Equivariant derived category and
representation of real semisimple Lie groups

Masaki Kashiwara

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502,
Japan

1 Introduction ...... ... .. .. .. . 1
2  Derived categories of quasi-abelian categories ............. 16
3 Quasi-equivariant D-modules . ............................. 21
4  Equivariant derived category .......... ... ... .. .. ... 39
5 Holomorphic solution spaces ................... ... ... ... 46
6  Whitney functor ...... ... .. .. 58
7 Twisted Sheaves ........ .. ... .. .. . 61
8 Integral transforms ................ ... ... .. ... . ... ..., 71
9 Application to the representation theory .................. 73
10 Vanishing Theorems ............ . .. .. .. .. . . .. 84
References. . ... ... ... . 92

1 Introduction

This note is based on five lectures on the geometry of flag manifolds and the
representation theory of real semisimple Lie groups, delivered at the CIME
summer school “Representation theory and Complex Analysis”, June 10-17,
2004, Venezia.

The study of the relation of the geometry of flag manifolds and the repre-
sentation theory of complex algebraic groups has a long history. However, it
is rather recent that we realize the close relation between the representation
theory of real semisimple Lie groups and the geometry of the flag manifold
and its cotangent bundle. In these relations, there are two facets, complex
geometry and real geometry. The Matsuki correspondence is an example: it
is a correspondence between the orbits of the real semisimple group on the
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flag manifold and the orbits of the complexification of its maximal compact
subgroup.

Among these relations, we focus on the diagram below.

Real World Complex World

Representations of Gr Harish-Chandra ’ Harish-Chandra modules ‘
Correspondence

B-B correspondence

’ (Dx, K)-modules ‘

Riemann-Hilbert correspondence

A Matsuki —
GRr-equivariant sheaves atsukl ’ K-equivariant sheaves ‘

correspondence

Fig. 1. Correspondences

The purpose of this note is to explain this diagram.

In Introduction, we give the overview of this diagram, and we will explain
more details in the subsequent sections. In order to simplify the arguments,
we restrict ourselves to the case of the trivial infinitesimal character in Intro-
duction. In order to treat the general case, we need the “twisting” of sheaves
and the ring of differential operators. For them, see the subsequent sections.

Considerable parts of this note are a joint work with W. Schmid, and they
are announced in [21].

Acknowledgement. The author would like to thank Andrea D’Agnolo for the orga-
nization of Summer School and his help during the preparation of this note. He also
thanks Kyo Nishiyama, Toshiyuki Kobayashi and Akira Kono for valuable advises.

1.1 Harish-Chandra correspondence

Let Gr be a connected real semisimple Lie group with a finite center, and Ky
a maximal compact subgroup of Gr. Let gr and g be the Lie algebras of Gg
and Kpg, respectively. Let g and £ be their complexifications. Let K be the
complexification of Kp.

We consider a representation of Gr. Here, it means a complete locally
convex topological space E with a continuous action of Gg. A vector v in F
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is called Kg-finite if v is contained in a finite-dimensional Kr-submodule of
FE. Harish-Chandra considered

HC(E) :={v € E; v is Kg-finite}.

If F has finite Kg-multiplicities, i.e., dim Homg, (V, F) < oo for any finite-
dimensional irreducible representation V of Kg, he called E an admissible
representation. The action of Gg on an admissible representation F can be
differentiated on HC(F), and g acts on HC(E). Since any continuous Kg-
action on a finite-dimensional vector space extends to a K-action, HC(E) has
a (g, K)-module structure (see Definition 3.1.1).

Definition 1.1.1. A (g, K)-module M is called a Harish-Chandra module if
it satisfies the conditions:

(a) M is 3(g)-finite,
(b) M has finite K-multiplicities,
(¢) M is finitely generated over U(g).

Here, U(g) is the universal enveloping algebra of g and 3(g) is the center
of U(g). The condition (i) (a) means that the image of 3(g) — End(M) is
finite-dimensional over C.

In fact, if two of the three conditions (a)—(c) are satisfied, then all of the
three are satisfied.

An admissible representation E is of finite length if and only if HC(FE) is
a Harish-Chandra module.

The (g, K)-module HC(E) is a dense subspace of E, and hence FE is the
completion of HC(E) with the induced topology on HC(FE). However, for a
Harish-Chandra module M, there exist many representations E such that
HC(E) ~ M. Among them, there exist the smallest one mg(M) and the
largest one MG(M).

More precisely, we have the following results ([24, 25]). Let TGagm be the
category of admissible representations of Gy of finite length. Let HC(g, K) be
the category of Harish-Chandra modules. Then, for any M € HC(g, K), there
exist mg(M) and MG(M) in 739™ satisfying:

Hompc (g, i) (M, HC(E)) ~ Honggm(mg(M)v E)

1.1.1 ’
( ) Homyc (g, 1) (HC(E), M) ~ HomTéLg\m(E,MG(M))

for any E € 732%™, In other words, M — mg(M) (resp. M — MG(M)) is a
left adjoint functor (resp. right adjoint functor) of the functor HC: Tg}im —
HC(g, K). Moreover we have

M = HC(mg(M)) = HCMG(M)) for any M € HC(g, K).

For a Harish-Chandra module M and a representation E such that HC(E) ~
M, we have
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M Cmg(M)C ECMG(M).

We call mg(M) the minimal globalization of M and MG(M) the mazimal
globalization of M. The space mg(M) is a dual Fréchet nuclear space and
MG(M) is a Fréchet nuclear space (see Example 2.1.2 (ii)).

Example 1.1.2. Let Pg be a parabolic subgroup of Gg and Y = Gg/Pxk.
Then Y is compact. The space &/ (Y) of real analytic functions, the space
C%°(Y') of C°°-functions, the space L?(Y') of L?-functions, the space Zist(Y")
of distributions, and the space #(Y") of hyperfunctions are admissible rep-
resentations of Gy, and they have the same Harish-Chandra module M. We
have

mg(M) = &/ (Y) C C®(Y) Cc LA(Y) € Zist(Y) C B(Y) = MG(M).

The representation MG (M) can be explicitly constructed as follows. Let
us set o
M* = Homg (M, C)&-fint

Here, the superscript “K-fini” means the set of K-finite vectors. Then M™* is
again a Harish-Chandra module, and we have

MG(M) ~ HOII’IU(Q) (]\4*7 COO(GR)) .

Here, C*(GRr) is a U(g)-module with respect to the right action of Ggr on
Gr. The module Homy(g)(M*,C>*(GRr)) is calculated with respect to this
structure. Since the left Gr-action on Gr commutes with the right action,
Homgy(g)(M™, C>°(GRr)) is a representation of Gg by the left action of Gg on
Gr. We endow Homy(g)(M™, C>(Gr)) with the topology induced from the
Fréchet nuclear topology of C*°(Ggr). The minimal globalization mg(M) is
the dual representation of MG(M*).

In §10, we shall give a proof of the fact that M — mg(M) and M —
MG(M) are exact functors, and mg(M) ~ I'.(Gr; Zistg,) @u(g) M. Here,
I'.(Gg; Zista,) is the space of distributions on Gg with compact support.

1.2 Beilinson-Bernstein correspondence

Beilinson and Bernstein established the correspondence between U (g)-modules
and D-modules on the flag manifold.

Let G be a semisimple algebraic group with g as its Lie algebra. Let X be
the flag manifold of G, i.e., the space of all Borel subgroups of G.

For a C-algebra homomorphism x: 3(g) — C and a g-module M, we say
that M has an infinitesimal character x if a - u = x(a)u for any a € 3(g) and
u € M. In Introduction, we restrict ourselves to the case of the trivial infinites-
imal character, although we treat the general case in the body of this note. Let
Xtriv: 3(g) — C be the trivial infinitesimal character (the infinitesimal char-
acter of the trivial representation). We set Uy, (8) = U(g)/U(g) Ker (Xtriv)-
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Then U,,,,, (g)-modules are nothing but g-modules with the trivial infinitesi-
mal character.
Let Zx be the sheaf of differential operators on X. Then we have the

following theorem due to Beilinson-Bernstein [1].

Theorem 1.2.1. (i) The Lie algebra homomorphism g — T'(X;Zx) in-
duces an isomorphism

Uva (Q) - F(X; .@)() .

(ii) H™(X; #) = 0 for any quasi-coherent Px-module A and n # 0.
(iii) The category Mod (Zx) of quasi-coherent Dx-modules and the category
Mod Uy, (8)) of Us,v (8)-modules are equivalent by

Mod(Zx) > M — F(X§'/l) € MOd(UXtriv(g))’
Mod (-@X) > 9x ®U(g) M<———Mce MOd(Uva (g)) :

In particular, we have the following corollary.

Corollary 1.2.2. The category HC,,,,, (g, K) of Harish- Chandra modules with
the trivial infinitesimal character and the category Mod k, con(Zx) of coherent
K -equivariant Zx -modules are equivalent.

The K-equivariant Zx-modules are, roughly speaking, Zx-modules with an
action of K. (For the precise definition, see §3.) We call this equivalence the
B-B correspondence.

The set of isomorphism classes of irreducible K-equivariant Zx-modules is
isomorphic to the set of pairs (O, L) of a K-orbit O in X and an isomorphism
class L of an irreducible representation of the finite group K, /(K;)°. Here K,
is the isotropy subgroup of K at a point x of O, and (K,)° is its connected
component containing the identity. Hence the set of isomorphism classes of
irreducible Harish-Chandra modules with the trivial infinitesimal character
corresponds to the set of such pairs (O, L).

1.3 Riemann-Hilbert correspondence

The flag manifold X has finitely many K-orbits. Therefore any coherent K-
equivariant Zx-module is a regular holonomic Zx-module (see [15]). Let
DP(Zx) be the bounded derived category of Zx-modules, and let DY, (Zx)
be the full subcategory of Db(@x) consisting of bounded complexes of Zx-
modules with regular holonomic cohomology groups.

Let Z —— Z*" be the canonical functor from the category of complex
algebraic varieties to the one of complex analytic spaces. Then there exists
a morphism of ringed space 7: Z?" — Z. For an 0z-module .#, let 2" .=
Oz @p-16, T+ F be the corresponding & zan-module. Similarly, for a Z-
module ., let M :=DganQ@r-10, T M ~ Ogan@y-16,m LM be the corre-
sponding Zzan-module. For a Zz-module .Z and a Zzan-module A, we write
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Homg, (M, N) instead of Hom -1, (" M, N) =~ Homag,u (M, N)
for short.

Let us denote by Db(CXau) the bounded derived category of sheaves
of C-vector spaces on X®'. Then the de Rham functor DRy : D”(Zx) —
DP(Cxan), given by DRx (.#) = RA#om o, (Ox, #*), induces an equiva-
lence of triangulated categories, called the Riemann-Hilbert correspondence
([12])

DRx: DY (Zx) 5D (Cxan).

Here D2 (Cxan) is the full subcategory of D(Cxan) consisting of bounded
complexes of sheaves of C-vector spaces on X®" with constructible cohomolo-
gies (see [18] and also §4.4).

Let RH(Zx) be the category of regular holonomic Zx-modules. Then it
may be regarded as a full subcategory of th(.@X). Its image by DRx is a
full subcategory of D@ .(Cxan) and denoted by Perv(Cxan). Since RH(Zx)
is an abelian category, Perv(Cxan) is also an abelian category. An object of
Perv(Cxan) is called a perverse sheaf on X",

Then the functor DRy induces an equivalence between Mod g, con(Zx)
and the category Pervan (Cxan) of K?"-equivariant perverse sheaves on X"

DRX : N[OdK7 coh(@X) i>PQI‘VKan ((Cxan) .

1.4 Matsuki correspondence
The following theorem is due to Matsuki ([22]).

Proposition 1.4.1. (i) There are only finitely many K-orbits in X and also
finitely many Gr-orbits in X3".
(ii) There is a one-to-one correspondence between the set of K-orbits and the
set of Gg-orbits.
(iil) A K-orbit U and a Gr-orbit V' correspond by the correspondence in (ii)
if and only if U NV is a Kgr-orbit.

Its sheaf-theoretical version is conjectured by Kashiwara [14] and proved by
Mirkovié-Uzawa-Vilonen [23].

In order to state the results, we have to use the equivariant derived cate-
gory (see [4], and also §4). Let H be a real Lie group, and let Z be a topological
space with an action of H. We assume that Z is locally compact with a finite
cohomological dimension. Then we can define the equivariant derived category
DY (Cz), which has the following properties:

(a) there exists a forgetful functor D% (Cz) — D"(Cy),
(b) for any F' € DY%(Cy), its cohomology group H"(F) is an H-equivariant
sheaf on Z for any n,
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(¢) for any H-equivariant morphism f: Z — Z’  there exist canonical functors
Y f': DY (Cz) — DY (Cyz) and f., fi: D%(Cy) — D%(Cz) which
commute with the forgetful functors in (a), and satisfy the usual properties
(see §4),

(d) if H acts freely on Z, then D% (Cy) ~ Db((CZ/H).

(e) if H is a closed subgroup of H’, then we have an equivalence

Indj : D (Cz) =5 Dy (Cizxmy/m) -

Now let us come back to the case of real semisimple groups. We have an
equivalence of categories:

(1.4.1) G : Dbran (Cxan) =25 DBan (C (xan xgany can)-

Let us set S = G/K and Sg = Gg/Kg. Then Sk is a Riemannian symmetric
space and Sg C S. Let i: Sg < S®" be the closed embedding. Since (X X
G)/K ~ X x S, we obtain an equivalence of categories

IndSo : DY (Coyan) 25 D2 (Cxpan o gan ) -

Let p;: X2" x §8" — X" be the first projection and py: X" x S2" — §2n
the second projection. We define the functor

®: DYan(Cxan) — DY (Cxan)
by
®(F) = Rpy(IndSan (F) © p; Li.Cs, )[ds].
Here, we use the notation
(1.4.2) ds = dim S.

Theorem 1.4.2 ([23]). ®: D% (Cxan) — DgR(CXan) is an equivalence of
triangulated categories.

Roughly speaking, there is a correspondence between K?"-equivariant
sheaves on X and Gg-equivariant sheaves on X?". We call it the (sheaf-
theoretical) Matsuki correspondence.

1.5 Construction of representations of Gy

Let H be an affine algebraic group, and let Z be an algebraic manifold with an
action of H. We can in fact define two kinds of H-equivariance on Zz-modules:
a quasi-equivariance and an equivariance. (For their definitions, see Defini-
tion 3.1.3.) Note that 9z ®¢, F is quasi-H-equivariant for any H-equivariant
Oz-module %, but it is not H-equivariant in general. The Zz-module 0 is
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H-equivariant. Let us denote by Mod (27, H) (resp. Mod g (27)) the category
of quasi-H-equivariant (resp. H-equivariant) Zz-modules. Then Mod ;(Z2z)
is a full abelian subcategory of Mod (%, H).

Let Gg be a real semisimple Lie group contained in a semisimple algebraic
group G as a real form. Let FIN be the category of Fréchet nuclear spaces
(see Example 2.1.2 (ii)), and let FNg, be the category of Fréchet nuclear
spaces with a continuous Gg-action. It is an additive category but not an
abelian category. However it is a quasi-abelian category and we can define its
bounded derived category D”(FNg,) (see §2).

Let Z be an algebraic manifold with a G-action. Let D", (Mod (2%, G)) be
the full subcategory of D”(Mod (Zz,G)) consisting of objects with coherent
cohomologies. Let DER,R_C((C zan ) be the full subcategory of the Gg-equivariant
derived category DBR((C zan) consisting of objects with R-constructible coho-
mologies (see §4.4). Then for .# € D2, (Mod(Zz,G)) and F € DgR’R_C(CZan),

coh
we can define
RHom"} (M4 & F, Oz)

as an object of D?(FNg, ).

Roughly speaking, it is constructed as follows. (For a precise construction,
see §5.) We can take a bounded complex 27 ® V* of quasi-G-equivariant
9 z-modules which is isomorphic to .# in the derived category, where each
V" is a G-equivariant vector bundle on Z. On the other hand, we can rep-
resent F' by a complex K °* of Gg-equivariant sheaves such that each K™
has a form @qer, L, for an index set I,, where L, is a Gr-equivariant
locally constant sheaf of finite rank on a Gg-invariant open subset U, of
Za 1 Let é”ég;,') be the Dolbeault resolution of &zan by differential forms
with C*° coefficients. Then, Homg,((Z27 @ V*) ® K',@@éﬂ;')) represents
RHom g, (# @ F, Ozan) € D*(Mod (C)). On the other hand, Homg, (27 ®
V") ® Lméaégf)) = Homg, (V" ® Lméagﬂ;?)) carries a natural topology of
Fréchet nuclear spaces and is endowed with a continuous Gg-action. Hence
Homg, (22 @ V*) ® K',gé?;;)) is a complex of objects in FNg,. It is
RHom"} (# @ F, Oz) € D’(FNg,).

Dually, we can consider the category DFN¢, of dual Fréchet nuclear spaces
with a continuous Gg-action and its bounded derived category D”(DFNg, ).
Then, we can construct RTP(Z2": F ® .Qzané%gz//l), which is an object
of DP(DFNg,). Here, £2zan is the sheaf of holomorphic differential forms
with the maximal degree. Let 2ist'9%:*) be the Dolbeault resolution of
2z by differential forms with distribution coefficients. Then, the complex
L. (Zz K * ® Pist\dz:*) ®a, (Z2@V")) represents RT (27" F @ 2zm @,
) € DP(Mod (C)). On the other hand, since T'.(Z*; K * @ Zist'"*) @4,

! In fact, it is not possible to represent F by such a K ° in general. We overcome
this difficulty by a resolution of the base space Z (see §5).
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(D7 ® V')) is a complex in DFNg,, it may be regarded as an object of
L
DP(DFNg,). It is RT°P(Z%": F @ Qa0 ®g,.4). We have

RFtop zan. p N L M) ~ top *
(2 F @ Qzn@g, M) = (RHom')) (M @ F, Ozu)) .

Let us apply it to the flag manifold X with the action of G. Let F be
an object of D¢, p.o(Cxan). Then RHom"(F, Oxen) := RHom'® (Zx @
F,0xsn) is an object of Db(FNGR). This is strict, i.e., if we represent
RHomtEp(F , Oxan) as a complex in FN¢,, the differentials of such a complex
have closed ranges. Moreover, its cohomology group H ”(RHomtEp(R Oxan))
is the maximal globalization of some Harish-Chandra module (see § 10). Sim-
ilarly, RHom 2 (F, 2x+) := RHom"Y ((Zx ® 297") ® F, Oxn) is a strict
object of Db(FNGm) and its cohomology groups are the maximal globalization
of a Harish-Chandra module. Here {2x is the sheaf of differential forms with
degree dx on X.

Dually, we can consider RT°P(X?": F' ® @xan) as an object of DP(DFNg, ),
whose cohomology groups are the minimal globalization of a Harish-Chandra
module.

This is the left vertical arrow in Fig. 1.

Remark 1.5.1. Note the works by Hecht-Taylor [11] and Smithies-Taylor [27]
which are relevant to this note. They considered the Zxan-module Oxan Q@ F
instead of F', and construct the left vertical arrow in Fig.1 in a similar way
to the Beilinson-Bernstein correspondence.

Let us denote by Mod f(g, K) the category of (g, K )-modules finitely
generated over U(g). Then, Mod f(g, K) has enough projectives. Indeed,
U(g) ®uy N is a projective object of Mod f(g, K) for any finite-dimensional
K-module N. Hence there exists a right derived functor

RHom'(%  (+,C™(Gg)) : D"(Mod (g, K))** — D"(FNg,)

of the functor Homy (g (+,C*(GRr)): Mod (g, K)°* — FNg,. Similarly,
there exists a left derived functor

L
Io(Gr; Zistc,)®u(g) » : D’ (Mod 4(g, K)) — D"(DFNg,)

of the functor T'c(Gr; Zista,) Qu(g) » : Mod f(g, K) — DFNg,.? In §10, we
L

prove Hn(RHomt(OJIEB)(M7 COO(GR))) =0, Hn(FC(GR; @Z’StGR)@)(Ewa)M) =0

for n # 0, and

L
2 They are denoted by RHomtE’;KR)(-,CO"(GR)) and I'c(Gr; Zistcg )R (g,kp) * in
Subsection 9.5.
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*\ o~ top
MG(M™) ~ RHom Ule)

(M, C*(Gr)),
L
mg(M) ~ I'o(Gr; Zista, ) (g, k) M

for any Harish-Chandra module M.

1.6 Integral transforms
Let Y and Z be algebraic manifolds, and consider the diagram:

Y xZ

Y Z.

We assume that Y is projective. For .4 € D*(Zy) and # € D*(Py xz) we
define their convolution

D * D b
N 0 X :=Dpo(DpiAN @ %) € D°(Zz),

D
where Dpq., Dp], ® are the direct image, inverse image, tensor product
functors for D-modules (see §3). Similarly, for K € D"(Cyanxzan) and
F € D(Czan), we define their convolution

K o Fi=R(p") (K @ (pi")"'F) € D"(Cyan).

Let DRy «z: Db(@sz) — Db((Cyaanan) be the de Rham functor. Then we
have the following integral transform formula.

Theorem 1.6.1. For # € D (Pyxz), A € D2 (Zy) and F € DP(Czan),

set K = DRy xz(#) € DR_(Cyanx zan). If & and # are non-characteristic,
then we have an isomorphism

RHom g, (4 0 #)@F, Oan) ~ RHom g, (N @ (K 0 F), Oye)[dy — 2d].

Note that .#” and £ are non-characteristic if (Ch(.4") x T%Z) N Ch(%¢) C
Ty, (Y x Z), where Ch denotes the characteristic variety (see §8).

Its equivariant version also holds.

Let us apply this to the following situation. Let G, Gr, K, Kg, X, S be
as before, and consider the diagram:

X xS

X S.
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Theorem 1.6.2. For ¢ € Dg,coh(-@XxS): N € DP, (Mod(Z2x,G)) and

coh
F € D¢, p.o(Csm), set K = DRxxs(#) € D¢, c.o(Cxonxsmn). Then we
have an isomorphism

RHom' (/' 0 #) @ F, gun)

(1.6.1)
~ RHom') (N @ (K 0 F), Oxan)[dx — 2ds]

in D’(FNg,).

Note that the non-characteristic condition in Theorem 1.6.1 is automatically
satisfied in this case.

1.7 Commutativity of Fig. 1

Let us apply Theorem 1.6.2 in order to show the commutativity of Fig. 1. Let
us start by taking .# € Mod g, con(Zx ). Then, by the Beilinson-Bernstein cor-
respondence, .# corresponds to the Harish-Chandra module M :=T'(X;.#).
Let us set % = Indf((///) € Mod g, con(Zxxs). If we set A = Dx ® Q}‘?_l €

Mod (Zx,G), then A S . eDP (Mod (Zs, G)). By the equivalence of cate-

D
gories Mod (Zs, G) ~ Mod (g, K), A4 © % corresponds to M € Mod (g, K).
Now we take F' = Cg,[—dg]. Then the left-hand side of (1.6.1) coincides with

RHom'Y (4 © 4, RAom (Cs,[~dg], Osen)) ~ RHom'® (N © A, Bs,),

D
where g, is the sheaf of hyperfunctions on Sg. Since 4 © ¥ is an elliptic
Ps-module, we have

D D
RHom"} (A © %, %s,) ~ RHom'Y (N 0 A, €S,

where %SO;) is the sheaf of C*°-functions on Sg. The equivalence of categories
Mod (Zs, G) ~ Mod (g, K) implies

RHom'S (4 0 4, %) ~ RHom"%, (M, C™(Gr)) .

U(g)

Hence we have calculated the left-hand side of (1.6.1):

D
RHom'3}, (/' © #) @ F, Oswn) ~ RHom'(}

Now let us calculate the right-hand side of (1.6.1). Since we have

K :=DRxyxs X = DRXXS(Ind?((///))
~ Ind%.n (DRx (4)),
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K o F is nothing but ®(DRx (.#))[—2ds|. Therefore the right-hand side of
(1.6.1) is isomorphic to RHom"2>(®(DRx (.#)), 2xan[dx]). Finally we obtain

(1.7.1) RHomtgrzg)(F(X5 M), C=(Gr))

~ RHom'®(®(DRx (&), 2xan[dx]),
or
(1.7.2) MG(T(X;.#)*) ~ RHom'??(®(DRx (), 2xan [dx]).
By duality, we have
(1.7.3) mg(L(X;.4)) =~ RTP(X™; (DR (M) @ Oxan).

