

Proof. Since RHomtop
(g,KR)(N,C

∞(GR)) is represented by a complex in FNGR

whose negative components vanish, it is enough to show that, forgetting topol-
ogy,

Extn
(g,KR)(N,C

∞(GR)) = 0 for n 6= 0.(10.4.1)

We shall prove this by the descending induction on n. If n � 0, this is
obvious because the global dimension of Mod(g,K) is finite.

We may assume that N is simple without the loss of generality.
By [2, 5], N/ñN 6= 0, where ñ = [b, b] is the nilpotent radical of b. Since the

center z(g) acts by scaler on N , N/ñN is U(t)-finite. Hence there exists a sur-
jective (t, T ∩K)-linear homomorphism N/ñN � V for some one-dimensional
(t, T ∩K)-module V . Let λ ∈ t∗ be the character of V . Since S/(k∩ ñ)S → V is
a surjective homomorphism for some irreducible M -submodule S of N , λ|k∩t

is the lowest weight of S, and hence λ satisfies (10.2.2).
Let us take aK-equivariant (DX,λ)|Kx0- module L ′ such that L ′(x0) ∼= V

as (B ∩K)-modules, and set L = Dj∗L ′.
Then by Lemma 10.2.2, Hom(g,K)(N,Γ(X;L )) contains a non-zero ele-

ment. Thus we obtain an exact sequence of (g,K)-modules

0→ N →M →M ′ → 0 with M = Γ(X;L ).
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This gives an exact sequence

Extn
(g,KR)(M,C∞(GR))→ Extn

(g,KR)(N,C
∞(GR))

→ Extn+1
(g,KR)(M

′,C∞(GR)),

in which the first term vanishes for n > 0 by Proposition 10.3.1 and the last
term vanishes by the induction hypothesis. Thus we obtain the desired result.

Q.E.D.

By duality, we obtain the following proposition.

Theorem 10.4.2. Let N be a Harish-Chandra module. Then we have

(i) Γc(GR;DistGR)
L
⊗(g,KR)N ∈ Db(DFNGR) is strict,

(ii) Hn(Γc(GR;DistGR)
L
⊗(g,KR)N) = 0 for n 6= 0.

Recall that the maximal globalization functor MG: HC(g,K)→ FNGR is
given by

MG(M) = H0
(
RHomtop

(g,KR)(M
∗,C∞(GR))

)
and the minimal globalization functor mg: HC(g,K)→ DFNGR is given by

mg(M) = H0
(
Γc(GR;DistGR)

L
⊗(g,KR)M

)
.

We denote by MGGR (resp. mgGR
) the subcategory of FNGR (resp.

DFNGR) consisting of objects isomorphic to MG(M) (resp. mg(M)) for a
Harish-Chandra module M (see § 1.1). Then both MGGR and mgGR

are equiv-
alent to the category HC(g,K) of Harish-Chandra modules.

The above theorem together with Theorem 10.4.1 shows the following
result.

Theorem 10.4.3. (i) The functor M 7→ MG(M) (resp. M 7→ mg(M)) is
an exact functor from the category HC(g,K) of Harish-Chandra modules
to FNGR (resp. DFNGR).

(ii) Any morphism in MGGR or mgGR
is strict in FNGR or DFNGR (i.e.,

with a closed range).
(iii) Any GR-invariant closed subspace of E in MGGR (resp. mgGR

) belongs
to MGGR (resp. mgGR

).
(iv) MGGR is closed by extensions in FNGR , namely, if 0 → E′ → E →

E′′ → 0 is a strict exact sequence in FNGR , and E′ and E′′ belong to
MGGR , then so does E. Similar statement holds for mgGR

.