This is the commutativity of Fig. 1.

1.8 Example

Let us illustrate the results explained so far by taking SL(2,R) ~ SU(1,1) as
an example. We set

o

Ga =501 ={(§5) s ap e C.laP -5 =1} < 6= sL2.0)

KR:{<32>;aeC, |a:1}CK:{(ga01);a€C\{0}}7

X =P.
Here G acts on the flag manifold X = P! = C U {0} by
ab az+b
Dz .
cd cz+d
Its infinitesimal action Lx: g — I'(X; ©x) (with the sheaf ©x of vector fields
on X) is given by

_ (00N .d
—\o dz’

I'(X;7x) = Ul(g)/U(9)A,
where A = h(h —2)+4ef = h(h+2) +4fe € 3(g).

‘We have
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The flag manifold X has three K-orbits:
{0}, {oo} and X \ {0, 00} .
The corresponding three Gr-orbits are
X_, X4 and Xp,

where X4 = {z € P'; [z| 2 1} and Xg = {z € C; [z| = 1}.

Let jo: X\{0} — X, joo: X\{00} — X and jo oo : X\{0, 00} — X be the
open embeddings. Then we have K-equivariant Zx-modules Ox, josj, Loy,
Jooxjl Ox and jO,oo*j(Zio Ox . We have the inclusion relation:

» -
J0,00%J0,00 O'x

T

jO*j()_lﬁX joo*jgolﬁX'

\/

Ox
There exist four irreducible K-equivariant Zx-modules:

Mo =M1 (Ox) = Joufy ' Ox[Ox = fo,00no e Ox [ooris O,
Moo = Hiooy (Ox) = foor s Ox | Ox = foconlit e Ox [Jowdo O,
Moo = Ox,
My = OxN7z=Dx/Dx(Lx(h)+1).

Here, .#y and A correspond to the K-orbits {0} and {co}, respectively,
while both .#y o and .#;/, correspond to the open K-orbit X \ {0,o00}.
Note that the isotropy subgroup K, of K at z € X \ {0,000} is isomorphic
to {1,—-1}, and .#) o corresponds to the trivial representation of K, and
M 3 corresponds to the non-trivial one-dimensional representation of K.
By the Beilinson-Bernstein correspondence, we obtain four irreducible Harish-
Chandra modules with the trivial infinitesimal character:

My = 0x(X \{0})/C = C[=7"]/C ~Ul(g)/(U(g)(h - 2) + U(g) f),
Moo = Ox (X \{o0})/C = C[2]/C = U(g)/(U(g)(h + 2) + U(g) ¢),
Myoo = Ox(X) =C=U(g)/(U(g) h+ Ulg)e + U(g) f),
Myjp = Clz, 27 '[Vz = U(g)/(U(g)(h +1) + U(g)A).

Among them, My o, and M/, are self-dual, namely they satisfy M* ~ M.
We have (Mp)* ~ Mq.

By the de Rham functor, the irreducible K-equivariant Zx-modules are
transformed to irreducible K?"-equivariant perverse sheaves as follows:
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Here Cxany/z is the locally constant sheaf on X"\ {0,000} of rank one (ex-
tended by zero over X?") with the monodromy —1 around 0 and co.
Their images by the Matsuki correspondence (see Proposition 9.4.3) are

®(DRx (#0)) ~ Cx _[1],
®(DRx (M) ~ Cx, [1],
B(DRx (M o)) = Cxon,

(DR (A1/2)) =~ Cx, V.

Note that Cx,+/z is a local system on X of rank one with the monodromy
—1.
Hence (1.7.2) reads as

MG(Mg) ~ MG(Ms) ~ RHom'@?(Cx_[1], 2xan[1]) =~ Q2xan(X_),
MG(MZ) ~ MG(Mp) ~ RHom'??(Cx, [1], 2xan[1]) ~ 2xan (X4),

MG(M; o) = MG (Mo, o) ~ RHom P (Cxon, 2xan[1])
~ HY(X®; Qxan) ~ C,
MG (M;/5) ~ MG(M) /3) ~ RHom'g" (Cx, v/Z, 2xan[1])
~ F(XR;@XR ® 2x, ® (CXR\/E).

Here £y, is the sheaf of hyperfunctions on Xg. Note that the exterior differ-
entiation gives isomorphisms

ﬁXan (Xj:)/c %) QXan (Xi)’

[(Xg; Bxy ® CxV/z) %’ '(Xgr; Bx, @ 2x, ® Cx,Vz).
In fact, we have

mg(Mo) = Qxen(X5) C Lyan(Xy) = MG(My),
mg(Mso) = 2xan(X_) C Nxan(X_) ~MG(My),
mg(Ml/Q) ~ F(X]R; xy @ (CXR\/E) C F(X]R, ‘%Xue\ ® (CXR\/E> ~ MG(Ml/Z)
Here o7k, is the sheaf of real analytic functions on Xg.
For example, by (1.7.3), mg(My) ~ RTP(X*; Cx_[1]®Oxan). The exact
sequence
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O—>(CX7—>(CXan—>(CK—>O

yields the exact sequence:

HO(Xan;(CX7 ® ﬁan) — HO(Xan;(CXan & ﬁXan) — HO(Xan;(CK® ﬁxmn)
— HY(X™;Cx_[1] ® Oxan) — HY(X™;Cxan[1] ® Oxan),

in which HO(X*;Cx_ ® Oxan) = {u € Oxan(X*); supp(u) C X_} = 0,
HO(X3 Cyan ® Oxan) = Oxan(X?) = C and HY(X®; Cxan[l] ® Oxan) =
HY (X Oxan) = 0.

Hence we have

RTP(X; Cy_[1]® Oxan) = Oxcan (X7 /C.
The exterior differentiation gives an isomorphism
O30 (X7) /€ 5 2xen (7).
Note that we have

HC(2xan (X)) ~ HC(2x0 (X 4))
~ Ox (X \{0}) = Ox (X \ {0})/C =~ Mo.

1.9 Organization of the note

So far, we have explained Fig. 1 briefly. We shall explain more details in the
subsequent sections.

The category of representations of G is not an abelian category, but it
is a so-called quasi-abelian category and we can consider its derived category.
In §2, we explain the derived category of a quasi-abelian category following
J.-P. Schneiders [26].

In §3, we introduce the notion of quasi-G-equivariant D-modules, and
studies their derived category. We construct the pull-back and push-forward
functors for D”(Mod (Zx, G)), and prove that they commute with the forget-
ful functor D (Mod (Zx,G)) — DP(Mod (Zx)).

In §4, we explain the equivariant derived category following Bernstein-
Lunts [4].

In §5, we define RHomm@pZ (M @ F, Ozan) and studies its functorial prop-
erties.

In §6, we prove the ellipticity theorem, which says that, for a real form
i: Xp — X, RHom"} (#,6%) — RHom"Y (# ®i.i'Cx,, Oxan) is an
isomorphism when .# is an elliptic D-module. In order to construct this
morphism, we use the Whitney functor introduced by Kashiwara-Schapira
[20].
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If we want to deal with non-trivial infinitesimal characters, we need to
twist sheaves and D-modules. In § 7, we explain these twistings.

In §8, we prove the integral transform formula explained in the subsection
1.6.

In §9, we apply these results to the representation theory of real semisimple
Lie groups. We construct the arrows in Fig. 1
As an application of §9, we give a proof of the cohomology vanishing

theorem Hj(RHomt?]p(g)(M,Coo(GR)) =0 (j # 0) and its dual statement

. L
H?(T.(Gg; @iStGR)@)U(g)M) =0 in §10.

2 Derived categories of quasi-abelian categories

2.1 Quasi-abelian categories

The representations of real semisimple groups are realized on topological vec-
tor spaces, and they do not form an abelian category. However, they form a
so-called quasi-abelian category. In this section, we shall review the results of
J.-P. Schneiders on the theory of quasi-abelian categories and their derived
categories. For more details, we refer the reader to [26].

Let C be an additive category admitting the kernels and the cokernels. Let
us recall that, for a morphism f: X — Y in C, Im(f) is the kernel of ¥ —
Coker(f), and Coim(f) is the cokernel of Ker(f) — X. Then f decomposes as
X — Coim(f) — Im(f) — Y. We say that f is strict if Coim(f) — Im(f) is
an isomorphism. Note that a monomorphism (resp. epimorphism) f: X — Y
is strict if and only if X — Im(f) (resp. Coim(f) — Y) is an isomorphism.
Note that, for any morphism f: X — Y, the morphisms Ker(f) — X and
Im(f) — Y are strict monomorphisms, and X — Coim(f) and Y — Coker(f)
are strict epimorphisms. Note also that a morphism f is strict if and only if
it factors as i o s with a strict epimorphism s and a strict monomorphism 1.

Definition 2.1.1. A quasi-abelian category is an additive category admitting
the kernels and the cokernels which satisfies the following conditions:

(i) the strict epimorphisms are stable by base changes,
(ii) the strict monomorphisms are stable by co-base changes.

The condition (i) means that, for any strict epimorphism «v: X — Y and
a morphism Y’ — Y, setting X' = X xy Y/ = Ker(X @Y’ — Y), the
composition X' — X @Y’ — Y’ is a strict epimorphism. The condition (ii)
is the similar condition obtained by reversing arrows.

Note that, for any morphism f: X — Y in a quasi-abelian category,
Coim(f) — Im(f) is a monomorphism and an epimorphism.

Remark that if C is a quasi-abelian category, then its opposite category
C°P is also quasi-abelian.
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We recall that an abelian category is an additive category such that it
admits the kernels and the cokernels and all the morphisms are strict.

Example 2.1.2. (i) Let Top be the category of Hausdorff locally convex
topological vector spaces. Then Top is a quasi-abelian category. For a
morphism f: X — Y, Ker(f) is f~!(0) with the induced topology from
X, Coker(f)is Y/ f(X) with the quotient topology of Y, Coim(f) is f(X)
with the quotient topology of X and Im(f) is f(X) with the induced
topology from Y. Hence f is strict if and only if f(X) is a closed subspace
of Y and the topology on f(X) induced from X coincides with the one
induced from Y.

(ii) Let E be a Hausdorff locally convex topological vector space. Let us recall
that a subset B of E is bounded if for any neighborhood U of 0 there
exists ¢ > 0 such that B C c¢U. A family {f;} of linear functionals on E
is called equicontinuous if there exists a neighborhood U of 0 € F such
that f;(U) C {c € C; |¢| < 1} for any i. For two complete locally convex
topological vector spaces E and F, a continuous linear map f: F — F'is
called nuclear if there exist an equicontinuous sequence {hy, },>1 of linear
functionals on E, a bounded sequence {v,},>1 of elements of F' and a
sequence {cy,} in C such that )" |c,| < oo and f(z) =), cnhn(x)v, for
allxz € E.

A Fréchet nuclear space (FN space, for short) is a Fréchet space E such
that any homomorphism from F to a Banach space is nuclear. It is equiv-
alent to saying that F is isomorphic to the projective limit of a sequence
of Banach spaces Fy; «— F5 < --- such that F,, — Fj,,_1 are nuclear for
all n. We denote by FIN the full subcategory of Top consisting of Fréchet
nuclear spaces.

A dual Fréchet nuclear space (DFN space, for short) is the inductive limit
of a sequence of Banach spaces F; — Fs — --- such that F,, — F, ;1 are
injective and nuclear for all n. We denote by DFN the full subcategory
of Top consisting of dual Fréchet nuclear spaces.

A closed linear subspace of an FN space (resp. a DFN space), as well as
the quotient of an FN space (resp. a DFN space) by a closed subspace,
is also an FN space (resp. a DFN space). Hence, both FN and DFN are
quasi-abelian.

A morphism f: E — F in FN or DFN is strict if and only if f(E) is a
closed subspace of F'.

The category DFN is equivalent to the opposite category FNP of FN
by E — E*, where E* is the strong dual of E.

Note that if M is a C*°-manifold (countable at infinity), then the space
C> (M) of C>-functions on M is an FN space. The space I'.(M; Pistyr)
of distributions with compact support is a DFN space. If X is a complex
manifold (countable at infinity), the space &x(X) of holomorphic func-
tions is an FN space. For a compact subset K of X, the space Ox (K) of
holomorphic functions defined on a neighborhood of K is a DFN space.
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(iii) Let G be a Lie group. A Fréchet nuclear G-module is an FN space E
with a continuous G-action, namely G acts on E and the action map
G x E — F is continuous. Let us denote by FN the category of Fréchet
nuclear G-modules. It is also a quasi-abelian category. Similarly we define
the notion of dual Fréchet nuclear G-modules and the category DFN.
The category (FN¢)°? and DFN¢ are equivalent.

2.2 Derived categories

Let C be a quasi-abelian category. A complex X in C consists of objects X™
(n € Z) and morphisms d%: X" — X"*! such that d%"" o d% = 0. The
morphisms d% are called the differentials of X. Morphisms between complexes
are naturally defined. Then the complexes in C form an additive category,
which will be denoted by C(C). For a complex X and k € Z, let X[k] be the
complex defined by

XK])" = X"F dfyy = (DR

Then X +— X|[k] is an equivalence of categories, called the translation functor.

We say that a complex X is a strict complex if all the differentials d% are
strict. We say that a complex X is strictly eract if Coker(d% ') — Ker(d's)
is an isomorphism for all n. Note that d% : X™ — X"*! decomposes into

X™ — Coker(dy ') — Coim(d’) — Im(d’% )— Ker(d¥™)— X",

If X is strictly exact, then X is a strict complex and 0 — Ker(d%) — X" —
Ker(d'yt) — 0 is strictly exact.
For a morphism f: X — Y in C(C), its mapping cone Mc(f) is defined by

_d7z+1 0
Mc(f)" = X" @ Y™ and dyj 5 = f,}jl ol
Y

Then we have a sequence of canonical morphisms in C(C):

a(f)

(2.2.1) x Loy 29 ey 29

X[1].

Let K(C) be the homotopy category, which is defined as follows: Ob(K(C)) =
Ob(C(C)) and, for X,Y € K(C), we define

HOI’HK(C) (X, Y) = Homc(c) (X, Y)/Ht(X, Y),
where

Ht(X,Y) = {f € Homg(c)(X,Y); there exist h": X" — Y™~ ! such that
fr=dy 1 oh™ + h"t o dy for all n}.

A morphism in Ht(X,Y") is sometimes called a morphism homotopic to zero.
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A triangle in K(C) is a sequence of morphisms
h
x Ly %z xp

such that go f =0, hog =0, f[1] o h = 0. For example, the image of (2.2.1)
in K(C) is a triangle for any morphism f € C(C). A triangle in K(C) is called
a distinguished triangle if it is isomorphic to the image of the triangle (2.2.1)
by the functor C(C) — K(C) for some morphism f € C(C). The additive cat-
egory K(C) with the translation functor «[1] and the family of distinguished
triangles is a triangulated category (see e.g. [19]).

Note that if two complexes X and Y are isomorphic in K(C), and if X
is a strictly exact complex, then so is Y. Let & be the subcategory of K(C)
consisting of strictly exact complexes. Then & is a triangulated subcategory,
namely it is closed by the translation functors [k] (k € Z), and if X - Y —
Z — X[1] is a distinguished triangle and X,Y € &, then Z € &.

We define the derived category D(C) as the quotient category K(C)/&. Tt is
defined as follows. A morphism f: X — Y is called a quasi-isomorphism (qis

for short) if, embedding it in a distinguished triangle X Ly oz X[1],

Z belongs to &. For a chain of morphisms X Ly% zm K(C), if two of f,
g and g o f are qis, then all the three are qis.
With this terminology, Ob(D(C)) = Ob(K(C)) and for X,Y € D(C),

HomD(c)(X, Y) ~ hi>n HomK(c)(X'7 Y)
x 22 x

~

. ! !
o~ | hi)n . HomK(c)(X,Y)
X x vy
pual h_H)l HOIHK(C) (X, Y/)

qis
Y—>Y’

The composition of morphisms f: X — Y and g: Y — Z is visualized by the
following diagram:

X o A y o oofiisg
Tqis// \ iqis
! Z'.

A morphism in K(C) induces an isomorphism in D(C) if and only if it is a
quasi-isomorphism.

A triangle X - Y — Z — X[1] in D(C) is called a distinguished triangle
if it is isomorphic to the image of a distinguished triangle in K(C). Then D(C)
is also a triangulated category.

Note that if X YV % Zis a sequence of morphisms in C(C) such that
0 — X" - Y™ - Z™ — 0 is strictly exact for all n, then the natural
morphism Mc(f) — Z is a qis, and we have a distinguished triangle



20 Masaki Kashiwara
X—-Y—>7— X[l]

in D(C).

We denote by C*(C) (resp. C~(C), CP(C)) the full subcategory of C(C)
consisting of objects X such that X™ = 0 for n < 0 (resp. n > 0, |n| > 0).
Let D*(C) (x = 4, —,b) be the full subcategory of D(C) whose objects are
isomorphic to the image of objects of C*(C). Similarly, we define the full
subcategory K*(C) of K(C).

We call DP(C) the bounded derived category of C.

2.3 t-structure

Let us define various truncation functors for X € C(C):

<nx e — Xl — Kerdy — 0 — 0 — -
FSntl/2x . Xl xn — Imdy — 0 — -
Tz X e — 0 —>Cokerd§(_1—>X"+1—>X”+2—>~-~
rzntl/2x o0 0 — Coim d% — Xt X2

for n € Z. Then we have morphisms
75X — St — X — 28X — 27X

for s,t € %Z such that s < t. We can easily check that the functors
758 72%: C(C) — C(C) send the morphisms homotopic to zero to morphisms
homotopic to zero and the quasi-isomorphisms to quasi-isomorphisms. Hence,

they induce the functors

755, 72%: D(C) — D(C)

and morphisms 7% — id — 72°. We have isomorphisms of functors:
< < <mi > > >
758 6 T_t ~ T_mm(s,t) , 7256 7__25 ~ T_max(s,t) , and
<s > > <
7SS o 2t v 2t o 7SS for s,t € %Z.

We set 775 = 725F1/2 gpd 7<5 = 75s-1/2,
We have a distinguished triangle in D(C):

X — X — 77X — (15 X)[1].
For s € %Z, set

D=5(C) = {X eD(©); 75X — X is an isomorphism }
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Then {DSS(C)}S,&%Z is an increasing sequence of full subcategories of D(C),
and {DES(C)}SG%Z is a decreasing sequence of full subcategories of D(C).

Note that D*(C) (resp. D=(C)) is the union of all the D="(C)’s (resp. all
the D="(C)’s), and DP(C) is the intersection of D (C) and D~(C).

The functor 7=: D(C) — D=%(C) is a right adjoint functor of the inclusion
functor D=*(C) < D(C), and 72%: D(C) — D=*(C) is a left adjoint functor of
DZ#(C) — D(C).

Set D>*(C) = D=°*1/2(C) and D<*(C) = D=*~1/2(C).

The pair (D=%(C),D>*"1(C)) is a t-structure of D(C) (see [3] and also
[18]) for any s € $Z. Hence, D=%(C) N D>*71(C) is an abelian category. The
triangulated category D(C) is equivalent to the derived category of D=%(C) N
D>*~1(C). The full subcategory D=°(C) N DZ%(C) is equivalent to C.

For X € C(C) and an integer n, the following conditions are equivalent:

(1) d% is strict,
(i) 75" X — 7S"*1/2X is a quasi-isomorphism,
(iii) 727+1/2X — 727+1X is a quasi-isomorphism.

Hence, for an object X of D(C), X is represented by some strict complex
if and only if all complexes in C(C) representing X are strict complexes. In
such a case, we say that X is strict. Then, its cohomology group H"(X) :=
Coker(X"™! — Ker(d%)) ~ Ker(Coker(ds ') — X"*!) has a sense as an
object of C. The following lemma is immediate.

Lemma 2.3.1. Let X — Y — 7z X4 X|[1] be a distinguished triangle, and
assume that X andY are strict. If H*(X) — H™(Y) is a strict morphism for
all n, then Z is strict. Moreover we have a strictly exact sequence:

- — H"(X) — H"(Y) — H"(Z) — H"" (X)) — H"TY(Y) — -

Remark 2.3.2. When C is either FN or DFN, a complex X in C is strictly
exact if and only if it is exact as a complex of vector spaces forgetting the
topology. A complex X is strict if and only if the image of the differential d%
is closed in X™*! for all n. Hence, denoting by .# the functor from D(FIN)
(resp. D(DFN)) to D(Mod (C)), a morphism f in D(FN) (resp. D(DFN)) is
an isomorphism if and only if so is .Z# (u).

3 Quasi-equivariant D-modules

3.1 Definition

For the theory of D-modules, we refer the reader to [16].

Let us recall the definition of quasi-equivariant D-modules (cf. [15]).

Let G be an affine algebraic group over C and g its Lie algebra. A G-
module is by definition a vector space V endowed with an action of G such
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that g — gv is a regular function on G for any v € V, i.e., there exist finitely
many {v;}; of vectors in V and regular functions {a;(g)}; on G such that
gv = Y, a;(g)v; for any g € G. It is equivalent to saying that there is a
homomorphism V' — 0¢(G) @ V (i.e., v — Y, ai(g9) ® v;) such that for any

g € G the action g € Ende(V) is given by V — O0q(G) @V 22, v, where the
last arrow iy is induced by the evaluation map Oc(G) — C at g. Hence the
G-module structure is equivalent to the co-module structure over the cogebra
Oa(Q).

We denote by Mod (G) the category of G-modules, and by Mod ;(G) the
category of finite-dimensional G-modules. It is well-known that any G-module
is a union of finite-dimensional sub-G-modules.

Let us recall the definition of (g, H)-modules for a subgroup H of G.

Definition 3.1.1. Let H be a closed subgroup of G with a Lie algebra h. A
(g, H)-module is a vector space M endowed with an H-module structure and
a g-module structure such that

(i) the h-module structure on M induced by the H-module structure coin-
cides with the one induced by the g-module structure,

(ii) the multiplication homomorphism g® M — M is H-linear, where H acts
on g by the adjoint action.

Let us denote by Mod (g, H) the category of (g, H)-modules.

Let X be a smooth algebraic variety with a G-action (we call it algebraic G-
manifold). Let u: GxX — X denote the action morphism and pr: GxX — X
the projection. We shall define p,: G x G x X - Gx X (k=0, 1, 2) by

po(gth?x) = (9179237),
pl(gl,927x) = (gngax)7
pQ(gth):E) = (9271')'

p(g,z) = gz,
pr(g,z) =z,

Then we have a simplicial diagram

DPo

GxGxX

p——> G x X
D2

X.

pr
It means that these morphisms satisfy the commutation relations:

KO Po = HODP1,
propi = propy,
J1© p2 = P o po.
Definition 3.1.2. A G-equivariant 0'x-module is an &x-module . endowed

with an isomorphism of O¢g« x-modules:

(3.1.1) B: prF =HprF
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such that the following diagram commutes (associative law):

1B

piptF
(3.1.2)

pipr*F

* *

* ok Pof ok o B ok
poptF ———= pipr*F ——— piu*F ———= pipr*.7 .

We denote by Mod (€x, G) the category of G-equivariant 'x-modules which
are quasi-coherent as O'x-modules.

For a G-equivariant Ox-module %, we can define an action of the Lie
algebra g on #, i.e., a Lie algebra homomorphism:

(3.1.3) L,: g — Endc(%)
as follows. Let us denote by
(314) Lxgﬁgx(X)—)@)((X)

the infinitesimal action of G on X. Here, @ x denotes the sheaf of vector fields
on X, and Zx denotes the sheaf of differential operators. It is a Lie algebra
homomorphism. Let us denote by

(3.1.5) Lg:9g—I'(G; %)

the Lie algebra homomorphism derived by the left action of G on itself. Then
its image is the space of right invariant vector fields on G. Denoting by i: X —
G x X the map z — (e, z), we define

(3.1.6) Ly(A)s =i ((LG(A) x id)(ﬁu*(s))) for A€ gandse 7.
It is a derivation, namely
Ly(A)(as) = (Lx(A)a) s + a(Ly(A)s) for A€g,ac Ox and s € .Z.

The notion of equivariance of D-modules is defined similarly to the one of
equivariant &-modules. However, there are two options in the D-module case.
Let 0 X Zx denote the subring Oy x @pr-16, Pt~ Px of Dx x. There are
two ring morphisms

pr 9y - 0 R Px and Ogyxx — OcR Px.

Definition 3.1.3. A quasi-G-equivariant Zx-module is a Zx-module .# en-
dowed with an Og X Zx-linear isomorphism

(3.1.7) B: Du* A4 == Dpr*.#

such that the following diagram commutes (associative law):
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Dpip

DpiDu* 4

Here Dp*, Dpj, etc. are the pull-back functors for D-modules (see §3.4). If
moreover 3 is Pgx x-linear, .4 is called G-equivariant.

For quasi-G-equivariant Zx-modules .# and .4, a G-equivariant morphism
u: M — N is a Px-linear homomorphism u: .# — A" such that

Du*# £, Dpr*.#

Du*ui ler*u

Du* A . Dpr*. A4

commutes. Let us denote by Mod(Zx,G) the category of quasi-coherent
quasi-G-equivariant Px-modules, and by Modg(Z2x) the full subcategory
Mod (Zx, @) cousisting of quasi-coherent G-equivariant Zx-modules. Then
they are abelian categories, and the functor Mod¢(Z2x) — Mod(Zx, G)
is fully faithful and exact, and the functors Mod (Zx,G) — Mod(Zx) —
Mod (0x) and Mod (Zx,G) — Mod (Ox, G) are exact.

Roughly speaking, quasi-equivariance means the following. For g € G let
ttg: X — X denotes the multiplication map. Then a Zx-linear isomorphism
By pgt = A is given in such a way that it depends algebraically on g and
satisfies the chain condition 34,4, = B¢, © B4, for g1, 92 € G: the diagram

* * 59 *
Mgzuyl'//;l)'um%

-

8
”;mz/// = > %

is commutative.

Ezample 3.1. (i) If .7 is a G-equivariant Ox-module, then Zx ®g, Z is a
quasi-G-equivariant Zx-module.
(ii) Let Py,..., P, be a family of G-invariant differential operators on X.
Then 2x/ ( > .@XPZ-) is a quasi-G-equivariant Zx-module.

Let .4 be a quasi-G-equivariant Zx-module. Then the G-equivariant 'x-
module structure on .# induces the Lie algebra homomorphism

L,:g— Endc(A#).
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On the other hand, the Zx-module structure on .# induces the Lie algebra
homomorphism
ap:g— I'(X;Zx) — Ende(A).
Hence we have:
ap(A)s =i*((Lg(A) X 1)(u*(s
o *(( o) )(H()*)) for se€ .# and A € g.
Ly(A)s =i*((La(A) R1)(B o u*(s)))

Set
Yu =Ly —ap:g— Ende(A).

Since we have
[Ly(A), P] = [ap(A), P] for any A € g and P € Px,

the homomorphism 7_4 sends g to Endg, (#). The homomorphism v 4 : g —
Endg, () vanishes if and only if Lg(A) X1 € Ogxx commutes with § for
all A € g. Thus we have obtained the following lemma.

Lemma 3.1.4. Let A be a quasi-G-equivariant Px-module. Let v 4 be as
above. Then we have

(i) 7.4 is a Lie algebra homomorphism g — Endg, (A),

(ii) A is G-equivariant if and only if v.4 = 0.

Thus 4 has a (Zx,U(g))-bimodule structure.
When G acts transitively on X, we have the following description of quasi-
equivariant D-modules.

Proposition 3.1.5 ([15]). Let X = G/H for a closed subgroup H of G, and
let i: pt — X be the map associated with e mod H. Then M +— i*.# gives
equivalences of categories

Mod (Z2x,G) =~ Mod (g, H)
U U
Mod¢(Z2x) =% Mod (H/H®),

where H® is the connected component of H containing the identity.

The g-module structure on i*.# is given by 7. 4. We remark that Mod (H/H®)
is embedded in Mod (g, H) in such a way that g acts trivially on the vector
spaces in Mod (H/H®).

Remark 3.1.6. The inclusion functor Mod ¢(Zx) — Mod (Zx, G) has a left
adjoint functor and a right adjoint functor

M — C Qu(g) M and M — ,%”omU(g)((C,//l).

Here U(g) acts on 4 via v.4.
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3.2 Derived Categories

Recall that Mod (Zx, G) denotes the abelian category of quasi-coherent quasi-
G-equivariant Zx-modules. There are the forgetful functor

Mod (Zx,G) — Mod (Ox,G)

and
Dx Qey » : Mod(Ox,G) — Mod (Zx,G).

They are adjoint functors to each other. Namely there is a functorial isomor-
phism in .% € Mod (Ox,G) and A4 € Mod (Zx,G)

(3.2.1) Homytod (6x,c) (F, M) = Homyioq (2x,0)(Zx Qeox F, M ).

Note that, for .# € Mod (€x,G), the morphism 7 4 : g — Endg, (#) for
M= Dx Qe F is given by 7.4 (A)(P®s) = —PLx(A)®@s+ P® L,(A)s for
Ae€g, Pe Px,s € .. Hence Px Qg F is not a G-equivariant Zx-module
in general.

Let Mod ¢on(Z2x,G) denote the full subcategory of Mod(Zx,G) consist-
ing of coherent quasi-G-equivariant Zx-modules. Similarly let us denote by
Mod ¢on(Ox, G) the category of coherent G-equivariant € x-modules.

We shall introduce the following intermediate category.

Definition 3.2.1. A quasi-coherent &x-module (resp. Zx-module) is called
countably coherent if it is locally generated by countably many sections.

Note that if .Z is a countably coherent &' x-module, then there exists locally
an exact sequence ﬁ;‘?l — ﬁ’;‘?‘] — % — 0 where I and J are countable sets.

Note also that any coherent Zx-module is countably coherent over Ox.
Hence a quasi-coherent Zx-module is countably coherent, if and only if so is
it as an Ox-module.

Note that countably coherent &-modules are stable by inverse images,
direct images and tensor products.

Let Mod .(Zx,G) denote the full subcategory of Mod (Zx, G) consisting
of countably coherent quasi-G-equivariant Zx-modules.

Let us denote by D(Zx,G) the derived category of Mod(Zx,G). Let
Dec(Zx,G) (resp. Deon(Zx,G)) denotes the full subcategory of D(Zx,G)
consisting of objects whose cohomologies belong to Mod..(Zx,G) (resp.
MOdCOh(@)(, G))

Let us denote by DP(Zx, @) the full subcategory of D(Zx,G) consisting
of objects with bounded cohomologies. We define similarly DY (Zx,G) and
DY (Zx, G).

Proposition 3.2.2. The functors

DP(Mod ¢(Zx,G)) — D2.(Zx,G)  and
DP(Mod ¢on(Z2x, G)) — D2, (2%, G)

are equivalences of categories.
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This follows easily from the following lemma and a standard argument
(e.g. cf. [19])

Lemma 3.2.3. Any quasi-coherent G-equivariant Ox-module is a union of
coherent G-equivariant Ox-submodules. Similarly, any quasi-coherent quasi-
G-equivariant Px-module is a union of coherent quasi-G-equivariant PDx -
submodules.

3.3 Sumihiro’s result

Hereafter we shall assume that X is quasi-projective, i.e., X is isomorphic to a
subscheme of the projective space P™ for some n. In such a case, Mod (Zx, G)
has enough objects so that Db(QX, @) is a desired derived category, namely,
the forgetful functor D”(Zx,G) — D®(Zx) commutes with various functors
such as pull-back functors, push-forward functors, etc. This follows from the
following result due to Sumihiro [28].

Proposition 3.3.1. Let X be a quasi-projective G-manifold.

(i) There exists a G-equivariant ample invertible Ox-module.
(ii) There exists a G-equivariant open embedding from X into a projective
G-manifold.

In the sequel, we assume
(3.3.1) X is a quasi-projective G-manifold.
Let .Z be a G-equivariant ample invertible & x-module.

Lemma 3.3.2. Let % be a coherent G-equivariant Ox -module. Then, for n >
0, there exist a finite-dimensional G-module V' and a G-equivariant surjective
homomorphism

(3.3.2) LRV —» ZF.

Proof. For n > 0, # @ %" is generated by global sections. Take a finite-
dimensional G-submodule V' of the G-module I'(X;.% ® £®") such that
V®0Ox — F @ L% is surjective. Then this gives a desired homomorphism.

Q.E.D.

Lemma 3.3.2 implies the following exactitude criterion.

Lemma 3.3.3. Let 4 — M — #" be a sequence in Mod(Ox,G). If
Homytod (6y,6)(&, A") — Homiod (6y,6)(E A ) — Homniea (ox,a) (65 A")
is exact for any locally free G-equivariant Ox-module & of finite rank, then

M — M — A" is exact.
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Let us denote by Mod ;(Zx,G) the full subcategory of Modcon(Zx,G)
consisting of objects of the form Zx ®4, & for a locally free coherent G-
equivariant Ox-module &. By Lemma 3.3.2, for any .# € Mod .o (Zx,G),
there exists a surjective G-equivariant homomorphism 4 — .# with 4 €
MOdlf(@X, G)

Lemma 3.3.2 together with standard arguments (see e.g. [19]), we obtain

Proposition 3.3.4. For any .# € K~ (Modcoh(@X,G)) there exist N €
K~ (Mod ¥ (Px, G)) and a quasi-isomorphism N — M .

The abelian category Mod (Zx, G) is a Grothendieck category. By a gen-
eral theory of homological algebra, we have the following proposition (see e.g.
[19]).

Proposition 3.3.5. Any object of Mod (Z2x,G) is embedded in an injective
object of Mod (Zx,G).

Injective objects of Mod (Z2x, G) have the following properties.

Lemma 3.3.6. The forgetful functor Mod (Zx,G) — Mod (Ox, G) sends the
injective objects to injective objects.

This follows from (3.2.1) and the exactitude of # — Zx ®g, F.

Lemma 3.3.7. Let .# be an injective object of Mod(Ox,G). Then the func-
tor F — Home, (F,F) is an exact functor from Modon(Ox,G)P to
Mod (0x, G).

Proof. By Lemma 3.3.3, it is enough to remark that, for any locally free
& € Mod con(Ox, G),

HomMOd(ﬁxyg) (éa, Home, (F, f)) = HomMod(ﬁX_va)(@@ Repy F,F)

is an exact functor in % . Q.E.D.

Proposition 3.3.8. Let & be an injective object of Mod(COx,G). Then for
any F € Mod .on(Ox, G),

(3.33)  Saty (F,7)=0 and Exth (F,9)=0 fork>0.

Proof. Let us prove first the global case.
(1) Projective case. Assume first that X is projective. We have

Exty, (#,.7) =limExt), (F,&)
&

where & ranges over the set of coherent G-equivariant &x-submodules of .#.
Hence it is enough to show that for such an &
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k k
B: Extg, (F,8) — Exty (F,5)

vanishes. We shall prove this by the induction on £ > 0.

For n > 0, there exists a G-equivariant surjective morphism V ® . £%®~" —
% — 0 by Lemma 3.3.2, which induces an exact sequence 0 — %' — V ®
FLO — Z — 0. We may assume that n is so large that H™(X; & ® £L®") =
0 for any m > 0. Then Exty (V@ L7, &6)=V* Q@ H™"(X;6§ @ .2%") =0
for m > 0, and hence we obtain a commutative diagram with exact rows:

Exty (V@ 297" &) — Extl;, (F',6) —— Ext}, (7

| | d

Exty (V@ £97", 0) —— Ext (T, F) —— Ext;, (F,.9).

&) —=0.

9

The homomorphism -~ is surjective, because .# is injective for £k = 1 and the
induction hypothesis implies Ext’;;l(ﬁ ") =0 for k > 1. Hence we have
6 = 0, and the surjectivity of « implies 3 = 0.

(2) General case. Let us embed X in a projective G-manifold X and let
j: X — X be the open embedding. Since

Home (A, ju.) = Home, (' N, )

for &/ € Mod(Ox,G), j«# is an injective object of Mod (0%, G). Let J be
the defining ideal of X \ X. Then J is a coherent G-equivariant ideal of O'g.
Let us take a coherent G-equivariant &'g-module .Z such that F|x ~ 7.
Then, the isomorphism (see [6])

implies the desired result.

The local case can be proved similarly to the proof in (1) by using
Lemma 3.3.7. Q.E.D.

Proposition 3.3.9. Let f: X — Y be a G-equivariant morphism of quasi-
projective G-manifolds. Then for any injective object & of Mod (Ox,G) and
Z € Mod eon(Ox,G), we have

REf (Home (F, 7)) =0 for k> 0.

Proof. The proof is similar to the proof of the preceding proposition. The
morphism f: X — Y can be embedded in f: X — Y for projective G-
manifolds X and Y. Let j: X — X be the open embedding. Let .J be the
defining ideal of X \ X. Then, extending .% to a coherent G-equivariant 'g-
module .%, one has
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RFf, (Home (F,.7)) ~ h_H)lef* (Homey (F @ J", . I))|y.

n

Hence, we may assume from the beginning that X and Y are projective.
Then we can argue similarly to (1) in the proof of Proposition 3.3.8, once we
prove

(3.3.4) F — f. Home, (F,.7) is an exact functor in F € Mod con(Ox, G).
This follows from Lemma 3.3.3 and the exactitude of the functor
Homiod (6, ,6) (&, fx Homey (F,F)) ~ Homyiod (o5 ,0) (6 @ox F,.I)

in % for any locally free G-equivariant coherent ¢y-module & Q.E.D.

By this proposition, we obtain the following corollary.

Corollary 3.3.10. Let Z be an injective object of Mod(Z2x,G). Then for
any morphism f: X — Y of quasi-projective G-manifolds and a coherent
locally free G-equivariant Ox-module &

(3.3.5) RFf (& @6y I)=0 fork>0.

Lemma 3.3.11. For any morphism f: X — Y and A4 € Mod.(Zx,G) and
a coherent locally free G-equivariant Ox-module &, there exists a monomor-
phism M — A" in Mod .(Zx,G) such that R¥f. (& ®@¢, M") = 0 for any
k # 0.

Proof. Let us take a monomorphism .# — . where .# is an injective object of
Mod (Zx, G). Let us construct, by the induction on n, an increasing sequence
{AM,} >0 of countably coherent subobjects of & such that .#, = .# and

(3.3.6) R*f.(& @ M) — RFf.(8 @ My 41) vanishes for k # 0.

Assuming that ., has been constructed, we shall construct ., 1. We

have
lim R*f (€ @A) =R f(6©F)=0 fork#0.
N CI

Here .4 ranges over the set of countably coherent subobjects of .#. Since
RFf.(& ® ,) is countably coherent, there exists a countably coherent sub-
object .#,, 41 of . such that .#,, C .#, 1 and the morphism R* f,(§®.#,) —
REf. (& @ My 1) vanishes for k # 0.

Then /' :=lim ./, satisfies the desired condition, because (3.3.6) implies

n

RFf (& @A) ~lim R*f.(6 @ M) ~ 0

n

for k #£ 0. Q.E.D.
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3.4 Pull-back functors

Let f: X — Y be a morphism of quasi-projective algebraic manifolds. Set
Dx—y = OxQf-10, f~19y. Then Zx _y has a structure of a (Zx, f 1 Dy )-
bimodule. It is countably coherent as a Zx-module. Then

f*:JVH‘@X*)yQ@@YQ/V:ﬁx(@ﬁYE/V

gives a right exact functor from Mod (%y) to Mod (Zx). It is left derivable,
and we denote by D f* its left derived functor:

Df*: D*(2y) — D”(Zx).

Now let f: X — Y be a G-equivariant morphism of quasi-projective alge-
braic G-manifolds. Then f*: A4 — Px_y ®g, N = Ox ®p, N gives also
a right exact functor:

f*: Mod (%y, G) — Mod (Zx, G).

Lemma 3.3.2 implies that any quasi-coherent quasi-G-equivariant Zy-
module has a finite resolution by quasi-coherent quasi-G-equivariant Zy--
modules flat over Oy . Hence the functor f*: Mod(%y,G) — Mod (Zx, G)
is left derivable. We denote its left derived functor by D f*:

(3.4.1) Df*: D*(2y,G) — D"(2x,G).
By the construction, the diagram
D*(2y,G) — D" (2y) — D" (6y)
r P
D*(Zx,G) —DP(2x) — D"(Ox)

commutes. The functor D f* sends D2 (Zy, G) to D2.(Zx, G). If f is a smooth
morphism, then D f* sends D", (Zy, G) to D2, (Zx, Q).
3.5 Push-forward functors

Let f: X — Y be a morphism of quasi-projective algebraic manifolds. Recall
that the push-forward functor

(3.5.1) Df,: D*(2x) — D*(%y)

L
is defined by Rf.(Zy _x®gqy.#). Here Dy _x is an (f =1 Dy, Px)-bimodule
19y ®@f-16, {2x/v, where we use the notations:

Qx =02 and Qx )y = 0x @ QY.
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Let f: X — Y be a G-equivariant morphism of quasi-projective algebraic
G-manifolds. Let us define the push-forward functor

(3.5.2) Df.: D*(2x,G) — D*(%y,G)
in the equivariant setting.

L
In order to calculate Zy. x®g, 4, let us take a resolution of Py . x by
flat 9 x-modules:

0 Dyex — [THDy @ 097" @ 2 @ Dx
— YDy @ 28 Y0 N 1e 9%
(3.5.3) Y *

— Y Dy 2 ) @ 2% @ Dx 0.

It is an exact sequence of (f =%y, Zx)-bimodules. Thus, for a complex .# of

L
PDx-modules, Py x@q, M is represented by the complex of f~! Zy--modules
(3.5.4) Dy @6y 297" @f-106, 2% Roy A [dx].

The differential of the complex (3.5.4) is given as follows. First note that
there is a left Zy-linear homomorphism

d: Dy @6y D7 — Dy @6y 297 @0y 2

given by
0
dPody® ) == :Pa— ® dy® ' ® dy;.

J Yi

Here (yi1,...,Ym) is a local coordinate system of YV, dy®~1 = (dy; A --- A
dym)®~ 1 and P € 2y. We define the morphism
e fTH Dy QT @) 2% — [fTH Dy @ YT ® 2%

by a®f0@w— a® (f*0Aw) fora € Py @ QY7 0 € Oy and w € 2.
Then, taking a local coordinate system (z1,...,x,) of X, the differential d of
(3.5.4) is given by

dla®@w @ u)
=p(da@w)@u+a®dw®u
0
dx; A
+Za®( x u))@a

X

u+ (—1)Pa®@w® du

(2

for a € Dy Rg, 297 we 2% andu e .
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We now define the functor
K f.: KT(Mod(Zx,G)) — K" (Mod(Zy,Q))

by
K fu(tl) = f(f7H( Dy @y O77") @16, 2% S0y A)|dx]
~ Dy Roy 57 oy f(2% R0y A)[dx].
For an injective object .# of Mod (Zx,G), Corollary 3.3.10 implies
(3.5.5) RF (% ®p A) =0 for any p and any k > 0.

Hence if .# * is an exact complex in Mod (Z2x, G) such that all .#™ are injec-
tive, then K f.(.# *) is exact. Hence K f, is right derivable. Let D f, be its
right derived functor:

Df.: DT(Mod(Z2x,G)) — D" (Mod (%2y, Q)).
For a complex .# in Mod (Zx,G) bounded from below, we have

K fol < Df. (M)

(3.5.6)
as soon as R¥ £, (25 @, #™) =0 for all k # 0 and p, n.

By the construction, the following diagram commutes.

D+ (Mod (Zx, G)) —L> D (Mod (Zy, G))

| l

D+ (Mod (Zx ) —2= D+ (Mod (Zy)).

Since Df, sends D”(Mod(Zx)) to D”(Mod(Zy)), we conclude that Df,
sends D?(Zx,G) to D*(Z2y,G), and D°(Zx,G) to D2.(2y, G).

Proposition 3.5.1. The restriction
ch f* : Kb(MOdCC(-@X7 G)) - Kb(MOdCC(@Y7 G))

of K f is right derivable and the diagram

DP(Mod .(Zx,Q@)) DL.(Zx, @)
R(Kcc f*)l in*
DP(Mod ¢(Zy, G)) —— D>.(2y, G)

quasi-commautes.
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Proof. Tt is enough to show that, for any .# € K”(Mod c.(Zx,G)), we can find
a quasi-isomorphism .# — .#’ such that the morphism K f.(.#") — D f.(.#)
is an isomorphism in Db(@y7 G). In order to have such an isomorphism, it is
enough to show that .#’ satisfies the condition in (3.5.6). By Lemma 3.3.11,
we have a quasi-isomorphism .# — .#’ such that .#’ is a complex in
Mod .(Zx,G) bounded below and satisfies the condition in (3.5.6). Since the
cohomological dimension of Rf, is finite, by taking n sufficiently large, the
truncated complex 7<".#" satisfies the condition in (3.5.6), and .# — 7<".4'
is a quasi-isomorphism. Q.E.D.

Note that, if f is projective, D f, sends D2, (Zx,G) to D2, (Zy, G) (see
[16]).

3.6 External and internal tensor products

Let X and Y be two algebraic G-manifolds. Let ¢;: X x Y — X and
g2: X XY — Y be the projections. Then for .#; € Mod(Zx,G) and
My € MOd(@y,G), MR My = (ﬁXxY ®q1_16’X qfljfl) ®q;lﬁy q{l//fg
has a structure of quasi-G-equivariant Zx «xy-module. Since this is an exact
bi-functor, we obtain

<M. :D”%x,G)xDP(Zy,G) - DP(Zxxy,G).
Taking pt as Y, we obtain
«®e+ :D°(Zx,@) x D’"(Mod(G)) — D*(Zx, Q).

Here Mod (G) denotes the category of G-modules.
For two quasi-G-equivariant Zx-modules .#7 and .#5, the Ox-module
M Ry Mo has a structure of Zx-module by

v(s1 ® $2) = (v81) ® 2+ 81 ® (vse) for v € Ox and s, € A,,.
Since this is G-equivariant, we obtain the right exact bi-functor
e ® e :Mod(Zx,G) XMOd(.@)(,G).HMOd(@X,G).

Taking its left derived functor, we obtain

D b b b
e®e :D (.@X,G)XD (.@X,G)—>D (.@)(,G).
We have o
MR Mo~ M Qe Mo
if either .#) or .#5 are complexes in Mod (Zx,G) flat over Ox.
D
The functor « @ « sends D> (Zx,G) x D>(Zx,G) to D°.(Zx, G).
Note that, denoting by §: X — X x X the diagonal embedding, we have

MO My ~ DS (MR M),
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Lemma 3.6.1. For # € Mod (0x,G) and .# € Mod (Zx,G), there exists a
canonical isomorphism in Mod(Zx,G) :

(3.6.1) (Dx @ox F) QM = Dx Doy (F @0y M).

Here F Q¢ M in the right-hand side is regarded as a G-equivariant Ox -
module.

The proof is similar to the one in [16] in the non-equivariant case.

3.7 Semi-outer hom

Let .# € Modon(Zx,G) and A4’ € Mod(Zx,G). Then the vector space
Homg, (A, #") has a structure of G-modules as follows:

Homg, (A, #") — Homgy,,, (1" A,y A")
— Homg oy, (WA, 1w ') ~Homp mag, (pr' 4, pr*a")
~ Homg, (M ,pr,pr*.#") ~ Homg, (M ,0c(G) @c ")
~ 0 (G) @ Homg, (M, #").

Here the last isomorphism follows from the fact that .# is coherent.
We can easily see that for any V € Mod (G)

(3.7.1)  Homwioea (c)(V,Homg, (A, . #")) = Homniea (9 ,c)(V @ A, A").
Since V — V®.# is an exact functor, (3.7.1) implies the following lemma.