Here the exactness in (i) means that they send the short exact sequences to
strictly exact sequences.
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Proof. Let us only show the statements on the maximal globalization.
(i) follows immediately from Theorem 10.4.1.
(ii) Let M , M ′ be Harish-Chandra modules, and let u : MG(M)→ MG(M ′)
be a morphism in FNGR . Then

ψ := HC(u) : M ' HC(MG(M))→ HC(MG(M ′)) 'M ′

is a morphism in HC(g,K) and MG(ψ) = u. Let I be the image of ψ, Then
MG(M) → MG(I) is surjective and MG(I) is a closed subspace of MG(M ′)
by (i).
(iii) Let M be a Harish-Chandra module and E a GR-invariant closed sub-
space of MG(M). Then N := HC(E) ⊂ M is a Harish-Chandra module and
MG(N) is a closed subspace of MG(M) by (ii), and it contains N as a dense
subspace. Since E is also the closure of N , E = MG(N).
(iv) We have an exact sequence 0 → HC(E′) → HC(E) → HC(E′′) → 0.
Since HC(E′) and HC(E′′) are Harish-Chandra modules, so is HC(E). Hence
we have a commutative diagram with strictly exact rows:

0 // E′ //

��

E //

��

E′′ //

��

0

0 // MG(HC(E′)) // MG(HC(E)) // MG(HC(E′′)) // 0.

Since the left and right vertical arrows are isomorphisms, the middle vertical
arrow is also an isomorphism. Q.E.D.

Let us denote by Db
MG(FNGR) the full subcategory of Db(FNGR) consist-

ing of E such that E is strict and the cohomologies of E belong to MGGR .
Similarly, we define Db

mg(DFNGR). Then the following result follows immedi-
ately from the preceding theorem and Lemma 2.3.1.

Corollary 10.4.4. The category Db
MG(FNGR) is a triangulated full subcate-

gory of Db(FNGR), namely, it is closed by the translation functors, and closed
by distinguished triangles (if E′ → E → E′′ → E′[1] is a distinguished triangle
in Db(FNGR) and E′ and E belong to Db

MG(FNGR), then so does E′′).

This corollary together with Theorem 10.4.1 implies the following corollary.

Corollary 10.4.5. If M ∈ Db(Modf (g,K)) has Harish-Chandra modules as
cohomologies, then RHomtop

(g,KR)(M,C∞(GR)) belongs to Db
MG(FNGR).

Hence we obtain the following theorem.

Theorem 10.4.6. Let λ ∈ t∗, K ∈ Db
GR,τ−λ,R-c(CX) and M ∈ Db

coh(DX,λ, G).
Then we have

(i) RHomtop
DX,λ

(M ⊗K,OXan(λ)) belongs to Db
MG(FNGR).

(ii) RΓc

(
Xan;K ⊗ΩXan(−λ)

L
⊗DX,λ

M
)

belongs to Db
mg(DFNGR).
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Proof. Since (ii) is the dual statement of (i), it is enough to prove (i). By
Matsuki correspondence (Theorem 9.4.2), there exists L ∈ Db

Kan,τ−λ,C-c(CXan)
such that K ' Φ(L). By Theorem 9.6.1, there exists L ∈ Db

K, coh(DX,λ) such
that DRX(L ) ' L. Then Proposition 9.6.3 implies

RHomtop
DX,λ

(M ⊗K,OXan(λ))

' RHomtop
(g,KR)(Lj

∗(M
D◦ IndG

K L ),C∞(SR))[−dX ].

Then the result follows from Corollary 10.4.5 and Proposition 9.3.2. Q.E.D.

Let us illustrate Theorem 10.4.6 in the case M = DX,λ and K is a twisted
GR-equivariant sheaf supported on a GR-orbit Z of Xan.

Let us take a point x ∈ Z. Let V be a finite-dimensional GR∩B(x)-module
whose differential coincides with gR ∩ b(x)→ b(x) λ−→ C→ EndC(V ).

Then the Cauchy-Riemann equations give a complex(
B(GR)⊗ V ⊗

•∧
n(x)

)GR∩B(x)

.(10.4.2)

Then its cohomology groups belong to MGGR .
Indeed, if F is the τλ-twisted local system on Z associated with V ∗ (see

Lemma 9.1.1), then (10.4.2) is isomorphic to RHomtop
DX,λ

(M ⊗ i!F,OXan(λ))
(up to a shift). Here i : Z → Xan is the embedding,
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22. T. Matsuki, Orbits on affine symmetric spaces under the action of parabolic
subgroups, Hiroshima Math., J., 12 (1982), 307–320.
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