Lemma 3.7.1. Let & be an injective object of Mod(Px,G) and # €
Mod ¢on(Zx, G). Then Homg, (A ,.7) is an injective object of Mod (G).

Let RHom g, (.#, ) be the right derived functor of Homg, (., »):
RHom g, (+, +): Dy, (Zx,G)P x D¥(Zx,G) — DT (Mod (G)).
By (3.7.1) and Lemma 3.7.1, we have
(3.7.2) Hompp g, oy (V @ A, ") = Hompy (vjoq (o)) (V; RHom g (A, "))

for Ve D*(Mod (@), .# € D2, (Zx,G) and .#4' € DT (Px,G). In particular

we have
(373) Home(@X,G) (%, %/) = Home(Mod(G))((Ca RHom Dx (%, %/))

Lemma 3.7.2. (i) RHomg, (s, ) sends D2, (Z2x,G)°° x D*(2x,G) to
DP(Mod (G)).
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(ii) Let F¢ denote the functors forgetting G-structures:

D"(Zx,G) — D*(Zx),
DP(Mod (@)) — D"(C).

Then ¢ RHom g, (A, N) = RHom g, (¥ q M, FcN) forany H €
D (Zx,G) and N € D*(Zx,Q).

Proof. We may assume that .# € Db(ModCOh(QX, G)) by Proposition 3.2.1.
Then, for an injective complex .4 in Mod (Zx,G), we have

ﬁgRHom@X(%,JV) ﬁHomgx(%,f/V) ZRHom@X(zgz(;.//,gngV)

by Proposition 3.3.8. This shows (ii), and (i) follows from the fact that the
global homological dimension of Mod(Zx) is at most 2dim X (see [16]).
Q.E.D.

Remark that this shows that the global homological dimension of Mod (Zx, G)
is finite. Indeed, the arguments of the preceding lemma shows that for
M € Modcon(Zx,G) and A € Modeon(Zx,G), H"(RHom g, (A, .N)) =
0 for n > 2dim X. On the other hand, the global homological dimen-
sion of Mod(G) is at most dimG (or more precisely the dimension of
the unipotent radical of ). Thus (3.7.3) shows Homp (g, ) (-4, A [n]) ~
Hompod () (C, RHom g (A4, .4")[n]) = 0 for n > dim G +2dim X. There-
fore, the global homological dimension of Mod con(Zx, G) is at most dim G +
2dim X. Hence so is Mod (Z2x, G),

3.8 Relations of Push-forward and Pull-back functors
Statements

Let f: X — Y be a G-equivariant morphism of quasi-projective G-manifolds.
Then Df* and Df, are adjoint functors in two ways. We use the notations:

Theorem 3.8.1. Let f: X — Y be a G-equivariant morphism of quasi-
projective G-manifolds.

(i) Assume that f is smooth. Then there exists a functorial isomorphism in
M €D (Dx,G) and N € DLy (P, G) -

(381) HOIHDb(_@ng) (JV, Df*%) = Home(_@X,G) (Df*e/V[_dX/Y]’%)

(ii) Assume that f is smooth and projective. Then there exists a functorial
isomorphism in M € D2, (Px,G) and N € DL, (Zy,G)

(382) HOInDb(_@YL;) (Df*%7e/‘/) = Home(@X,G)(,///, Df*JV[dx/y])
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This theorem will be proved at the end of this subsection.

By Theorem 3.8.1, we obtain the following morphisms for a smooth and
projective morphism f: X — Y, .# € D2, (Zx,G) and .4 € D2, (Zv,G).

coh
(3.8.3) Df*Df. sl [~dx,y] — M,
(3.8.4) M — D Df.Mdxy),
(3.8.5) DD N [dx)y] — A,
(3.8.6) N = DEDF N [~dxy].

Residue morphism
In order to prove Theorem 3.8.1, we shall first define the morphism

Let f: X — Y be a smooth and projective morphism. Let .% ¢ be the functor
from D°(Zy, G) to D”(Zy ). Then we have, by the theory of D-modules

(388) 9@(Df*ﬁx [dx/y]) — ﬁy
in D®(Zy ). This morphism (3.8.8) gives a Zy-linear homomorphism
HYx/Y (Df,0x) — Oy.

Since this is canonical, this commutes with the action of any element of G(C).
Hence this is a morphism in Mod (Zy, G). On the other hand, we have

H'(Df.0x) =0 forj>dxy.
We have therefore a morphism in D" (Zy, G).
Df.Ox[dx/y] = 2°(Df.Ox[dx/v]) = H*/¥ (Df.0Ox).
Therefore, we obtain a morphism D f.Ox[dx/y] — Oy in Db(@y, Q).

Lemma 3.8.2 (Projection formula). There is a functorial isomorphism in

M € D*(Px,G) and N € D*(Dy, Q)

D D
Df.(# QDf*N) ~ (Dfedl)D.N.

Since this is proved similarly to the non-equivariant case, we omit the proof

(see e.g. [16]).
By this lemma, we obtain the residue morphism:
(389) ReSX/yZ Df*Df*/V[dx/y] — =/V7

as the compositions of a chain of morphisms
D
Df.Df* ¥ [dx/y] =~ Dfi(Ox[dx)y]@Df*A)

D
>~ (Df*ﬁx[dx/y])(@ﬂ
D
— Oy QN ~.N.
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Proof of Theorem 3.8.1

We shall prove first the isomorphism (3.8.1) in Theorem 3.8.1. For .4 €
K*(Mod (Zy,@)), we have a quasi-isomorphism

N = Dy @090y @ Ndy]
and a morphism
Dy LTy @ N — Dy @ QLTI £ (Y @ FFN)
~ K fo(f*A)[=dx].
Thus we obtain a morphism in D°(Z2y, G):
(3.8.10) N = DED N [~dx)y],

even if f is not assumed to be smooth projective. This gives a chain of homo-
morphisms
Hompy gy ) (Df* A [—dx/v], #)
— Home(@Y,G) (Df*Df*JV[—dx/y], Df*%)
— Home(@y,G) (JV, Df*%)

Let us prove that the composition is an isomorphism when f is smooth. Sim-
ilarly as above, we have a morphism in D(Mod (G))

RHom g, (Df* A [~dx/y], #) — RHom g, (A, D f.. ).

By the theory of D-modules, forgetting the equivariance, this is an isomor-
phism in D”(C), assuming that f is smooth (see [16]). Hence this is an iso-
morphism in D®(Mod (G)). Finally we obtain by (3.7.3)
HOme(@)“G) (D‘]E*(/V[*dx/y}7 %)
~ Hompp (rjod (6 (C, RHom g (D f* A [—dx /v ], 4))
=% Hompp (vjod (6)) (C; RHom gy, (A, D fo )
~ Home(_@y,G) («/V, Df*.%)

The proof of (3.8.2) is similar using Resx/y : Df.Df* A4 [dx/y] — A given
in (3.8.9) instead of (3.8.10).

3.9 Flag manifold case

We shall apply Theorem 3.8.1 when X = G/P and Y = {pt}, where P is
a parabolic subgroup of a reductive group G. Note that X is a projective
G-manifold. Then, we obtain the following duality isomorphism.
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Lemma 3.9.1. For any finite-dimensional G-module E and a (g, P)-module
M finitely generated over U(g), we have an isomorphism

(3.9.1) Ext? () (0, E) = Home (Ext?

(a.P) (0.p) (B M), C).

Proof. The category Mod con(Zx, G) is equivalent to the category Mod f(g, P)
of (g, P)-modules finitely generated over U(g), and Mod con(Zy, G) is equiva-
lent to the category Mod ;(G) of finite-dimensional G-modules (see Proposi-
tion 3.1.5). The functor D f* is induced by the functor V — V from Mod (G)
to Mod (g, P). The right adjoint functor to the last functor is given by

(3.9.2) M — @V@Hom@,p)(‘@ M).

Here V ranges over the isomorphism classes of irreducible G-modules. Hence
the functor D f.[—~dx/y], the right adjoint functor of D f*, is the right derived
functor of the functor (3.9.2). Hence (3.8.2) implies that

[ Homp roa(a (V @ RHom g py (V, M)[dx], E[4))
\%

~ HomD(Mod(g,p))(Ma Elj]ldx]).

The last term is isomorphic to Ext?;(;)j (M, E), and the first term is isomorphic

to Hom¢ (Ext?gX;)j (E, M), (C) because, when E and V are irreducible, we have

C ifV~Fandj=0,

HomD(Mod(G))(V’E[jD - {0 otherwise

Q.E.D.

4 Equivariant derived category

4.1 Introduction

In the case of quasi-equivariant D-modules, the category has enough objects,
and it is enough to consider the derived category of the abelian category of
quasi-equivariant D-modules. However the categories of equivariant sheaves
have not enough objects, and the derived category of the abelian category
of equivariant sheaves is not an appropriate category. In order to avoid this
difficulty, we have to enrich spaces itself. In this paper, we follow a definition
of the equivariant derived categories due to Bernstein-Lunts [4].
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4.2 Sheaf case

Let G be a real Lie group and X a (separated) locally compact space with G-
action. We assume that X has a finite soft dimension (e.g. a finite-dimensional
topological manifold). We call such an X a G-space. If X is a manifold, we
call it a G-manifold.

In this paper, we say that G acts freely if the morphism g: G x X —
X x X ((g,2) — (gx,z)) is a closed embedding. Therefore, if X is a G-
manifold with a free action of G, then X /G exists as a (separated) topological
manifold.

Let Mod(Cx) be the category of sheaves of C-vector spaces on X. We
denote by D”(Cx) the bounded derived category of Mod (Cx).

Let u: G x X — X be the action map and pr: G x X — X the projection.

Definition 4.2.1. A sheaf F' of C-vector spaces is called G-equivariant if it is

endowed with an isomorphism p~'F =~ pr—! F satisfying the associative law
as in (3.1.2).

Let us denote by Mod ¢(Cx) the abelian categories of G-equivariant sheaves.
If G acts freely, then we have the equivalence of categories:

Mod ((CX/G) i>1\/[Odg((CX).

We will construct the equivariant derived category D2(Cx) which has
suitable functorial properties and satisfies the condition:

if G acts freely on X, then Db(CX/G) ~ DY(Cx).
Assume that there is a sequence of G-equivariant morphisms
Vi— Ve — Vs — o
where V}, is a connected G-manifold with a free action and
(4.2.1) (i)  H™(Vy;C) is finite-dimensional for any n,k,
(ii) for each n > 0, H"(V;C) =0 for k> 0.

Any real semisimple Lie group with finite center has such a sequence {V}}.
If G is embedded in some GLx(C) as a closed subgroup, we can take V;, =
{f € Homg(CN,CN*R): fis injective}. If G is a connected real semi-simple
group with finite center, then we can take (G x Vi)/K as Vi, where K is a
maximal compact subgroup of G and Vj is the one for K. Note that G/K is
contractible.

The condition (4.2.1) implies

C 2% “lim” RI(Vy; ©).
k

This follows from the following lemma (see e.g. [19, Exercise 15.1]).
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Lemma 4.2.2. Let C be an abelian category. Let {Xn}nez., be a projective
system in DP(C). Assume that it satisfies the conditions:

(i) for any k € Z, “liln” H*(X,,) is representable by an object of C,

(ii) one of the following conditions holds:
(a) there exist a < b such that H*(X,) ~ 0 for k > b and “lim” H*(X,,) ~
0 for k < a, T
(b) C has finite homological dimension, and there exist a < b such that
“lim” H*(X,) ~ 0 unless a < k <b,

n

Then “liin” X, is representable by an object of DP(C).

n

For example, we say that “liln” X, is representable by X € Db(C) if there

n
exists an isomorphism lim Hompp ¢y (Xn,Y) =~ Hompp () (X,Y) functorially
n
inY e Db(C ). In such a case, X is unique up to an isomorphism, and we write
X — “liin” Xn.

n

Let us denote by pr: Vi x X — X the second projection and by 7 : Vi X
X — (Vi x X)/G the quotient map. Here the action of G on Vj x X is the
diagonal action. We denote by the same letter ij, the maps Vi x X — Vi1 x X
and (Vi x X)/G — (Viy1 x X)/G.

Definition 4.2.3. Let D%(Cx) be the category whose objects are F =
(Foo, Fiy s or (k= 1,2,...)) where Fs, € D*(Cx), Fj, € D" (Cyyxx)/c)

and j: i,;leH = Fj, and ¢y p,;lFC>O lmr,;le such that the diagram

—1 —1 F ~ 71F
Uk Pr41tco P Lfoo

J/<Pk+1 ltpk

—1 1 ~ 1
U Thpr Pt T L

commutes. The morphisms in DP(Cx) are defined in an evident way.

The category Dg((C x) is a triangulated category in an obvious way, and the
triangulated category Dg((C x) does not depend on the choice of a sequence
{Vi}r (see [4]). We call D2 (Cx) the equivariant derived category.

By the condition (4.2.1), we have

(4.2.2) “lim” Rpp.my, ' Fi & Fio.
k
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Indeed, we have

“liin” Rpk*ﬂ—]lek ~ “liﬁl” Rpk*pl:lFoo ~ “liﬁl” (Foo ® RF(Vk, (C))
k k k

and “lim” RT'(Vj; C) ~ C by (4.2.1).
k
There exists a functor of triangulated categories (called the forgetful func-
tor):
yG : DE(CX) — Db(Cx)

Note that a morphism u in DZ(Cx) is an isomorphism if and only if .% ¢ (u)
is an isomorphism in D”(Cx).
By taking the cohomology groups, we obtain cohomological functors:

H": DE(CX) — MOdg((Cx).

Lemma 4.2.4. Assume that G acts freely on X. Then D2 (Cx) is equivalent
to D*(Cx/q).

Proof. The functor Db((CX/G) — D2(Cx) is obviously defined, and its quasi-
inverse D (Cx) — Db((CX/G) is given by F' — “lim” Ryp«(Fy), where gy, is
k

the map (Vi x X)/G — X/G. Note that “lim” Ra.(Fj;) = TSR, (F) for
k
[>a>0. Q.E.D.

Since Mod (Cx/¢) is equivalent to Mod g(Cx) in such a case, we have

(4.2.3)  if G acts freely on X, then D”(Mod ¢(Cx)) == D2/(Cx).
For a G-equivariant map f: X — Y, we can define the functors
f7 f': D&(Cy) — Dg(Cx)

and
Rfi, Rf.: D%(Cx) — DX(Cy).

The functors Rfy and f~! are left adjoint functors of f' and R f., respectively.
Moreover they commute with the forgetful functor D2(Cx) — D"(Cx).

4.3 Induction functor

The following properties are easily checked.
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For a group morphism H — G and a G-manifold X,
(4.3.1) there exists a canonical functor (restriction functor)

Res%: DR(Cx) — D% (Cx).

If H is a closed normal subgroup of G and if H acts
(4.3.2) freely on a G-manifold X, then

D&(Cx) = D1 (Cx/m).
For F € D2(Cx), we denote by F/H the corresponding object of
D2, 1 (Cx/m)-

Let H be a closed subgroup of G and X an H-manifold. Then we have a
chain of equivalences of triangulated categories

DY (Cx) ~ Dy, a(Cxxa) ~D&(Cixxay/m)

by (4.3.2). Here H x G acts on X x G by (h,g)(z,g') = (hz,gg’h™1). Let us
denote the composition by

(4.3.3) Ind%: DY (Cx) ~>DE(Cixxa)/m)-

When X is a G-manifold, we have (X x G)/H ~ X x (G/H), and we
obtain an equivalence of categories

(4.3.4) Indg: D%((CX) l>D]E;((CXX(G/H)) when X is a G-manifold.
Note that the action of G on X x (G/H) is the diagonal action.

4.4 Constructible sheaves

Assume that X is a complex algebraic variety and a real Lie group G acts
real analytically on the associated complex manifold X®". We denote by
DgR_C((C xan) the full subcategory of Dg((C xan) consisting of R-constructible
objects. Here F' € D2(Cxan) is called R-constructible if it satisfies the follow-
ing two conditions:

(i) dim HI(F), < oo for any x € X,

(ii) there exists a finite family {Z,} of locally closed subsets of X?2" such
that
(a) X" =UZa,

(b) each Z, is subanalytic in (X)*" for any (or equivalently, some) com-
pactification X — X of X,
(c) HI(F)|z, is locally constant .

For subanalyticity and R-constructibility, see e.g. [18].
We say that F is C-constructible (or constructible, for short) if we assume
further that each Z, is the associated topological set of a subscheme of X.
We denote by D&R_C((Cxan) (resp. D}:C);’([:_C(Cxan)) the full subcategory of

D2 (Cxan) consisting of R-constructible (resp. constructible) objects.
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4.5 D-module case

The construction of the equivariant derived category for sheaves can be applied
similarly to the equivariant derived categories of D-modules.

Let G be an affine algebraic group. Let us take a sequence of connected
algebraic G-manifolds

such that

G acts freely on V4, and

(4.5.2) for any n > 0, Ext%vk (Ov,, Ov,,) =2 H™(V2™;C) =0 for k> 0.

Such a sequence {V;} exists. With the aid of {V}}, we can define the equi-
variant derived category of D-modules similarly to the sheaf case. Let X be
a quasi-projective algebraic G-manifold. Let us denote by pr: Vix x X — X
the second projection and by mg: Vi x X — (Vi x X)/G the quotient mor-
phism.? We denote by the same letter i) the maps Vj, x X — V41 x X and
(Vk X X)/G i (VkJrl X X)/G

Definition 4.5.1. Let D% (Zx) be the category whose objects are .# =
(Mo, My, ji, o1 (k € L>1)) where Mo, € D*(Dx), My, € D* (D(vxx)/c)
and jy: Dif M1 == M), and ¢y Dpj M = Drj.#), such that the dia-
gram

Di;Dpj, Mo ———= D} tlns

l<Pk+1 \L%
. Jk
DlZDWZ+1%I¢+1 E— Dﬂ';:j/k
commutes.

Note that we have a canonical functor
D2 (Zx) — D (2x,G).

We denote by Dg,wh(%{) the full triangulated subcategory of D& (Zx)
consisting of objects .# with coherent cohomologies.
Similarly to the sheaf case, we have the following properties.

3 The quotient (Vx x X)/G may not exist as a scheme, but it exists as an al-
gebraic space. Although we do not develop here, we have the theory of D-
modules on algebraic spaces. Alternatively, we can use Mod ¢ (%v, xx) instead
of MOd(.@(kax)/G).



Equivariant derived category and representation of semisimple Lie groups 45

For a morphism f: X — Y of quasi-projective G-manifolds,
(4.5.3) we can define the pull-back functor Df*: Dg(Zy) — D& (Zx)
and the push-forward functor Df,: D%(Zx) — D (Zy).

(4.5.4) The canonical functor DR(Zx) — D?(Zx, G) commutes with
" the pull-back and push-forward functors.

For a closed algebraic subgroup H of G and an algebraic G-
(4.5.5) manifold X, there exists a canonical functor Res%: D%(Zx) —
Dy (7x)-

456 If H is a normal subgroup of G and if H acts freely on X and
(456) if X/ H exists, then D (Zx) ~ D% 5y (Zx/1)-

If H is a closed algebraic subgroup of G and X is an algebraic
(4.5.7) G-manifold, then we have
Indf;: D (Zx) = DG (Px x(a/m))-

4.6 Equivariant Riemann-Hilbert correspondence

Let X be a quasi-projective manifold. Let us denote by X?" the associated
complex manifold. Accordingly, Oxan is the sheaf of holomorphic functions on
X2 Then there exists a morphism of ringed spaces 7: X?" — X. We denote
by Zxan the sheaf of differential operators with holomorphic coefficients on
X" For a Px-module .#, we denote by .Z*" the associated Zxan-module
Dxan On-19y 7l ~ O'xan Qr-10x T M.

Let us denote by Dp.(Zx) (resp. D5 (Zx)) the full subcategory of
Db(@X) consisting of objects with holonomic cohomologies (resp. regular holo-
nomic cohomologies) (see [16]). Then the de Rham functor

DRy := R om g an (Oxan, » %) : D*(Zx) — D(Cx)

sends DPj(Zx) to DR (Cxan).
Then we have the following Riemann-Hilbert correspondence.

Theorem 4.6.1 ([12]). The functor DRx gives an equivalence of categories:
(4.6.1) DRy : D2, (Zx) =5 DE_(Cxan).

Now, let G be an affine algebraic group and X a quasi-projective G-
manifold. Then we define similarly Dg ,,(Zx) and D, (Zx) as full sub-

categories of D2(Zx). Then we can define the equivariant de Rham functor:
DRx : D¢ poi(Zx) — Dan, c.o(Cxan).
Theorem 4.6.1 implies the following theorem.

Theorem 4.6.2. The functor DRx gives an equivalence of categories:

(4.6.2) DRy : D¢ 11 (Zx) =5 Dan, ¢.o(Cxan).
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5 Holomorphic solution spaces

5.1 Introduction

Let G be an affine complex algebraic group and let X be a quasi-projective
G-manifold. Recall that we denote by X" the associated complex manifold
and, for a Px-module .#, we denote by .Z*" the associated Pxan-module
Dxon Qp-1gy T VM ~ Oxon -1, T M. Here m: X* — X is the canon-
ical morphism of ringed spaces.

Let Gr be a real Lie group and let Gg — G*" be a morphism of Lie groups.
Hence Gr acts on X?2",

Recall that FN¢, is the category of Fréchet nuclear Gg-modules (see Ex-
ample 2.1.2 (iii)). We denote by D°.(Zx, G) the full subcategory of D*(Zx, G)
consisting of objects with countably coherent cohomologies, by D%Rﬁctb((c Xan)

the full subcategory of ng (Cxan) consisting of objects with countable sheaves

as cohomology groups (see §5.2), and by D?(FNg, ) the bounded derived cat-
egory of FINg,.
In this section, we shall define

RHom g, (A ® K, Oxan)

as an object of D?(FNg,) for .# € D2(Zx,G) and K € DgR’Ctb((CXan).
Here, we write RHom ¢, (# ® K, Oxan) instead of RHom -1, (7714 ®
K, Oxan) ~ RHom g .. (A @ K, Oxan) for short.

We also prove the dual statement. Let DFNg, be the category of dual
Fréchet nuclear Gg-modules. We will define

L
RI (X" K @ 2xanQgy M)

as an object of D"(DFNg,) for .# and K as above. We then prove that

L
RHomg, (# ® K,Oxan) and RT(X*; K ® 2xaxQq, #)[dx] are dual to
each other.

5.2 Countable sheaves
Let X be a topological manifold (countable at infinity).

Proposition 5.2.1. Let F' be a sheaf of C-vector spaces on X. Then the fol-
lowing conditions are equivalent.

(i) for any compact subset K of X, T'(K; F) is countable-dimensional,
(ii) for any compact subset K of X, H"(K; F) is countable-dimensional for
all n,
(iii) for any x and an open neighborhood U of x, there exists an open neigh-
borhood V' of x such that V. C U and Im(TU; F) — T(V;F)) is
countable-dimensional,
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(iv) there exist a countable family of open subsets {U;}; of X and an epimor-
phism ®;Cy, — F.

If X is a real analytic manifold, then the above conditions are also equivalent
to

(a) there exist a countable family of subanalytic open subsets {U;}; of X and
an epimorphism @&;Cy, — F.

Proof. For compact subsets K7 and K5, we have an exact sequence
H" Y (KiNKyF) — H" (K, UKy F) — H"(Ky; F) ® H"(Ky; F).

Hence, if K7, K and Ky N K, satisfy the condition (i) or (ii), then so does
K, UK5. Hence the conditions (i) and (ii) are local properties. Since the other
conditions are also local, we may assume from the beginning that X is real
analytic.

(ii)=(i)= (iii) are obvious.
(ii)=(iv) Let us take a countable base of open subsets {Us}scs of X. Then,
for each s € S, there exists a countable open covering {V;}cr(s) of Us such
that Im(T'(Ug; F) — T'(Vy; F)) is countable-dimensional. Then the natural
morphism
P ImTUsF)—-T(V;F)eCy, = F

seS,i€l(s)
is an epimorphism.
(iv)=(a) follows from the fact that each Cy, is a quotient of a countable direct
sum of sheaves of the form Cy with a subanalytic open subset V.
(a)=(ii) We shall prove it by the descending induction on n. Assume that
F satisfies the condition (a). Let us take an exact sequence

0—=F —L—F—0,

such that L ~ @;Cy, for a countable family {U;}; of subanalytic open
subsets of X. Then, for any relatively compact subanalytic open subset
W, H*(W;Cy,) is finite-dimensional (see e.g. [18]). Hence, the cohomology
group H*(K;Cy,) = lim H¥(W;Cy,) is countable-dimensional, and so is
KCW

H¥(K;L) ~ @;H*(K;Cyp,). Therefore L satisfies (i), which implies that F’
also satisfies the condition (i) and hence the condition (a). By the induction
hypothesis, H"*(K; F') is countable-dimensional. By the exact sequence

H™K;L) — H"(K; F) — H" (K FY),

H™(K; F) is countable-dimensional. Q.E.D.

Definition 5.2.2. A sheaf F of complex vector spaces on X is called a count-
able sheaf if F satisfies the equivalent conditions in Proposition 5.2.1.
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Let us denote by Mod ¢, (Cx) the full subcategory of Mod (Cx) consist-
ing of countable sheaves. Then, Mod .41 (Cx) is closed by subobjects, quotients
and extensions. Moreover it is closed by a countable inductive limits. Let us de-
note by D, (Cx) the full subcategory of DP(Cx) consisting of objects whose
cohomology groups are countable sheaves. It is a triangulated subcategory of

DP(Cx).

Lemma 5.2.3. (i) If F, F' € D2, (Cx), then F® F” € DY, (Cx).
(ii) For F € D*(Cx), the following conditions are equivalent.
(a) F € D%, (Cx),
(b) H™(K; F) is countable-dimensional for any compact subset K and
any integer n,
(c) HX(U; F) is countable-dimensional for any open subset U and any
integer n.
(iii) Let f: X — Y is a continuous map of topological manifolds. Then
RfiF € D2, (Cy) for any F € D%, (Cx).

Proof. (i) follows from (iv) in Proposition 5.2.1.
(ii) (b)=(c) If U is relatively compact, it follows from the exact sequence
H"Y(K\U;F) — H*U;F) — H"(K;F) for a compact set K D U, and if
U is arbitrary, it follows from H'(U; F) = lim HJ(V;F).

vccu
(¢)=(b) follows from the exact sequence

HI(X;F) —» H"(K; F) — HI'PHY(X \ K; F).

(a)=(b) Let us show that H"(K;7<FF) is countable-dimensional by the in-
duction on k. If H"(K;7<*~1F) is countable-dimensional, the exact sequence

H™(K;7F'F) — H"(K;7<FF) — H" M (K; HY(F))

shows that H"(K;7<*F) is countable-dimensional.

(b)=(a) We shall show that H*(F) is a countable sheaf by the induction on
k. Assume that 7<*F € DY, (Cx). Then, for any compact subset K, we have
the exact sequence

H"(K;F) — H"(K;TZkF)) — H”+1(K;T<kF).

Since H"*1(K;7<FF) is countable-dimensional by (a)=(b), H"(K;72*F))
is also countable-dimensional. In particular, T'(K; H*(F)) = H*(K;72*F) is
countable-dimensional.

(iii) For any open subset V of Y, H*(V;RAF) ~ HIf Y V);F) is

c
countable-dimensional. Q.E.D.

The following lemma is immediate.

Lemma 5.2.4. Let F' be a countable sheaf and let H — F' be an epimorphism.
Then there exist a countable sheaf F' and a morphism F' — H such that the
composition F' — H — F is an epimorphism.



Equivariant derived category and representation of semisimple Lie groups 49

By Lemma 5.2.4, we have the following lemma.

Lemma 5.2.5. The functor D®(Mod t,(Cx)) — D, (Cx) is an equivalence
of triangulated categories.

More precisely, we have the following.

Lemma 5.2.6. Let F' be a bounded complex of sheaves such that all the co-
homology groups are countable. Then we can find a bounded complex F' of
countable sheaves and a quasi-isomorphism F' — F.

If a Lie group G acts on a real analytic manifold X, we denote by
Mod ¢ ctb(Cx) the category of G-equivariant sheaves of C-vector spaces which
are countable.

Remark 5.2.7. A sheaf F' of C-vector spaces on X is not necessarily count-
able even if F, is finite-dimensional for all z € X. Indeed, the sheaf ®,exCyyy
on X is such an example.

5.3 C°°-solutions

Let X, G and Gg be as in §5.1. Let X be a real analytic submanifold of X"
invariant by the Gr-action such that T, X =2 C ®g T, Xg for any z € Xg. Let
M be a differentiable Gg-manifold. Let us denote by €5, . ), the sheaf of C>°-
functions on Xg x M. Then, €5, ,, is an f~'2x-module, where f: X2 x
M — X is a canonical map. For .# € Mod (Zx) and K € Mod (Cx,xnm), we
write Homg, (4 @ K, 6, ;) instead of Hom -1, (f~'4 @ K, 6L 1r)
for short.

Lemma 5.3.1. For any countable sheaf K on Xg X M and a countably co-
herent Dx -module A4 , Homg, (M @ K, €L, ) has a structure of Fréchet
nuclear space.

Proof. The topology is the weakest topology such that, for any open subset U
of X, any open subset V of (U** N Xg) x M and s € T'(U; #), t € T'(V; K),
the homomorphism

(5.3.1) Homg, (A4 @ K,€% a) 2 ¢ (s @t) € C(V)

is a continuous map. Here, C*°(V) is the space of C*-functions on V.

There exist a countable index set A and a family of open subsets {U, }aca
of X, open subsets {V,}qca of Xg X M and s, € T(Uy; A ), to € T'(Vy; K)
satisfying the following properties:

(i) Vo C U™ x M,
(ii) {Sa}aca generates ., namely, My =) iy (Px)z(84)s for any v € X,

(iii) {ta}aca generates K, namely, K, ~ > . C(ty), for any z € Xg x M.
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Then by the morphisms (5.3.1), {s,} and {t,} induce an injection

Homg, (M @ K, €3 ) — [ C°(Va).
acA

We can easily see that its image is a closed subspace of [] ., C*(V4), and
the induced topology coincides with the weakest topology introduced in the
beginning. Since C*(V},) is a Fréchet nuclear space and a countable product
of Fréchet nuclear spaces is also a Fréchet nuclear space, [],c 4 C*(Va) is a
Fréchet nuclear space. Hence, its closed subspace Homg,, (/// ® K, C% « M)
is also a Fréchet nuclear space. Q.E.D.

Let &7, denote the sheaf of differential forms on X x M with C°°-
coefficients which are (p, ¢)-forms with respect to X2, and r-forms with re-
spect to M. We set zg’)((oa’fiM = @n:qurcf)((O;f’:gv[. Then é””)((oa’,:X)M is a com-
plex of p~!Pxan-modules, and it is quasi-isomorphic to p~!@xan, where
p: X?* x M — X?®" is the projection.

Lemma 5.3.2. For any K € Mod g, ctb(Cxanxar) and A4 € Mod ..(Zx,G),
Homg,, (/// K, éa)((oa’f)xM) has a Fréchet nuclear Gg-module structure.

The proof is similar to the previous lemma.
We denote by Homy? (# @K, 6 ) and Homg? (A4 QK, é")((omni ) the
corresponding space endowed with the Fréchet nuclear Gg-module structure.

5.4 Definition of RHomt°P

Let us take a differentiable Gr-manifold M with a free Gr-cation. Then we
have an equivalence of categories:

MOdGR ((CXH“XM) ~ MOd (C(Xa“XM)/Gm)
(5.4.1)

Mod gy ctb (Cxanxar) =~ Mod eon (Cxanx a1y /G ) -

Definition 5.4.1. A countable Gr-equivariant sheaf K on X?" x M is called

standard if K is isomorphic to @ (E;)u,, where {U;}jc is a countable family
jeJ

of Gr-invariant open subsets of X*" and F; is a Gr-equivariant local system

on Uj of finite rank. Note the (FE;)y, is the extension of E; to the sheaf on

X2 x M such that (Ej)U]‘ ‘(Xaan)\Uj =0.

Let us denote by Mod gy, stand(Cxanxar) the full abelian subcategory of
Mod g (Cxanx pr) consisting of standard sheaves. With this terminology, we
obtain the following lemma by (5.4.1) and Proposition 5.2.1.

Lemma 5.4.2. For any K € C~ (ModGR(Cxaan)) with countable sheaves

as cohomologies, there exist K' € C~ (ModGR,Stand((CXaan)) and a quasi-
1somorphism K' — K in C~ (Mod Gs ((Cxaan)).
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Similarly we introduce the following notion.

Definition 5.4.3. A countably coherent quasi-G-equivariant Zx-module .#
is called standard if .4 is isomorphic to Zx ®¢g, & where & is a countably
coherent locally free G-equivariant &'x-module.

We denote by Mod stana(Zx, G) the full subcategory of Mod (Zx, G) con-
sisting of standard modules.

For K € Kb (MOdGm,ctb(CXa“XM» and # € Kb (1\/[Odcc<@x7 G)), we
define the complex Hom;i (/// QK,& )((O;U'X) M) of Fréchet nuclear Gg-modules
in Lemma 5.3.2.

Lemma 5.4.4. (i) Let A € Modgand(Zx) and L € Modstand (Cxanxar)-
Then, we have

Ext), (N ® L, &0, ) =0
for any 5 # 0 and any q.
(ii) We have isomorphisms in D"(C):
Homg, (4 @ K, E8:0) 1) = RHom g (4 © K, E80) 1)
~ RHomg, (# @ K,p~'Oxan)

for A € K~ (Modgtand(Zx)) and K € K~ (Mod stand (Cxanxar)). Here
p: X* x M — X3 is the projection.

Proof. (i) Since 4 is a locally free Zx-module and g)ﬂ?;E)XM is a soft sheaf,
we have é"xtéx (A, éa)((og,?)xM) =0 for j # 0. Hence, R#om o, (N, (o@)(((iQ)XM)
is represented by Jomg, (JV,é’)((O;,?)XM). Since Somg, (W,é’éog,?)xM) has
locally a @%%ny)-module structure, it is a soft sheaf. Hence, we obtain
Extj@X (L, H#omqg, (JV,(?)((QJ,?)XM)) = 0 for j # 0. Finally, we conclude that

Home (L, Homg, (N, ELD. 1)) represents

RZomc(L,RAHom o, (N, éa)(g;f)xM)) ~ R om g, (N & L, é")((ogf)xM).

(ii) follows immediately from (i). Q.E.D.

Proposition 5.4.5. Let us assume that K € K° (ModGR,Ctb((CXaan)) and
A € K® (Modeo(Zx,G)). Then,

Lnlii)nw Homt@()}lz (%/ ® K/’g)((();nugM)
MK

is representable in Db(FNGm). Here, . #' — . # ranges over the quasi-
isomorphisms in K~ (Modcc(gx,G)) and K' — K ranges over the quasi-
isomorphisms in K~ (Mod GR’Ctb(CXaan)). Moreover, forgetting the topology
and the equivariance, it is isomorphic to RHom g, (# @ K,p~'Oxan). Here
p: X x M — X3 s the projection.
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Proof. There exist 4" € K~ (Modganda(Zx,G)) and a quasi-isomorphism
M'" — A . Similarly by Lemma 5.4.2, there exist K’ € K™ (Mod ¢y stand (Cx))
and a quasi-isomorphism K’ — K.

Then

(5.4.2)  Homgy (4 @ K',&Q!) ) — RHom g (A4 © K, p~ ' Oxan)

is an isomorphism in D(C) by the preceding lemma.

To complete the proof, it is enough to remark that, if a morphism in
K(FNg,) is a quasi-isomorphism in K(Mod (C)) forgetting the topology and
the equivariance, then it is a quasi-isomorphism in K(FNg,). Q.E.D.

Definition 5.4.6. Assume that Gg acts freely on M. For .# € D>(Zx,G)
and K € Dg_ o (Cxanxar), we define RHom"} (/# ® K, éa)((oa’n'X)M) as the
object

“li—H)l” HOmt@O)IZ (%/ ® K,, éo)((oa:n.QM)

MK

of DP(FNg, ). Here, .’ ranges over the set of objects of K~ (Mod ee(Zx,G))
isomorphic to .# in D¢.(Z2x,G), and K’ ranges over the set of objects of
K~ (ModGR,ctb(CXaan)) isomorphic to K in D(Mod(;]R ((CXMXM)).

Let us take a sequence of Gg-manifolds with a free Ggr-action:
(54.3) V1—>‘/2%‘/33—)...
as in (4.2.1).
Lemma 5.4.7. For .# € D,(Zx,G) and K € D&, ,(Cxan), Then
7= RHom'Y (M © p; 'K, Exn )

does not depend on k > a > 0 as an object of Db(FNGR), Here py: X" X
Vi, — X3" is the projection.

Proof. Forgetting the topology and the equivariance, we have

RHomtO@Z (M @p, 'K, 5’)((0;,:X)Vk) ~ RHom g, (# @ p;, ' K, p;,' Oxan)
~ RHom g, (# @ K, Ox=n) @ RT(Vj; C),

and

r<a (RHom o (M @ K, Oxan) @ RT(Vy: (C)) ~ RHom g, (# @ K, Oxn)

for k> a> 0. Q.E.D.



Equivariant derived category and representation of semisimple Lie groups 53
Definition 5.4.8. We define

RHom"} (A4 ® K, Oxan)

as 7= RHomtO@pX (M @ p; 'K, 5;((0¥11.x)vk) for k> a > 0.
Note that
RHom')Y (A @ K, Oxan)
~ “lim” RHom"3Y, (A @ p ' K, E00),,).
k
top

Note that, forgetting the topology and the equivariance, RHom Dx (A &
K, Oxsn) is isomorphic to RHom g, (# ® K, Oxan) € D(C).

5.5 DFN version

L
In this subsection, let us define RTP(X*" K ® Qxan®g, A ), which is the
dual of RHoth’@pX (M ® K, Oxan). Since the construction is similar to the one

of RHomw@Z (M @ K, Oxan), we shall be brief.

Let us denote by Qistgf;f,) the sheaf of (p, ¢)-forms on X" with distribu-
tions as coefficients. Then for any open subset U of X?" T'.(U; @istg?;?,))
is endowed with a DFN-topology and it is the dual topological space of
the FN-space é’}@’n‘_“d"_q)(U). Hence for .# € K~ (Modgtana(Zx)) and
F € K~ (Mod gana(Cxan)), To(X? K @ Zist\$X ") @0, #)[dx] is a com-
plex of DFN-spaces, and it is the dual of Homtgj)f: (A ® K, 5)((0;“')). We
denote by I''P(X* K ® @ist()?jf,") ®gy A) the complex of DFN-spaces
(X K® @ist()?if{ *) ®qy A ). If we forget the topology, it is isomorphic
to RT.(X*; K @ Qxan @, #) € D°(C). Thus we have defined a functor:

RTP(X™; + © QxenBoy +): Dy (Cxon) x DE(Zx) — D"(DFN).
When X is a quasi-projective G-manifold, we can define its equivariant version
RIP(X™: « @ Qxen®gy +): DY, o (Cxon) x D (Zx, G) — D*(DFNg, ).
We have
(55.1) RTP(X* K © Qxon By 4 )[dx] = (RHom'®, (A @ K, Oxen))"
Here («)*: DP(FNg, ) =% DP(DFNg,) is the functor induced by the du-
ality.

If we forget the topology and the equivariance, RTP (X" K ® 2yan Qg
) is isomorphic to RT(X* K ® 2xa Qg M) € Db((C).
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5.6 Functorial Properties of RHom®°P
Statements

We shall study how RHom'P behaves under G-equivariant morphisms of
G-manifolds. We shall keep the notations G, Gk as in §5.1.

Let f: X — Y be a G-equivariant morphism of quasi-projective algebraic
G-manifolds. Let f2": X?" — Y2" be the associated holomorphic map.

Theorem 5.6.1. (i) Assume that [ is smooth and projective. Then, there
exists a canonical isomorphism in D*(FNg,) :

RHom"} (A@(f*) 'L, Oxe) ~ RHom'Y (D fudl @ L, Oyan) [~dxv]

for # € DY(Zx,G) and L € DY, 1,(Cy).
(ii) Assume that f is smooth. Then, there exists a canonical isomorphism in
D"(FNg,):

RHom"} (A @R(f*" )| K, Oyan) ~ RHom"} (Df* N @K, Oxen)[2dx,y]

for # € DLy (Zy,G) and K € D¢, 1, (Cx).

Preparation

Let us take a sequence {Vj} as in (4.2.1).
Let ./ € D°.(2y,G) and L € DgR,ctb(CYa“)' Then, by the definition, we
have

RHom'$ (4 ® (L B Cy,), &5%)y,) = “lim” Hom'SP (47 @ L', &%) ).
N L

Here, .4 ranges over the objects of K~ (Modcc(gy, G)) isomorphic to .4 in
D(Mod (Zy, G)), and L’ ranges over the objects of K~ (Mod GR7Ctb(CYanXVk))
isomorphic to L ¥ Cy, in ng,ctb(CYa“ka)- Then the morphism

(0,) (0,¢)
‘@X—)Y _og%/ gyax1ka — éBXa“XVk

induces morphisms in D”(FNg, ):

Hom(Z} (/" @ L', 67550y, ) — Homgl (F74" @ (1" x idv) 'L, 6000,
— RHom"Y (Df* 4 @ ((f*) 'L B Cy,), &y )-

Thus we obtain a morphism

RHomtng; (A @ (LK Cy,), éax(fg.x)vk)
— RHom'® (Df*.# @ ((f*) 'L B Cy, ), £
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for # € D°(Zy,G) and L € Dthb(Cym). Taking the projective limit with
respect to k, we obtain

(5.6.1) RHom'eY (A ® L, Oye) — RHom'® (Df* N @ (f**) 'L, Oxan).

Here, f is arbitrary.

Proof of Theorem 5.6.1

Let us first prove (i). For .# and L as in (i), we have morphisms
RHom"} (Df..# @ L[dxy], Oyan)
— RHom"} (Df*Dfo[dx/y] ® (f*) 'L, Oxn)
— RHOmtO@I?X (.% & (fan)_lL, ﬁXWn)

Here, the first arrow is given by (5.6.1) and the last arrow is given by .# —
Df*Df..#[dx,y] (see (3.8.4)).
We shall prove that the composition

RHom'® (Df..#[dx/y]® L, Oyan) — RHom' P (M & (f*) 'L, Oxan)

is an isomorphism in Db(FNGR).
In order to see this, it is enough to show that it is an isomorphism in
DP(C). Then the result follows from the result of D-modules:

R%OTTL@Y (Df*%[dx/y], ﬁyan) = R(fan)*R L%”om%( (%, ﬁXan).

The proof of (ii) is similar. Let .4 and K be as in (ii), then we have a
sequence of morphisms

RHom"} (A @ Rf*™ K, Oyan)
— RHom"® (Df* A @ (f*) 'Rf*™ K, Oxan)
— RHom"} (Df* AN @ K, Oxan)[2dx/v]-
Here the last arrow is obtained by
K — (f*)R(f*"),K = (f*)7'R(f*), K[2dx,v]-

The rest of arguments is similar to the proof of (i) by reducing it to the
corresponding result in the D-module theory:

Ro%om Dx (Df*e/V’ ﬁXan) ~ (fan)_l R.77om Dy (e/V, ﬁyan).
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5.7 Relation with the De Rham functor

Let X be an algebraic G-manifold. First assume that G acts freely on X.
Let p: X — X/G be the projection. Let .# € D" (Z2x,G) and K ¢
GR,ctb((cX’“) Let % be an object of Dgyhol(.@x). Let .Z/G be the object

of Dhol(@X/G) corresponding to .Z. Set L = DRx (%) € D? an_cc(Cxan) (see
Subsection 4.6). Then the corresponding object L/G** € D(E_C(C(X/G)an) is
isomorphic to DRx /¢ (Z/G).

Let us represent .# by an object of K ;. ,(Zx,G) and .Z/G by an object
ZeK- (Mod stand(Zx/G)). Then £ is represented by p* 2. Since L/G* ~

%Omg(x/c)an (.@(X/G)an & /\@(X/G)an,,i?;m) belongs to DEtb((C(X/G)an), there
exist F' € K™ (Modstana (C(x/¢))) and a quasi-isomorphism

F — %Om@(x/c>al, (.@(X/G)an ® /\ @(X/G)an’ ,,Sfan)
by Lemma 5.2.6. Thus we obtain a morphism of complexes of Z(x/g)an-
modules:
(57.1) .@(X/G)an ® /\@(X/G)zm ® F — gan.
Let M be a differentiable manifold with a free Gr-action. Then for any E €
Kg, stana(Cxanxar), the morphism (5.7.1) induces morphisms

HomS" (M @0y L @ B, E\in) 1r)

1 a 0,
~ Homg}‘;an (A" B(pany-16,x )y (P™) 1l @ E, 5)((ax,X)M)

— HOHltOp (%an ( n)—l(@(X/G)an X /\ @(X/G)an X F) ®c FE éaXOm.XM)
(™)~ O (x/Gyan

:Hommp((/// ® p- (QX/(;@/\@X/G ((Pan)ilF@)E) g)((odn.X)M)

p~10x,c
On the other hand, we have an isomorphism in D”(FNg, ):

RHomt;I; (M ®c (p™'F @c E), éa)((%n.x)M)
~ Homtop ((/// ® p- (.@X/GQ@/\@)(/G)) ® ((pan)_1F® E),z%(&n'x)M>,
Ox/a

because A ®p-10y P (Px/6 ® \* Ox)c) — A is a quasi-isomorphism,
and A @p-16y ) p‘l(QX/G 2 A\° Ox/¢) and (p*)~'F ® E are standard
complexes. Thus we obtain a morphism in Db(FNGR)

D .
RHom'® (4 %) ® E, &%) 1)

(5.7.2)
— RHom'Y (. ® (DRx(Z) ® E), 68%:),)
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for # € D2(Zx,G), £ € D¢ oi(Zx) and E € D¢ o (Coxnnnr).

Let us take a sequence {V;} asin (4.2.1). Let K € ngﬁctb(cxan). Setting
M =V, E = KXCy, in (5.7.2), and then taking the projective limit with
respect to k, we obtain

D
RHom"} (4 ® %) ® K, Oxan)

(5.7.3)

When the action of G is not free, we can also define the morphism (5.7.3)
replacing X with V, x X, and then taking the projective limit with respect
to k. Here {V}} is as in (4.5.1). Thus we obtain the following lemma.

Lemma 5.7.1. Let .4 € D2.(Zx,G) and K € ng’ctb(cxan). Then for any
Z e ch):,hol(QX), there exists a canonical morphism in D”(FNg,) :

D
RHom"} (4 ©.L) & K, Oxan)
— RHom"} (# ® (DRx (L) ® K), Oxan).
For a coherent Zx-module A4, let us denote by Ch(.#") C T*X the char-
acteristic variety of 4 (see [16]). For a submanifold YV of X, we denote by

Ty X the conormal bundle to Y. In particular, 7% X is nothing but the zero
section of the cotangent bundle 7% X.

Theorem 5.7.2. Let .4 € D2, (2x,G), £ € Dg’hol(@X). Assume that A

coh
and £ are non-characteristic, i.e.

(5.7.4) Ch(.#)N Ch(ZL) C TLX.

Then, for any K € Dgwb(cxan), we have an isomorphism in D (FNg, ):

RHom'® (4 & .2)® K, Oxwm) - RHom'L (.4 & (DRx (£) @ K), Oxen).
Proof. 1t is enough to show the result forgetting the topology and the equiv-
ariance. Then this follows from the well-known result
Ro%om g, (M c%.,s,ﬂ, Oxan)
= RAom g (M, Oxn) Qc Rom ¢ (L, Oxan)
R om g, (M, Oxan) @c RIF0M yan (DRx (L), Cxan)
=~ RAomc(DRx (L), RA#om g, (M, Oxa))
R om g (M @DRx (L), Oxan).

Here, the first and the third isomorphisms need the non-characteristic condi-
tion (see [18]). Q.E.D.



58 Masaki Kashiwara

6 Whitney functor

6.1 Whitney functor

In §5, we defined RHomtf)@I; (M @K, Oxan) as an object of D”(FNg,). In this
section, we introduce its C*°-version. We use the Whitney functor developed
in Kashiwara-Schapira [20].

Theorem 6.1.1 ([20]). Let M be a real analytic manifold. Then there exists
an exact functor

e ®E : Modg.o(Car) — Mod (Zy).

Moreover, for any F' € Modg_.(Cyr), T'(M; F%%ﬁj) is endowed with a Fréchet
nuclear topology, and

D(M; « @€ : Modg.o(Cpr) — FN
is an exact functor.

Remark 6.1.2. (i) For a subanalytic open subset U, I'(M;Cy ® Ery) is

the set of C*°-functions f defined on M such that all the derivatives of

f vanish at any point outside U. Its topology is the induced topology of
C>°(M).

(ii) For a closed real analytic submanifold N of M, the sheaf Cy ® Gy is

isomorphic to the completion 1&1%&0 /I, where I is the ideal of €57

n
consisting of C*°-functions vanishing on V.
(iii) In this paper, the Whitney functor is used only for the purpose of the
construction of the morphism in Proposition 6.3.2. However, with this

functor and Thom (see [20]), we can construct the C*globalization and
the distribution globalization of Harish-Chandra modules.

Hence we can define the functor

« ® €5 : DR (Car) — D*(Zr),
RIYP(M; « ©%5°) : D2 (Car) — DP(FN).

For any F € Modg.<(Cys), we have a morphism
F &€ — Home(Home(F,Car), €55),
which induces a morphism in D”(FN)

(6.1.1) RIP(M; F & 657) — RHom™®(F*, 657)
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for F € D}_.(Cys), where F* := R.#om (F,Cyy).
If a real Lie group H acts on M, we can define

TP (M; « ® €22) : Mod g2.0(Cpy) — FNp.

Note that, for a complex manifold X and F € Dﬂbg_C((CX), F % Ox €
DP(Zx) is defined as F ® &L,

6.2 The functor RHom"? (+, « ® Oxan)
Let X, G, Gr be as in §5.1.
For .4 € D..(Zx), F € DR_.(Cx), let us define RHom')} (., F® Oxum)

as an object of DP(FNg, ), which is isomorphic to RHom o, (4, F ® Oxan)
forgetting the topology and the equivariance. The construction is similar to
the one in §5.

Let M be a Ggr-manifold with a free Gg-action. For 4 € Mod .(Zx,G)

and F € Mod g, g-c(Cxanxar), we endow Homg, (4, F % éa)(g;f)xM) with a
Fréchet nuclear Ggr-module structure as in Lemma 5.3.1. Hence, for .#Z <
K™ (Mode(Zx,G)) and F € K~ (Mod g r-c(Cxanxar)), we can regard the

complex Homg, (4, F ® éa)(ﬁiJX)M) as an object of D?(FNg,). Taking the
inductive limit with respect to .#, we obtain RHom's} (.4, F ® 5)((0;;2 u) €
D"(FNg,) for .# € D}(Zx,G) and F € D¢, p.o(Cxanx ).

Let us take a sequence {Vi} as in (4.2.1). Let .# € D (Zx,G) and
F e D%R’R_C((C xan ). Forgetting the topology and the equivariance, we have

RHom") (A, (F B Cy,) ® &)y
~ RHom g, (#,F & Oxm) @RI (Vi;C) in DP(C).
As in Definition 5.4.8, we define
RHom'Y, (A4, F & Oxa) = 75 RHom'P (A, (F B Cy,) & &L ) )

for k> a> 0.
Thus we have defined the functor

RHom'® (+, « & Oxan

21 HOma (OO0 .
: Dcc(‘@X7 G)Op 2 DGR,R—C(CXE“’) —D (FNGR)'

By (6.1.1), we have a morphism

(6.2.2)  RHom'Q (#,F ® Oxm) — RHom'L (4 © F*, Oxan)

in DP(FNg, ).
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6.3 Elliptic case

Let Xgr be a closed real analytic submanifold of X?" invariant by Ggr. Let
i: Xgr — X?" be the inclusion.

Assume that T, X = C ®g T, Xg for any x € Xg.

In Lemma 5.3.2, we define HomyP (.#,%%) € FNg, for a countably
coherent quasi-G-equivariant Zx-module .Z. It is right derivable and we can
define the functor

RHom"Y (+,6%) : Di.(Zx,G)® — DP(FNg,).

Proposition 6.3.1. For .# € D2.(2x,G), we have

RHom'® (.4, %) =~ RHom'Y (A, i.Cx, @ Oxan).
Proof. Let {Vi} be as in the preceding section. The restriction map

. W (0, 0,
(i:Cxp ® Cyp) © iy — EXintn
induces HomSP (/, (i,Cx, B Cy;) ® &%) — HomiP (#,6%7), ) in
DP(FNg, ). It induces a morphism
RHom" (4, (i.Cx, B Cy,) ® &)y ) — RHom'® (4, EL ).

Taking the projective limit with respect to k, we obtain

RHom'® (4,1,Cx, & Oxan) — RHM'L (4, €5).
Forgetting the topology and the equivariance, it is an isomorphism since

i.Cxy ® Oxan = G (see [20]). Q.E.D.

Proposition 6.3.2. There exists a canonical morphism in Db(FNGR) :
RHom"(Y (4, %%) — RHom"Y (M ©1i.i'Cxan, Oxun)

for 4 € D2.(Zx,G).

Proof. This follows from the preceding proposition, (i,Cx,)* =~ i,i'Cxan and
(6.2.2). Q.ED.

Proposition 6.3.3. Let us assume that .# € DL, (Zx,G) is elliptic i.e.
Ch(A#)NTx, X CTxX (cf. e.g. [16]). Then we have

RHom"} (A#,6%) =5 RHom Y (M @ 1i,4i'Cxan, Oxan)

in DP(FNg, ).
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Proof. Let Bx, = R.7#Z0om c(ivi'Cxan, Oxan) be the sheaf of hyperfunctions
on Xg. Forgetting the topology and the equivariance, we have isomorphisms:

RHom Dx (% X Z.*'L'!(CXan, ﬁXan) ~ RHom Dx (%7 '%X]]?J
~ RHom g, (%%, ).

Here, the last isomorphism follows from the ellipticity of .#. Hence we obtain
the desired result. Q.E.D.

7 Twisted Sheaves

7.1 Twisting data

If we deal with the non-integral infinitesimal character case in the representa-
tion theory by a geometric method, we need to twist sheaves. In this note, we
shall not go into a systematic study of twisted sheaves, but introduce it here
in an ad hoc manner by using the notion of twisting data. (See [15] for more
details.)

A twisting data T (for twisting sheaves) over a topological space X is a
triple (Xo = X, L,m). Here 7: Xy — X is a continuous map admitting a
section locally on X, L is an invertible Cx,x , x,-module and m is an isomor-
phism

m: pl_QlL ® p2_31L l>pQ_31L on Xo.
Here and hereafter, we denote by X,, the fiber product of (n+1) copies of X
over X, by p; (¢ = 1, 2) the i-th projection from X; to X, by p;; (1,7 =1,2,3)
the (¢, j)-th projection from X5 to X7, and so on. We assume that the isomor-
phism m satisfies the associative law: the following diagram of morphisms of
sheaves on X3 is commutative.

P L ®pyy L ®@pyl L =——=p1) L ®psa, (pl_zlL ® p2_31L)
Pios(pia L ©pys L) ©pgy L Pio L ® pogypis L
Prospis L@ p3) L P L@ py L
(7.1.1) H H
pia L ®p3tL Pros (P2 L ® pas L)
—1 ( _1L® —1L) —1 —1L
P134\P12 P23 P124P13

" H

—1 -1 -1
P13aP13 L Pa L.
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In other words, for (z1,x2,x3) € Xo Xx Xo Xx Xo, an isomorphism

m(xb T2, 373): L(Il,rz) ® L(Imﬂ?s) - L(l’lv%)

is given in a locally constant manner in (21, z2,z3) such that the diagram

Ly ,w5) ® Liay,e5) © Liwg,aa)

m(f17$2»z3)®lﬁ”3'”/ N)@?m(zz ,T3,Tq)

Lz w5) ® Lizs,z4) Lz ,m5) ® Lizs,24)
m (21 ,m2,74)
L(ﬂﬁhm)

is commutative for (z1, 9, x3, x4) € Xo Xx Xo Xx Xo Xx Xo.
In particular, we have i~!L = Cx,, where i: Xy — X, is the diagonal
embedding. Indeed, for 2’ € Xo, m(z’, ', ") gives Lz 01y ® L2720y = L(ar 21

and hence an isomorphism L, .y = C.

7.2 Twisted Sheaf

Let 7 = (Xo = X, L,m) be a twisting data on X. A twisted sheaf F on X
with twist 7 (or simply 7-twisted sheaf) is a sheaf F' on X equipped with an

isomorphism 3: L&®py lp~, pl_lF such that we have a commutative diagram
on Xo

p12L®p2 L®p31F7p1 L®p23 (L®@py F)
g |
—1 ~1_ -1
P L@ps'F P12 L®pyspy F
pis (L@py'F) ps (L®p; 'F)
| |
PPy F Piapi ' F.

In particular, F' is locally constant on each fiber of w. We can similarly
define a twisted sheaf on an open subset U of X. Let Mod - (Cy) denote the
category of T-twisted sheaves on U. Then Moo, (Cx): U — Mod,(Cyp) is a
stack (a sheaf of categories) on X (see e.g. [19]).

If m: Xo — X admits a section s: X — Xy, then the category Mod ,(Cx)
is equivalent to the category Mod (Cx) of sheaves on X. Indeed, the functor
Mod ,(Cx) — Mod(Cx) is given by F + s~!F and the quasi-inverse is given
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by G — 5 'L ® n7'G, where § is the map z' — (a:’,sw(x')) from Xy to
X1. Hence the stack 9Mod,(Cx) is locally equivalent to the stack 9od(Cx)
of sheaves on X. Conversely, a stack locally equivalent to the stack 9tod(Cyx)
is equivalent to Mod,(Cx) for some twisting data 7 (see [15]).

Let tr be the twisting data (X M, X,Cx). Then Mod,(Cyx) is equivalent
to Mod (Cx).

For a twisting data 7 on X, we denote by D?(Cx) the bounded derived
category DP(Mod ,(Cx)).

7.3 Morphism of Twisting Data

Let 7 = (Xo = X,L,m) and 7" = (X} = X, L’,m') be two twisting data.
A morphism from 7 to 7/ is a pair u = (f,¢) of a map f: Xg — X{, over

X and an isomorphism ¢: L =% f; ~'L’ compatible with m and m’. Here f;
is the map f x f: Xo x Xo — X[ x X{. One can easily see that a morphism
X X X

u: T — 7' gives an equivalence of categories u*: Mod ./ (Cx) == Mod ,(Cx)
by F + f~1F. Hence we say that twisting data 7 and 7/ are equivalent in
this case.

Let us discuss briefly what happens if there are two morphisms u = (f, )
and v = (f',¢') from 7 to 7. Let g: Xo — X x X be the map 2’ —
X

(f(z'), f'(z")). Then an invertible sheaf K’ = g~'L’ on X, satisfies pj 'K’ =
py "K', and there exists an invertible sheaf K on X such that

n K =gt

Then, « ® K gives an equivalence from Mod . (Cx) to itself, and the diagram

Mod ;+(Cx) > Mod, (Cx)

S |

Mod T ((CX)

quasi-commutes (i.e. (¢ ® K)o u* and u* are isomorphic).

7.4 Tensor Product

Let 7/ = (X{ — X, L’,m/) and 7" = (X{J — X, L",m") be two twisting data

on X. Then their tensor product 7/ ® 7" is defined as follows: 7/ @ 7" = (X¢ —

X,L,m), where Xg = X, x X}/, L = ¢ 'L’ ® ¢;'L" with the projections
b's

q1: X1~ X xX{ — X{ and ¢2: X3 — X/, and m =m’ @ m”. Then we can
define the bi-functor
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(7.4.1) e®e: Mod/ (Cx) x Mov,»(Cx) — Mo,/ g, (Cx)

by (F',F") — r{'F' @ry ' F", where r1: Xo — X} and ry: Xo — X{ are the
projections.

For a twisting data 7 = (X — X, L,m), let 787! be the twisting data
7@ 1= (X — X, L% m®~1). Note that L®~! ~ r=1L, where r: X; —
X7 is the map (2/,2”) — (2”,2'). Then we can easily see that 7 @ 7971 is
canonically equivalent to the trivial twisting data. Hence we obtain

e ® o : M0, (Cx) x Mod,9-1(Cx) — Mod(Cyx).
For twisting data 7 and 7/, we have a functor
(7.4.2) Hom(e,«): M0, (Cx)P x Mod(Cx) — Mod,0-15,/(Cx).
They induce functors:

«® e+ : D’(Cy)®D%(Cy) - Dby (Cy) and
(7.4.3)
Rom (s, «) : D2(Cy)° x D2 (Cy) — DPs_1g..(Cy).

7.5 Inverse and Direct Images

Let f: X — Y be a continuous map and let 7 = (Yy = Y, Ly, my) be a
twisting data on Y. Then one can define naturally the pull-back f*7. This is
the twisting data (X9 — X,Lx,mx) on X, where Xg is the fiber product
X Xy Yy, Lx is the inverse image of Ly by the map X; — Y7 and my is the
isomorphism induced by my-.

Then, similarly to the non-twisted case, we can define

(7.51) f~':  Mod,(Cy) — Mod s«-(Cx),
fas fr © Mod f+-(Cx) — Mod ,(Cy).
They have right derived functors:
f7': D2(Cy) — D}..(Cx),
Rf., Rfi : D% _(Cx) — D2(Cy).
The functor Rfi has a right adjoint functor

(7.5.3) f'+ DX(Cy) — D% (Cx).

(7.5.2)

7.6 Twisted Modules

Let 7 = (Xo = X,L,m) be a twisting data on X. Let &/ be a sheaf of
C-algebras on X. Then we can define the category Mod (&) of T-twisted .o/~
modules. A T-twisted .«7-module is a pair (F, 3) of a 7~ 1.&/-module F on X
and a p~le7-linear isomorphism £: L ® pglF L>ple satisfying the chain
condition (7.2.1). Here p: X7 — X is the projection. The stack o0, (<) of
T-twisted «7-modules is locally equivalent to the stack 9t00d(2) of &/-modules.
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7.7 Equivariant twisting data

Let G be a Lie group, and let X be a topological G-manifold. A G-equivariant
twisting data on X is a twisting data 7 = (Xo = X, L,m) such that Xj is
a G-manifold, 7 is G-equivariant and L is G-equivariant, as well as m. Let
1: Gx X — X be the multiplication map and pr: G x X — X the projection.
Then the two twisting data p*7 and pr*7 on G x X are canonically isomorphic.
We can then define the G-equivariant derived category DgyT(C x ), similarly
to the non-twisted case.

If G acts freely on X, then denoting by p: X — X/G the projection, we
can construct the quotient twisting data 7/G on X/G such that 7 = p*(7/G),
and we have an equivalence

D¢~ (Cx) = D?/6(Cx/c)-

7.8 Character local system

In order to construct twisting data, the following notion is sometimes useful.

Let H be a real Lie group. Let u: H x H — H be the multiplication
map and g;: H x H — H be the j-th projection (j = 1,2). A character
local system on H is by definition an invertible Cy-module L equipped with
an isomorphism m: ¢y 'L ® ¢; 'L °% p~' L satisfying the associativity law:
denoting by m(hy,he): Lp, ® Ly, — Lp,p, the morphism given by m, the
following diagram commutes for hy, ho, hs € H

m(hi,h2)
th & Lh2 ® Lh3 — Lh1h2 ® th
(781) m(h2,h3)l lm(hlhmhs)
th ® Lh2h3 ththS'

m(hi,hahs)

Let b be the Lie algebra of H. For A € b, let Ly (A) and Ry (A) denote
the vector fields on H defined by

d d

(182) (L (A)f) () = S F(e 40| and (Ru(A))(8) = & 7(he' )| .
Let us take an H-invariant element A of Homg(h,C) ~ Homc(C ®g b, C).
Hence A satisfies A([h,h]) = 0. Let Ly be the sheaf of functions f on H
satisfying Ry (A)f = A(A)f for all A € b, or equivalently Ly (A)f = —A(A)f
for all A € h. Then L) is a local system on H of rank one. Regarding ql_lL)\,
qglLA and p~ 'Ly as subsheaves of the sheaf @y 5 of functions on H x H, the
multiplication morphism Oy g @ Ogxg — Ogx g induces an isomorphism

(7.8.3) m: gy Ly ®qy 'Ly =5 p 'Ly,

With this data, Ly has a structure of a character local system.
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If X lifts to a character x: H — C*, then L) is isomorphic to the trivial
character local system Cy = Ly by Cy == L) C Oy given by ¥.
For A\, M € Hompg (h, C), we have

(7.8.4) La® Ly = Ly

compatible with m.

7.9 Twisted equivariance

Let H, A, Ly be as in the preceding subsection. Let X be an H-manifold. Let
pr: Hx X — X and ¢q: H x X — H be the projections and u: H x X — X
the multiplication map.

Definition 7.9.1. An (H, \)-equivariant sheaf on X is a pair (F,[3) where F
18 a Cx-module and 3 is an isomorphism

(7.9.1) B:q 'Ly@pr 'F~p ' F

satisfying the following associativity law: letting B(h,x): (Lx)p @ Fy =5 Fp,
be the induced morphism for (h,x) € H x X, the following diagram commutes
for (hi,ho,xz) € Hx H x X:

(Lx\)h, ® (Ly)p, ® F,

LW W
(LX) @ Fy (L), @ Frya
M\ B(hi,hax)
Fhlhzx .

Let us denote by Mod (s, 1)(Cx) the category of (H, \)-equivariant sheaves on
X. It is an abelian category.
If X =0, then Mod (5,1 (Cx) ~ Mod i (Cx).

For x € X and h € H, we have a chain of isomorphisms

(792) F, %(L)\)h71 Q Frp = CQ Fp >~ Fpy.

Here (Ly),-1 == C is induced by the evaluation map (O )p-1 — C. Let H,
be the isotropy subgroup at € X and b, its Lie algebra. Then, (7.9.2) gives
a group homomorphism

H, — Aut(Fy).

Its infinitesimal representation coincides with b, =2c- Endc(Fy).

Lemma 7.9.2 ([15]). Let X be a homogeneous space of H and x € X. Then
Mod (#,)(Cx) is equivalent to the category of Hy-modules M such that its

infinitesimal representation coincides with b, 2C— Endc(M).
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7.10 Twisting data associated with principal bundles

Let m: Xg — X be a principal bundle with a real Lie group H as a structure
group. We use the convention that H acts from the left on Xy. Let h be the
Lie algebra of H and A an H-invariant element of Homg (h, C). Let Ly be the
corresponding character local character system. Let us identify X x x Xo with
H x X by the isomorphism H x Xo =% X x x X given by (h,z’) — (ha', 2’).
Then the projection map H x Xg — H gives q: Xoxx Xo — H((ha',z") — h).
Then the multiplication isomorphism (7.8.3) induces

Pz (@ L) @y (47 Do) <= pig (a7 Ly).

Thus (Xo — X,q 'Ly) is a twisting data on X. We denote it by 7y. By the
definition, we have an equivalence of categories:

(7101) MOdU(Cx) = MOd(H,)\)(CXO).
For A\, N € Hompg (h,C), we have
TN QT = Tagn-

Assume that X, X are complex manifolds, X — X and H are complex
analytic and A is an H-invariant element of Homc(h, C). Let &x(\) be the
sheaf on X, given by

(710.2) Ox(A\) ={p € Ox,; Lx(A)p =—(A, N)p for any A € h}.

Then Ox (X) is (H, A)-equivariant and we regard it as an object of Mod ,, (Ox).

7.11 Twisting (D-module case)

So far, we discussed the twisting in the topological framework. Now let us
investigate the twisting in the D-module framework. This is similar to the
topological case. Referring the reader to [15] for treatments in a more general
situation, we restrict ourselves to the twisting arising from a principal bundle
as in §7.10.

Let H be a complex affine algebraic group, b its Lie algebra and let
Ry, Ly:bh — Oy be the Lie algebra homomorphisms defined by (7.8.2).
For A € Hompg(h,C), let us define the Zy-module £\ = Zgyuy by the
defining relation Ry (A)uy = A(A)uy for any A € b (which is equivalent
to the relation: Ly(A)uy = —A(A)uy for any A € §). Hence we have
Ly & Homg, (XL, Ogan). Let p: H x H — H be the multiplication mor-
phism. Then we have Py« g-linear isomorphism

D
(7.11.1) m:fA&X)\LDﬂ*cf)\
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by m(ux ®uy) = p*(uy). It satisfies the associative law similar to (7.8.1)
(i.e., (7.11.2) with # = %, and 8 = m). For A\, X € Hompy(h, C), there is an
isomorphism
D
QL = Dyyw

that is compatible with m.
Let X be a complex algebraic H-manifold. Then we can define the notion

of (H, \)-equivariant Zx-module as in §7.9. Let us denote by p: H x X — X
the multiplication morphism.

Definition 7.11.1. An (H, A\)-equivariant Zx-module is a pair (.#, 3) where
M is a Dx-module and [ is a Py« x-linear isomorphism

D
B: ARM =Dy A

satisfying the associativity law: the following diagram on H x H x X commutes.

D D
RN M
/ \ﬁ
D D
D HR A HRDu* A
(7.11.2) H H
D D
D(u x id)* (AR .#) D(id x p)* (LA R A )

g )

D(u x id)*Dy* 4 D(id x p)*Dy* A .

Then the quasi-coherent (H, \)-equivariant Zx-modules form an abelian cat-
egory. We denote it by Mod () (Zx)-

Note that any (H, \)-equivariant Zx-module may be regarded as a quasi-
H-equivariant Zx-module since £\ = Oguy = Oy as an Og-module, and
m(uy B uy) = p*uy. Thus we have a fully faithful exact functor

Mod (g,3)(Zx) — Mod(Zx, H).

Similarly to Lemma 3.1.4, we can prove the following lemma (see [15]).
Lemma 7.11.2. An object A4 of Mod (PDx, H) is isomorphic to the image of
an object of Mod (g, 5)(Zx ) if and only if v, : b — Endgy (A) coincides with
the composition b ANy o JEN Endg, (A).

Note that for A\, A’ € Hompg (h, C), L QL = ZLin gives the right exact
functor

D
e X e = e g? . ZMOd(H,)\)(@X) X MOd(H,A’)(@X) — MOd(H7)\+)\/)(@X>.
X

Note that for .# € Mod g ) (Zx), the sheaf SHomg, (M, Oxan) is an
(H*2, \)-equivariant sheaf on X2,
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7.12 Ring of twisted differential operators

Let m: X9 — X be a principal H-bundle over X, and A € Hompg(h, C). Let
N = Dx,va be the Dx,-module defined by the defining relation Ly, (A)vy =
—A(A)vyx. Then A3 is an (H, A)-equivariant Zx,-module in an evident way.
We set

Ixr={f¢€ mEndgy (A); fis H—equivariant}Op.

Here op means the opposite ring. Then Zx y is a ring on X, and .43 is a right
w’lgx,xmodule.

If there is a section s of m: Xy — X, then the composition Zx ) —
Endgy (s* N3)°P = Endg, (Px)°P = Px is an isomorphism. Hence Px » is
locally isomorphic to Zx (with respect to the étale topology), and hence it is
a ring of twisted differential operators on X (cf. e.g. [15]). We have

Lemma 7.12.1. We have an equivalence Mod (g,5)(Zx,) = Mod (Zx ). The
equivalence s given by:

Mod (,3)(Zx,) M T, %”om(@XO,H)(M,/Z/v) € Mod(Zx,x) and
Mod(Zx,,\) 2 M — N\ Qg , A € Mod (g )(Zx,)-

Here m, AHom g m) (N, /Z/V) is the sheaf which associates

HomMOd(Hﬁk)(@ﬂflU)(J1/>\|7T71U7%‘ﬂ71U>
to an open set U of X.

Note that Oxan(A) = Homg, (N, Oxgze) is an (H*, A)-equivariant sheaf
and it may be regarded as a Tx-twisted Zxan y-module:

ﬁXan ()\) S MOdT/\ (.@Xan7/\).

The twisted module @xan(\) plays the role of Oxan for Zx-modules. For
example, defining by

DRx (A ) := RA oM gyan , (Oxan(N), A™) and
Solx (M) :=Ritom g , (M, Oxan(N)),
we obtain the functors
DRy : D"(Zx) — D2 (Cxan),
(7.12.1) . .
Slei D (@XJ\)OP — D,,.A ((CXan).
Note that we have
Mod (@Xan,)\) >~ MOd.,L)\ (@Xan)

by M s Oxan(—N) @ M .
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7.13 Equivariance of twisted sheaves and twisted D-modules

Let m: Xy — X be a principal bundle with an affine group H as a structure
group, and let A € Homg (h, C). Assume that an affine group G acts on X, and
X such that 7 is G-equivariant and the action of G commutes with the action
of H. Then, as we saw in §7.6, we can define the notion of G*-equivariant 7-
twisted C yan-modules, and the equivariant derived category D‘g;a,,m (Cxan).

Let g be the Lie algebra of G. Then, for any A € g, 45 3 vy — Lx,(A)vy €
A5 extends to a Px,-linear endomorphism of .43 and it gives an element of
Px.x. Hence we obtain a Lie algebra homomorphism

g— F(X, @X,)\)~

We can define the notion of quasi-G-equivariant Zx y-modules and G-
equivariant Zx »-modules. Moreover the results in the preceding sections for
non-twisted case hold with a suitable modification, and we shall not repeat
them. For example, for A\, 4 € Hompg(h,C), we have a functor

D
e @+ :D(Zx.,G) x D?(Px 1, G) — D*(Dxrsp, G).
If Gr is a real Lie group with a Lie group morphism Ggr — G*",

RHom"?

Dx A

(M & F, Oxan(N\)) € D’(FNg, )

is well-defined for .# € D" (Zx.x,G) and F ¢ D%]R’T)”Ctb(cxan). Note that
Home(F, Oxan(N)) € Mod (Zxan ») because Oxan(A) € Mod -, (Zxan »).

7.14 Riemann-Hilbert correspondence

Let m: Xo — X, H, G and A € Hompg(h, C) be as in the preceding subsection.
Assume that A vanishes on the Lie algebra of the unipotent radical of H. Then
%) is a regular holonomic Zg-module. Hence we can define the notion of
regular holonomic Zx x-module (i.e. a Zx y-module .# is regular holonomic
if 4% ®gx , A is a regular holonomic Zx,-module).

Assume that there are finitely many G-orbits in X. Then any coherent
holonomic G-equivariant Zx y-module is regular holonomic (see [15]). Hence
the Riemann-Hilbert correspondence (see Subsection 4.6) implies the following
result.

Theorem 7.14.1. Assume that A vanishes on the Lie algebra of the unipotent
radical of H. If there are only finitely many G-orbits in X, then the functor

DRX = Rﬁom-@xan,x(ﬁXa"(A% * an): DIC)?,coh(‘@X,A) - D%““,T,A,C—C(CX"L“)

s an equivalence of triangulated categories.
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8 Integral transforms

8.1 Convolutions

Let X, Y and Z be topological manifolds.
Let us consider a diagram

XxYxZ
P12 l D23
P13
XxY X xZ Y x Z.

For F € Db((CXXy) and G € Db((CYXz), we define the object F' o G of
Db((Csz) by

(8.1.1) FoG:=Rpisi(p12 ' F @ pa3~ ' G).

We call it the convolution of F and G.
Hence we obtain the functor

e O e Db(CXXy) X Db((nyz) — Db(Cxxz).
In particular, letting X or Z be {pt}, we obtain

~ DP(Cy) x D’(Cyxz) — D"(Cy)
© ' DP(Cxxy) x DP(Cy) — DP(Cx).

This functor satisfies the associative law
(FoG)oH~Fo(GoH)

for F € D’(Cxxy), G € D’(Cyyz) and H € D*(Cyyuw).
This can be generalized to the twisted case. Let 7x (resp. 7y, 7z) be a
twisting data on X (resp. Y, Z). Then we have a functor

«0e: DY g ye-1(Cxxy) X DY grye-1(Cyxz) — D2 imir,)e-1(Cxxz)-

Similarly, we can define the convolutions of D-modules. Let X, Y and Z
be algebraic manifolds. Then we can define, for .# € D*(Zxxy) and A4 €

Db(‘%/xz)7 the object .# ]CDJ N of Db(@XXZ) by

D D
(8.1.2) M O N = Dp13*<Dp12*.//®Dp23*JV).

We call it the convolution of .# and A .
Hence we obtain the functor
D
e O o : Db(_@)(xy) X Db(gyxz) — Db(gxxz).
If X, Y and Z are quasi-projective G-manifolds, we can define
D
o

° Db(.@Xxy,G) X Db(@sz,G) — Db(.@XXz,G).

These definitions also extend to the twisted case.
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8.2 Integral transform formula

Let G be an affine algebraic group, and let Gg be a real Lie group with a Lie
group morphism Gg — G?*".

Let X be a projective algebraic G-manifold and Y a quasi-projective G-
manifold. Let us consider the diagram

X xY
N
X Y.

For # ¢ Dth(9X7G)a W ANS Dg7hol(-@X><Y) and F € Dl();'R,Ctb((CY"m)v let us
D D
calculate RHomm@I; ((# © A )RF, Oyan). Note that 4 © K4 € D’ (Zy, Q).
We have by Theorem 5.6.1
D
RHom"Y (4 © H)® F, Oyan)
D
(82.1)  =RHom"'} (Dps.(Dp1* A4 @4 )@ F, Oyen)
D
~RHom'y),  ((Dp1" A @) ® (p3") "' F, O(x xyy=)[dx]-

If we assume the non-characteristic condition:
(Ch(///) X T;Y) NCh(H) C Tk vy (X xXY),
Theorem 5.7.2 implies that

D
RHom*®  ((Dpy* A @ ) @ (p3°) 7' F, O(x yyon)

(8.2.2)
~RHom'?  (Dpi*# @ (K @ (p5™) ' F), O(x xyym).

Here, K:=DRxxy (¥#) € Dgan’c_c(C(Xxy)an). Then, again by Theorem 5.6.1,
we have
RHom'  (Dpy" A/ @ (K @ (p5") ' F), Oxvym)
~ RHom'S? (. @ R(A) (K @ (4) 1 F), Oxn)) 20y

= RHom") (A @ (K o F), Oxan)[—2dy].

Combining this with (8.2.1) and (8.2.2), we obtain

RHom'® (4 © #) ® F, Oyan)
~ RHom"} (4 @ (K 0 F), Oxw)[dx — 2dy].

Thus we obtain the following theorem.
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Theorem 8.2.1 (Integral transform formula). Let G be an affine alge-
braic group, and let Gr be a Lie group with a Lie group morphism Gg — G*".
Let X be a projective G-manifold and Y a quasi-projective G-manifold. Let
M € DY (Dx,G), K € Dgyo(Zxxy) and F € D¢ . (Cy), If the non-
characteristic condition

(8.2.3) (Ch(A) x TyY) NCh(A) C Txyy (X xY)
is satisfied, then we have an isomorphism in Db(FNGR)

D
(82.4) RHom'S (A4 0 4)@ F Oyw)
~ RHOmt%PX (A @ (DRxxy (X )0 F), ﬁXan)[dx _ 2dy].

Remark 8.2.2. If G acts transitively on X, then the non-characteristic condi-
tion (8.2.3) is always satisfied. Indeed, let pux: T*X — g*, py : T*Y — g* and
pxxy: T*(X xY) — g* be the moment maps. Then we have puxxy(§,n) =
px (&) + py(n) for € € T*X and n € T*Y. Since & € Dg’hol(‘@X), we have
Ch(X#) C pxsy(0) (see [15]). Hence we have (T*X x TyY) N Ch(#) C
Xt (0) x T¢Y. Since G acts transitively on X, we have uy'(0) = T X.

Remark 8.2.3. Although we don’t repeat here, there is a twisted version of
Theorem 8.2.1.

9 Application to the representation theory

9.1 Notations

In this section, we shall apply the machinery developed in the earlier sections
to the representation theory of real semisimple Lie groups.

Let Ggr be a connected real semisimple Lie group with a finite center,
and let Kx be a maximal compact subgroup of Gg. Let gr and £g be the Lie
algebra of Ggr and Kp, respectively. Let g and £ be their complexifications. Let
K be the complexification of Kg. Let G be a connected semisimple algebraic
group with the Lie algebra g, and assume that there is an injective morphism
Gr — G®" of real Lie groups which induces the embedding gr — g.

Thus we obtain the diagrams:

Kg ——= K and g ——¢

I T

G ——¢G gr & g.

4 In this note, we assume that Gg — G is injective. However, we can remove this
condition, by regarding G/K as an orbifold.
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Let us take an Iwasawa decomposition

Gr = Kg Ar Ng,

(9.1.1)
gr = tr D ag B ng.

Let a, n be the complexification of ag and ng. Let A and N be the connected
closed subgroups of G with Lie algebras a and n, respectively.

Let Mg = Zk,(ar) and mg = Zy, (ag). Let M and m be the complexifi-
cation of Mg and mg. Then we have M = Zk(A). Let P be the parabolic
subgroup of G with m & a & n as its Lie algebra, and Pr = MrArNr C Gg.

Let us fix a Cartan subalgebra t of g such that

(9.1.2) t=CQ®grtg where tg = (tNmg)d ag.

Let T be the maximal torus of G with t as its Lie algebra.

We take a Borel subalgebra b of g containing t and n, and let B be the
Borel subgroup with b as its Lie algebra.

We have

KNP=M and KNB=MNB, KNT=MnNT,

and M/(M N B) ~ P/B is the flag manifold for M.

Let A be the root system of (g,t), and take the positive root system
At ={ae€A;g,Cb}. Let Ay ={a€A;g,Ct} ={acAA;g,Cm} =
{a € A; a|, = 0} be the set of compact roots, and set A} = A, N A, Let p
be the half sum of positive roots.

An element A of t* is called integral if it can be lifted to a character of T'.
We say that A|gn¢ is integral if it can be lifted to a character of KNT = M NT.

Let 3(g) denote the center of the universal enveloping algebra U(g) of g.
Let x: 3(g) — C[t*] = S(t) be the ring morphism given by:

a— (x(a))(A) € Ker(b 2, C)U(g) for any A € t* and a € 3(g).

It means that a € 3(g) acts on the lowest weight module with lowest weight
A through the multiplication by the scalar (x(a))(X). For A € t*, let

xa:3(g) = C
be the ring homomorphism given by xx(a) := (x(a))(\). Note that
(9.1.3)  for A\, € t*, xn = x, if and only if wo XA = p for some w € W.
Here w o A = w(\ — p) + p is the shifted action of the Weyl group W. We set

Ux(g) = U(g)/(U(g) Ker(xx)).

Then Uy (g)-modules are nothing but g-modules with infinitesimal character
XA
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Let X be the flag manifold of G (the set of Borel subgroups of G).
Then X is a projective G-manifold and X ~ G/B. For © € X, we set
B(z) = {g € G; gz =z}, b(z) = Lie(B(z)) the Lie algebra of B(z), and
n(z) = [b(z), b(z)] the nilpotent radical of b(x). Let zy € X be the point of X
such that b(zg) = b. Then, for any 2 € X, there exists a unique Lie algebra

A
homomorphism b(z) — t which is equal to the composition b(z) A9y Ly
for any g € G such that gz = xg.

Let Xmin = G/P Let
m: X — Xuin

be the canonical projection. We set 23" = 7(x) = e mod P.

Let p: G — X be the G-equivariant projection such that p(e) = xg. Then
this is a principal B-bundle. For A € t* = (b/n)* = Homp(b,C), let Px » be
the ring of twisted differential operators on X with twist A. Let 7\ denote the
G®"-equivariant twisting data on X" corresponding to A (see §7.10, 7.12).

Note the following lemma (see [15] and Lemma 7.9.2).

Lemma 9.1.1. (i) Let H be a closed algebraic subgroup of G with a Lie
algebra b C g, Z an H-orbit in X and x € Z. Then the category
Mod u(2z,) of H-equivariant Dz x-modules is equivalent to the category
of HN B(x)-modules V whose infinitesimal representation coincides with
bhNb(z) — b(z) — t 2 C — Ende(V).

(ii) Let H be a closed real Lie subgroup of G* with a Lie algebra b C g,
Z an H-orbit in X* and x € Z. Then the category Mod g -, (Cz) of
H -equivariant Ty-twisted sheaves on Z is equivalent to the category of
H N B(x)-modules V' whose infinitesimal representation coincides with

hNb(z) — b(z) — t —5 C — Ende(V).

Note that, in the situation of (i), the de Rham functor gives an equivalence

MOdH(@Z’)\) = Mod Han 7_y (Czan),

9.2 Beilinson-Bernstein Correspondence

Let us recall a result of Beilinson-Bernstein [1] on the correspondence of U (g)-
modules and D-modules on the flag manifold.
For a € A, let a¥ € t be the corresponding co-root.

Definition 9.2.1. Let \ € t*.

(i) We say that X is regular if (¥, \) does not vanish for any a € A™.
(ii) We say that a weight \ € t* is integrally anti-dominant if (aV,\) #
1,2,3,... for any o € AT,
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Recall that p: G — X = G/B is the projection. For A € t* = Homp(b,C), we
have defined the twisting data 7, on X" and the ring of twisted differential
operators Zx . We defined also Oxan(\). Recall that Oxan(\) is a twisted
PDxn y-module, and it is an object of Mod -, (Zxan ).

If A is an integral weight, then the twisting data 7 is trivial and Oxan () is
the invertible €'xan-module associated with the invertible &'x-module Ox ()):

(9.2.1) Ox(\) ={u€p.Oc; u(gb™') = b u(g) for any b € B} .
Here B 3 b — b € C* is the character of B corresponding to A € Homp(b, C).
Note that we have

Dxain = Ox (1) @ Dx A @ Ox(—p)

(9.2.2) )
for any A € t and any integral u € t.

If X is an anti-dominant integral weight (i.e., (@, \) € Z<( for any a €
AT), let V(A) be the irreducible G-module with lowest weight A\. Then we
have

(9.2.3) I'(X;0x(\) ~V(N).
Here the isomorphism V(A\) =5 I'(X; Ox(\)) is given as follows. Let us fix a

highest weight vector u_y of V(=\) = V(A)*. Then, for any v € V(}\), the
function (v, gu_,) in g € G is the corresponding global section of Ox (\).

The following theorem is due to Beilinson-Bernstein ([1]).
Theorem 9.2.2. Let A be an element of t* = Hompg(b,C).
(i) We have

Ux (g) fOT’ k= O:
0 otherwise.

H*(X; 9x ) ~ {

(ii) Assume that X\ — p is integrally anti-dominant. Then we have
(a) for any quasi-coherent Px x-module M , we have

H"(X;.#)=0 for anyn #0,
(b) for any Ux(g)-module M, we have an isomorphism
M >T(X; Zx 3 Qug) M),

namely, the diagram

(9.2.4) Mod (Ux(8)) —2227@ " NMod (2.
x \LF(X;.)
Mod (Ux(g))

quasi-commates.
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(iii) Assume that X\ — p is reqular and integrally anti-dominant. Then
M~ Dx ) Py T'(X; M),
and we have an equivalence of categories

Mod (U)\(g)) ~ Mod (9}(7)\).

9.3 Quasi-equivariant D-modules on the symmetric space

We set S = G/K. Let j: pt — S be the morphism given by the origin sg €
S. By Proposition 3.1.5, 7*: Mod (Zs,G) == Mod (g, K) is an equivalence of
categories. Since DP(Z2s, G) = D" (Mod (Zs, G)) by the definition, j* induces
an equivalence
(9.3.1) Lj*: D*(Z4,G) == DP(Mod (g, K)).
Let

¥ : DP(Mod (g, K)) = D®(Z2s, G)

be its quasi-inverse.
Consider the diagram:

X xS

X S.

Set
%0 = -@XV—A Koy Qg?_l.

It is an object of Mod con(Zx,-, G).
For .2 € D% on(Zx ), set % = Ind§% (%) € D¢ con(Zxxs,n)- Let us

D
calculate .#, © % € D2, (Zs,G).
We have

D D
.%0 (@) fo = ng*(Dp*{//lo ®fo)
L L
~ Rpoi (D5 xx5@ax s 07 (Dx,-A ® 29 R0y, L))

On the other hand, we have

L L
QSHXX.S'@@XXS (pT(QXﬁ)\ ® 9%71)(8@3”5"%))

L . o 1. L
=~ QX@QX (pl(@X,*A ® ‘QX )®ﬁx><s$0)
>~ .,fo.

Hence we obtain
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(9.3.2) My S Lo = Rpon Lo

It is an object of D’ (Zs,G).
Let j: X — X xS be the induced morphism (z — (z, s9)). Then, we have

Lji*Rpy..% ~ RT(X;Dj* %) ~ RI'(X;.2).
Thus we obtain the following proposition.
Proposition 9.3.1. The diagram

RI(X;e)

D%,coh(@X,A) Db(MOdf(gaK))
\ Nl‘l’
(Zx,-A®02%71) 0 Ind% () b
Dcoh('@57 G)

quasi-commautes.

Proposition 9.3.2. For any A\ € t*, any A € Dth(@X,f)nG), any & €
Dl}g con(Zx.2) and any integer n,

H'(# 0 ndG 2) ~ U(M)
for some Harish-Chandra module M.

Proof. We know that H™ (.4 3 md% .Z) =~ ¥(M) for some M € Mod f(g, K).
Hence we need to show that M is 3(g)-finite. Since .# has a resolution whose
components are of the form Py, ® (2% ' ®Ox (u)®V) for an integrable u €
t* and a finite-dimensional G-module V', we may assume from the beginning
that # = Px_» ® (2% ® Ox(p)). In this case, we have by (9.2.2)

M= (Ox (1) © Dx, s ® Ox(~) © (237 ® Ox ()
D
~ Ox () (Dx, -2 @ F7H),
which implies that
* D G * ®—1 D * D G
Dpi.# @ Indg (£) ~ Dpi(Zx,-x—p ® 257) @ Dp1 Ox (1) @ Indg (£)
D D
~ Dpi(Zx,-r—p © Y1) @ IndF (Ox (1) ® 2).
Hence, Proposition 9.3.1 implies
b . ®-1y P ¢ D
M 0o Indg (L) ~ (Dx,-a—p @ 2% ) 0 Indg (Ox (1) ® L)
D
~ \IJ(RF(X; Ox () ®.$))

D D
Since Ox (1) R .Z € D% con (DX A+u), its cohomology H™(X; Ox (1) @ L) is
a Harish-Chandra module. Q.E.D.
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9.4 Matsuki correspondence
The following theorem is due to Matsuki ([22]).

Theorem 9.4.1. (i) There are only finitely many K-orbits in X and also
finitely many Gr-orbits in X"
(ii) There is a one-to-one correspondence between the set of K-orbits in X
and the one of Gg-orbits.

More precisely, a K-orbit E and a Gr-orbit F' correspond by the correspon-
dence above if and only if one of the following equivalent conditions are sat-
isfied:

(1) E*™ N F is a Kg-orbit,
(2) E* N F is non-empty and compact.

Its sheaf-theoretic version is conjectured by the author [14] and proved by
Mirkovié-Uzawa-Vilonen [23]. Let Sg = Gr/Kg be the Riemannian symmetric
space and set S = G/K. Then S is an affine algebraic manifold. The canonical
map i: Sgp — S* is a closed embedding.

We have the functor

(9.4.1) A2 Dian 1, (Cxen) — Dl 1, (Clonsyon)
We define the functor

P Dl;(an,‘rk (CXan) - DgR,T)\ (CXan)
by

B(F) = Ind%un (F) 0 i,i' Cgan [2d 5]
= R(p™)1(IndGun (F) ® (p5™) " 1i4i' Cgan ) [2d5).
Here, pi and p§" are the projections from X" x S§#" to X" and S*", re-

spectively. Note that i,i'Cgan is isomorphic to i,Cg,[—~ds] (once we give an
orientation of Sg). Hence we have

(9.4.2)  ®(F) ~ Rpipi(Ind§an (F)|xxs.)[ds] =~ Rpir: (Ind2 (F))[ds],
where pig: X?" x Sg — X" is the projection.

Theorem 9.4.2 ([23]). The functor ® induces equivalences of triangulated
categories:

b ~ b
DKa“,T,\ (CXan) — DGR,T)\ (CX&;])

d U U

b b
DKa“,T/\;C—C((CXan) - DGR,T,\7R—C(CX““) .
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We call ® the Matsuki correspondence.
For some equivariant sheaves, the Matsuki correspondence is given as fol-
lows.

Proposition 9.4.3 ([23]). Let iz: Z — X be a K-orbit in X and let
iga: Z% — X" be the Gg-orbit corresponding to Z.

(i) The restriction functors induce equivalences of categories:
MOd Kan 1y ((CZan) =, Mod Kg,Tx (CZa“ﬂZ“) = MOd GRr,Tx ((CZa )

(ii) Assume that F € Mod gan ;, (Czan) and F* € Modg, r, (Cza) corre-
spond by the equivalence above. Then we have

D(R (%) F) ~ R(iza) F*[2 codimy Z].

The K-orbit Kxy C X is a unique open K-orbit in X and Grxo C X" is
a unique closed Gg-orbit in X%, Set XE. = Gr/Pg. Then XE, = Ggra® =

Krz®™ and it is a unique closed Gg-orbit in X2 . We have

min*

(9.4.3) (Kzo)™ = (7 Y(Kz§"™))™ O Grag = Kgzo = (7°) " HXE

min)'

Let j: Kxg — X be the open embedding and j*: Grxy — X?" the
closed embedding. Then as a particular case of Proposition 9.4.3, we have an
isomorphism:

(9.4.4) O(RJF) = 2 (Flas,)

for any K®"-equivariant local system F' on K?"xq.

9.5 Construction of representations

For M € Mod (g, K), let Hom(q g.)(M,C>*(Gr)) be the set of homomor-
phisms from M to C*°(Ggr) which commute with the actions of g and Kg.
Here, g and Kg act on C*°(GR) through the right Gg-action on Gg. Then Gg
acts on Hom g ) (M, C*(Gr)) through the left Gg-action on Gg.

Let us write by C*°(Gg)X=fini the set of Kg-finite vectors of C*(Gg).
Then C>(Gg)&#fin i5 a (g, K)-module and

Hom(gaKIR) (M7 COO(GR)) ~ Hom(g,K) (]\47 (O (GR)Km—ﬁni).

Note that, in our context, Ky is connected and hence the g-invariance implies
the Kg-invariance. Therefore, we have

Homg, ) (M, C*(GRr)) ~ Homgy (M, C>*(Gr)) -

We endow Homyg k) (M, C>(Gr)) with the Fréchet nuclear topology as in
Lemma 5.3.1.
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In any way, Hom(g ,)(M,C>(GRr)) has a Fréchet nuclear Gr-module

structure. We denote it by HomEZpKR)(M, C*>(GRr)). Let us denote by

RHom"'P

(hicey( O (Gr)) : D"(Mod (g, K)) — D"(FNg,)

its right derived functor.® Note that Mod (g, K') has enough projectives,
and any M can be represented by a complex P of projective objects in

Mod ¢(g, K), and then RHomt?é) k) (M, C®(Gr)) is represented by a complex

HomE;pKR)(R C>(GR)) of Fréchet nuclear Gg-modules. Note that for a finite-
dimensional K-module V, U(g) ®¢ V is a projective object of Mod (g, K),
and Hom!™%,._ (U(g) ®¢ V, C(G)) ~ Homye, (V, C=(Gi).

Since we have Hongf’Kw) (M,C>®(GR)) =~ Homg;’(\II(M), ¢s) for any M €
Mod f(g, K), their right derived functors are isomorphic:

RHom"'"?

(v k) (M, C%(Gr)) ~ RHom"} (V(M),6)

for any M € D”(Mod (g, K)).

Lemma 9.5.1. Let M be o Harish-Chandra module. Then W (M) is an elliptic
Ds-module.

Proof. Let A be a Casimir element of U(g). Then there exists a non-zero
polynomial a(t) such that a(A)M = 0. Hence the characteristic variety
Ch(¥(M)) C T*S of U(M) is contained in the zero locus of the principal
symbol of Lg(A). Then the result follows from the well-known fact that the
Laplacian Lg(A)|gr is an elliptic differential operator on Sg. Q.E.D.

If the cohomologies of M € D”(Mod (g, K)) are Harish-Chandra modules,
then W(M) is elliptic, and Proposition 6.3.3 implies

(9.5.1) RHom"?

Oy k) (M, C*(Gr)) = RHom"), (¥(M) @ i.i'Cgan, Ogon).

There is a dual notion. For M € Mod f(g, K), let I'.(Gr; Zistay) ®(q,x:) M
be the quotient of I'.(Gr; Zista,) ®c M by the linear subspace spanned by
vectors (Ra, (A)u)@v+u® (Av) and (ku) ® (kv) —u®v (u € I'.(Gr; Dista,),
veM,Acg, ke Kg). Here, we consider it as a vector space (not consid-
ering the topology). In our case, Kg is connected, and Kg acts trivially on
I'c(Gr; Zistg,) @u ey M. Therefore, we have

L(Gr; Zistay) @(g,k5) M ~ T'e(Gr; Zistay) Qug) M.

It is a right exact functor from Mod ¢(g, K) to the category Mod (C) of
C-vector spaces. Let

® We may write here Homg)('b(M, C*(GRr)), but we use this notation in order to

emphasize that it is calculated not on Mod (U(g)) but on Mod ¢ (g, K).
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L
(9.5.2)  To(Gr; Ziste,)® (g, * : D’(Mod ¢(g, K)) — D"(C)

be its left derived functor.

For any M € D”(Mod (g, K)), we can take a quasi-isomorphism P* — M
such that each P™ has a form U(g) ®¢ V™ for a finite-dimensional K-module
V™. Then, we have

I'.(Gg; Pistey) ®(g,Kz) P" ~T(Gg; Pista,) Qu (e v
~ (FC(GR; gistGR) Xc Vn)KR ,
where the superscript K means the set of Kg-invariant vectors. The Kg-

module structure on I'.(Gg; Zista,) is by the right action of K on Gg. By
the left action of Gr on G, Gr acts on I'.(Gr; Zista,) ®(g k) P". Hence

it belongs to DFN,. The object I'.(Gr; Zistay,) @(g,x:) P° € DP(DFNg,)
does not depend on the choice of a quasi-isomorphism P* — M, and we

L
denote it by I'c(Gr; Zistcy ) (g,k:) M. Thus we have constructed a functor:

L
(9.5.3) T'o(Gr; Zistc, )@ (g1 » : D’ (Mod ¢(g, K)) — D"(DFNg,).

If we forget the topology and the equivariance, (9.5.3) reduces to (9.5.2).
We have

. L O
(9.5.4) T(Gr; Zistay )@ (g, kz) M ~ (RHomt(;KR)

(M,C(Gx)))

in DP(DFNg, ). (Here, we fix an invariant measure on Gg.)

L
In general, RHomt?é’,KR)(M, C>(Gr)) and T'c(Gr; Zistc, )@ (g, k)M are

not strict (see Theorems 10.4.1 and 10.4.2).

9.6 Integral transformation formula

Since X has finitely many K-orbits, the Riemann-Hilbert correspondence
(Theorem 7.14.1) implies the following theorem.

Theorem 9.6.1. The de Rham functor gives an equivalence of categories:
(961) DRx: D];(, COh(‘@X7A) = Dll)(a“,r,h(c—c((cxan)‘
Recall that the de Rham functor is defined by

DRx: A +— RAOM gyan , (Oxan(N), A™),

where A" = Dxan \ Dgy ., A . Similarly to (9.4.1), we have the equivalence
of categories:

(9'6'2) Indf( : Dll)(,coh(@XJ\) = Dg,coh('@XXS,A)
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and a quasi-commutative diagram

G
Ind%

Dl}D{,COh(@X,)\) Dg,coh(@XXSJ\)

DRx \L lDRX xS
Indﬁiﬁ b

b
DKan,T,MC_C(CXa“) - DG"“,T,M(C—C((C(XXS)M‘)-
Consider the diagram:

X xS
VRN
X

Let us take .Z € D];(,coh(@X,A) and set % = Ind% 2 € D2%(Zxxs.).
Set L = DRx(Z) :=RAom gyun , (Oxmn(N), L") € Dian , , c.o(Cxon)
and Ly = Ind§u L = DRxxs(%) € Dan s, co(Cixxs)m). Let 4 €
DY (Zx,- 7, G).

Then Theorem 8.2.1 (see Remark 8.2.2) immediately implies the following
result.

Proposition 9.6.2. For .4 € D, (Zx _,G) and £ € D?{,coh(gX,/\) and
L=DRx(¥Y) € D'})(anﬁ_h(c_c((cxan), we have

S%Z)S]R

RHom'P ((# 0 d§.(£)) @ i,i'Cgan, Ogon)

(9.6.3)
~RHom'} (A @ ®(L), Oxan(-N))[dx]

in DP(FNg, ).
Let us recall the equivalence Lj*: DE, (Zs,G) == D"(Mod 4 (g, K)) in

coh

D
(9.3.1). Since Lj*(.# © Ind$ (%)) has Harish-Chandra modules as cohomolo-
gies by Proposition 9.3.2, the isomorphism (9.5.1) reads as

060 RHom'$ (/ 0 (L) @ ,i'Cgen, Ogan)

~ top
~ RHom (9. K=)

D
(Lj*(# © nd$ (L)), C®(Gr))
in DP(FNg,). Thus we obtain the following proposition.
Proposition 9.6.3. For .4 € D2, (Zx.,G) and £ € D?{,coh(-@X,A), we
have

D
065  RHOMTi) (L (4 0 Indf.2),C%(Gr))

~ RHomt"@z_k (M @ B(DRx (L)), Oxan(—N))[dx].
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Now let us take as .# the quasi-G-equivariant Zx _x-module
My = @Xﬁ)\ X Qg?*l.

Then we have by Proposition 9.3.1

Lj* (4 6 Ind$ (2)) ~ RT(X; .2).
On the other hand, we have
RHom'Y (M @ B(L), Oxan(—N))

~ RHOmt(([):p((b(L), .QXan ®@>Xan ﬁXan(_A))
~ RHom'2(®(L), Oxan(—\ + 2p)).

Here the last isomorphism follows from 2x ~ Ox(2p).
Thus we obtain the following theorem.

Theorem 9.6.4. For £ € D% (Zx.,), we have an isomorphism

top
RHom (0.K=)

~ RHom'?(®(DRx (Z)), Oxan (—\ + 2p))[dx]

(RI(X;.2),C>(GRr))

(9.6.6)

in D’(FNg,).
Taking their dual, we obtain the following theorem.

Theorem 9.6.5. For £ € D%(Zx.,), we have an isomorphism

L
T (Gr; Piste, )@ q.r0 RT(X;.Z
(9.6.7) (Gr; Pistee) Do, RT(X; 2)

~RTIPP(X: &(DRx (L)) ® Oxan(N))
in DP(DFNg, ).

These results are conjectured in [14, Conjecture 3].

10 Vanishing Theorems

10.1 Preliminary

In this section, let us show that, for any Harish-Chandra module M, the object

RHomt?gp_K]R)(M, C>®(GRr)) of D’(FNg,) is strict and

Ext(y, i) (M, C*(Gr)) := H" (RHom'(Y (M, C%(Gzr))) =0 for n #0.
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In order to prove this, we start by the calculation of the both sides of
(9.6.6) for a K-equivariant holonomic Zx y-module .Z such that

(10.1.1) LGN

where j: Kxg — X is the open embedding of the open K-orbit Kxg into X.
There exists a cartesian product

KJIO(;‘X

imlﬂ

Kx{)“i“ . ¢

min-

Since Kxbnin >~ K/M is an affine variety, Kxg‘in — Xmin 18 an affine mor-
phism, and hence j: Kxy < X is an affine morphism. Therefore

(10.1.2) D"j,j '/ =0 for n # 0 and an arbitrary .# € Mod (Zx).

Hence by the hypothesis (10.1.1), we have
(10.1.3) L Dyt

Let V be the stalk .Z(z¢) regarded as a (K N B)-module. Then its in-
finitesimal action coincides with ENb — b 2 C — End¢(V) by Lemma
9.1.1.

Hence, if Z # 0, then we have

10.1.4)  A|¢ne is integral, in particular (a¥,\) € Z for any a € A},
k

Recall that we say A|qe is integral if A|ne is the differential of a character of
KNT=MnNT.
Conversely, for a (K N B)-module V' whose infinitesimal action coincides

with ¢Nb - b 25 C — Endc(V), there exists a K-equivariant Zx y-module
Z such that it satisfies (10.1.1) and Z(xg) ~ V (see by Lemma 9.1.1).

10.2 Calculation (I)

Let . be a K-equivariant coherent Zx x-module satisfying (10.1.1).

Recall that 7: X ~ G/B — X, = G/P is a canonical morphism. Let
s: Xo =7 Y(z") — X be the embedding. Then Xy ~ P/B ~ M/(M N B)
is the flag manifold of M. Note that £ |k, is a locally free Ok, ,-module
(Kzo = n~}{(Kz5") is an open subset of X). Hence we have Ds*.¥ ~ s*.&.
Since X is the flag manifold of M and s*.Z is a Zx, r-module, we have by
Theorem 9.2.2

(10.2.1) H"(Xp;8"%)=0 forn#0
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under the condition:
(10.2.2) Aine is integral and (aV,\) € Z<q for a € A},

Hence R”W*$|mem = 0 for n # 0, and we have
0

(10.2.3) H"(X; %) = H"(Kzo; ) = H"(Kap'™; 7. (ZL)).
Since Kz§"™ = K /M is an affine variety, we obtain

H"(X;Z)=0 forn#0

(10.2.4) under the conditions (10.1.1) and (10.2.2).

Now let us calculate T'(Kzo;.Z). The sheaf £ is a K-equivariant vector
bundle on Kxzy. We have Kz¢ = K/(K N B). Hence .Z is determined by the
isotropy representation of K N B on the stalk V := %(zg) of £ at xo. We
have as a K-module

(10.2.5) INX; %) =T(Kzy; L) = (Ox(K) @ V)ENB,

Here the action of KNB on Ok (K)®V is the diagonal action where the action
on Ok (K) is through the right multiplication of K N B on K. The superscript
K N B means the space of (K N B)-invariant vectors. The K-module structure
on (Ok(K)® V)KNB is through the left K-action on K.

Thus we obtain the following proposition.

Proposition 10.2.1. Assume that A satisfies (10.2.2) and a K-equivariant
holonomic Px x-module £ satisfies (10.1.1), and set V = Z(x). Then we
have

(Or(K)@ V)ENB  forn =0,

(10.2.6) HY(X;2) = {0 forn #0

as a K-module.

For a (g, K)-module M, we shall calculate Hom, xy(M,T'(X;.2)). We
have the isomorphism Homg (M, T'(X;.%)) = Homgnp(M, V) by the evalu-
ation map ¢: I'(X;.Z) — Z(x9) = V. Since £ is a Px x-module, we have
(10.2.7) PY(At) = (X, A)yp(t) for any A € band t € I'(X;.%).

Indeed, Lx(A) — (A, A) € my,Dx » for any A € b, where m, is the maximal
ideal of (Ox)4,-

Lemma 10.2.2. For any (g, K)-module M, and £ € Mod k(Zx,») satisfying
(10.1.1), we have

Hom(g,K)(Mar(X;g))
(1028) = {f c HOmKnB(M,g(l’Q));
f(As) = (XN, A)f(s) for any A€ b and s € M}.
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Proof. Set V= % (o).

For h € Homg gy (M, ['(X;.Z)), let f € Homgnp(M,V) be the element
woh. Since h is g-linear, (10.2.7) implies that f satisfies the condition: f(As) =
W(h(As)) = Y(Ah(s)) = (A, Ayp(h(s)) = (X, A)f(s) forany A € band s € M.

Conversely, for f € Homgnp(M,V) such that f(As) = (A A)f(s) for
Aeband se€ M,let h € Homg (M, T'(X;.Z)) be the corresponding element:
B(h(s)) = f(s).

Then, we obtain
(10.2.9) h(As) = Ah(s) at x =z for any A € g.

Indeed, we have g = ¢ + b. The equation (10.2.9) holds for A € ¢ by the
K-equivariance of h, and also for A € b because

f(As) = (A A) f(s) = (A, A)p(h(s)) = P(Ah(s)).

Since h is K-equivariant, h(As) = Ah(s) holds at any point of Kxg. There-
fore we have h(As) = Ah(s). Q.E.D.

10.3 Calculation (II)

Let .2 € Mod i, con(Zx,2), and set L = DRx (%) € Dl}@n)LA(CXan). Now,
we shall calculate RHom 2P (®(L), Oxan(—X + 2p))[dx], the right-hand side
of (9.6.6), under the conditions (10.1.1) and (10.2.2). We do it forgetting the
topology and the equivariance.

By the assumption (10.2.2), we can decompose A = A\; + A9 where \;
is integral and Aglent = 0. Then A9 may be regarded as a P-invariant map
Lie(P) = m@a®n — C. Hence, we can consider the twisting data 7y, xa» on
X Then, the twisting data 7y, on X*" is isomorphic to 77, xa» . Since
the twisting data 7y, is trivial, we have 7\ = 7% 7y, xan .

min

Since . ~ Dyj,j 1%, we have L ~ Rj,j L. Hence, (9.4.4) implies that
(1031) (b(L> :]f(L‘GlRI(])
Here, j*: Grzog — X is the closed embedding. We can regard L|g,,, as a
Gr-equivariant (7*7_y,, X;r;n)—twisted local system

Then there exists a Ggr-equivariant (7_y,, Xan )-twisted local system L on

XE.  such that L|g,e, ~ (7°)"1L, because the fiber of 7#" is simply con-

nected.
Hence, we have

RHomc (®(L), Oxan(—=A +2p)) [dx]
~ RHom¢ ((ﬁ“)*ﬂ Oxon (= + 2p)) [dx]

~ RHomc (Z, R(7™), Oxan (—\ + 2,0)) [dx].



88 Masaki Kashiwara
On the other hand, we have
R (™) Oxan (=X +2p) = Oxan (=Xg) @ R(7™), Oxan (=1 + 2p),
and we have, by the Serre-Grothendieck duality,

Rﬂ'*ﬁx(—/\l + 2p)[dx] ~ Rm, R7om Ox (ﬁx()\l), Qx)[dx]
~ RAom g, (Rm.Ox(\), 2x,,,)[dx,..]-
Since A1lent = Alent is anti-dominant, R, €x (A1) is concentrated at degree

0 by Theorem 9.2.2 (ii), and V = 7,0 (A1) is the G-equivariant locally free
Ox.. -module associated with the representation

P — MA — Aut(Vy,),

where V), is the irreducible (M A)-module with lowest weight Ay (see (9.2.3)).
Thus we obtain

RHom ¢ (®(L), Oxan (=X +2p))[dx]
~RHomg,,  (Rm.Ox(A1)® Oxz, (Vo) © L, 2xn ) dx
~ RHom g ., (V™ ® Oxan (Ao) ® L, Qxan )[dx

min}

min] °

On the other hand, since L is supported on XF

R%”om(c(f, ﬁxzﬁn) [dX ] >~ R%omC(Z,RFXR_ (ﬁXﬂfi‘n»[dein]

~ RAomc(L, Byz @ oryz ).

min

min

Here, ory= is the orientation sheaf of XE

min min’ mi
RZomc(Cxr ,Oxan )[dx,,,] is the sheaf of hyperfunctions. Thus we ob-
tain

and Byr = oryr ®

min ]

RHomc (®(L), Oxan (—A + 2p))[dx]
~RHomg, (V® N lewo an (Ag) ® L®orys ,Bxz ).

min min

Note that Oxan (o) is a T, xan -twisted sheaf and Lisa T X, Xan -twisted
sheaf. Hence Oxan (Aog) ® L is a (non-twisted) locally free Oxan |y= -module.
Hence, so is V*" ® Q}eé;:‘ ® Oxan (Ng) ® L® orxr . Since ZByr is a flabby
sheaf, we have

H" (RHOI’H Oxon (Van@)gg?v;i@ﬁxfnr;n(/\0)®E®OTXR_ , Bxr )) = 0for n # 0.

min

Hence, we obtain

H™(RHom¢(®(L), Oxan (=X + 2p)[dx])) =0 for n # 0.
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Proposition 10.3.1. Assume that A € t* satisfies (10.2.2), and let £ be a
K -equivariant Px x-module satisfying (10.1.1). Then we have

(1) RHomt?;’K]R)(F(X;.Z), C>®(Ggr)) € D*(FNg,) is strict, and

(ii) H™ (RHomtE’g’KK)(1"()(;.,2”)7 C>®(Gr))) =0 for n # 0.

Proof. Set M =T'(X;.%). By (9.6.6), we have

t
RHom"} | (M, C*(Gr)) ~ RHom'¢" (®(L), Oxan(—A + 2p)[dx]).-
Hence, forgetting the topology and the equivariance, the cohomology groups of
RHomt?;’ k) (M, C(Gr)) are concentrated at degree 0. On the other hand,
RHomt?gpA Ky (M, C>(Gr)) is represented by a complex in FNg, whose neg-
ative components vanish. Hence it is a strict complex. Q.E.D.

10.4 Vanishing theorem

By using the result of the preceding paragraph, we shall prove the following
statement.

Theorem 10.4.1. Let N be a Harish-Chandra module. Then we have
(i) RHom"® (N, C>(GR)) € D*(FNg,) is strict,

(9,Kr)
(ii) H™(RHom"” y (N, C>(GR))) = 0 for n # 0.

(9,Kr

Proof. Since RHoth’;D ko) (N, C(GR)) is represented by a complex in FNg,

whose negative components vanish, it is enough to show that, forgetting topol-
0gy,

(10.4.1) Ext{y ) (N, C*(Gr)) =0 for n #0.

We shall prove this by the descending induction on n. If n > 0, this is
obvious because the global dimension of Mod (g, K) is finite.

We may assume that IV is simple without the loss of generality.

By [2, 5], N/aN # 0, where it = [b, b] is the nilpotent radical of b. Since the
center 3(g) acts by scaler on N, N/aN is U(t)-finite. Hence there exists a sur-
jective (t,T'N K)-linear homomorphism N/aN — V for some one-dimensional
(t, TN K)-module V. Let A € t* be the character of V. Since S/(¢Nn)S — V is
a surjective homomorphism for some irreducible M-submodule S of N, Alen¢
is the lowest weight of S, and hence A satisfies (10.2.2).

Let us take a K-equivariant (Zx )| k.- module .’ such that £’ (z¢) 2V
as (BN K)-modules, and set . = Dj,.¢".

Then by Lemma 10.2.2, Homg g (N, I'(X;Z)) contains a non-zero ele-
ment. Thus we obtain an exact sequence of (g, K)-modules

0—-N—->M-—M —0 with M =0(X,;2).
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This gives an exact sequence

EXtZLg,KR) (M, COO(G]R)) — Ex ’ELQ,KR)(N7 COO(GR))

— Ext{,7 (M, C®(Gr)),
in which the first term vanishes for n > 0 by Proposition 10.3.1 and the last
term vanishes by the induction hypothesis. Thus we obtain the desired result.

Q.E.D.

By duality, we obtain the following proposition.
Theorem 10.4.2. Let N be a Harish-Chandra module. Then we have
(i) To(Gg; .@z‘stGm)@L@(g, k)N € D’(DFNg,) is strict,
(i) H(To(Gi; Distar ) g1 N) = 0 for n £ 0.

Recall that the maximal globalization functor MG: HC(g, K) — FNg, is
given by

MG(M) = H°(RHom"(} . (M*,C>(Gr)))

and the minimal globalization functor mg: HC(g, K) — DFNg, is given by

L
mg(M) = H°(Do(Gr; Distc,)® (g, x0)M).

We denote by MGg, (resp. mgg,) the subcategory of FNg, (resp.
DFNg,) consisting of objects isomorphic to MG(M) (resp. mg(M)) for a
Harish-Chandra module M (see § 1.1). Then both MGg, and mgg, are equiv-
alent to the category HC(g, K) of Harish-Chandra modules.

The above theorem together with Theorem 10.4.1 shows the following
result.

Theorem 10.4.3. (i) The functor M — MG(M) (resp. M — mg(M)) is
an exact functor from the category HC(g, K) of Harish-Chandra modules
to FNg, (resp. DFNg,).

(ii) Any morphism in MGg, or mgg, is strict in FNg, or DFNg, (i.e.,
with a closed range).

(iii) Any Gr-invariant closed subspace of E in MGg, (resp. mgg,) belongs
to MGg, (resp. mgg, ).

(iv) MGg, is closed by extensions in FNg,, namely, if 0 - E' — E —
E" — 0 is a strict exact sequence in FNg,, and E' and E" belong to
MGeg,, then so does E. Similar statement holds for mgg, .

Here the exactness in (i) means that they send the short exact sequences to
strictly exact sequences.
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Proof. Let us only show the statements on the maximal globalization.

(i) follows immediately from Theorem 10.4.1.

(i) Let M, M’ be Harish-Chandra modules, and let u: MG(M) — MG(M')
be a morphism in FNg,. Then

W = HC(u): M ~ HC(MG(M)) — HC(MG(M’)) ~ M’

is a morphism in HC(g, K) and MG(v)) = u. Let I be the image of ¥, Then
MG(M) — MG(I) is surjective and MG(I) is a closed subspace of MG(M')
by (i).

(i) Let M be a Harish-Chandra module and E a Gg-invariant closed sub-
space of MG(M). Then N := HC(FE) C M is a Harish-Chandra module and
MG(N) is a closed subspace of MG(M) by (ii), and it contains N as a dense
subspace. Since E is also the closure of N, E = MG(N).

(iv) We have an exact sequence 0 — HC(E') — HC(E) — HC(E") — 0.
Since HC(E') and HC(E") are Harish-Chandra modules, so is HC(E). Hence
we have a commutative diagram with strictly exact rows:

O El T E// O
0 — MG(HC(E')) — MG(HC(E)) — MG(HC(E")) — 0.

Since the left and right vertical arrows are isomorphisms, the middle vertical
arrow is also an isomorphism. Q.E.D.

Let us denote by Do (FNg,) the full subcategory of D*(FNg,) consist-
ing of E such that E is strict and the cohomologies of E belong to MGg,.
Similarly, we define D&g(DFNGR). Then the following result follows immedi-
ately from the preceding theorem and Lemma 2.3.1.

Corollary 10.4.4. The category DIK/IG(FNGR) s a triangulated full subcate-
gory of Db(FNG]R), namely, it is closed by the translation functors, and closed
by distinguished triangles (if B’ — E — E" — FE'[1] is a distinguished triangle
in D’"(FNg,) and E' and E belong to DY, (FNg, ), then so does E").

This corollary together with Theorem 10.4.1 implies the following corollary.
Corollary 10.4.5. If M € D" (Mod f(g, K)) has Harish-Chandra modules as

cohomologies, then RHomtE’;KR)(M, C>®(GRr)) belongs to Dy (FNg,).

Hence we obtain the following theorem.

Theorem 10.4.6. Let A € t*, K € D2R777A7R_C(CX) and # € D2, (Dx .\, G).
Then we have

(i) RHomt(g)ij’A (M & K, Oxan(N) belongs to Dy (FNg, ).
L
(ii) RTe (X K ® Qxon (—A\)®aqy, A ) belongs to Dy, (DFNg,).
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Proof. Since (ii) is the dual statement of (i), it is enough to prove (i). By
Matsuki correspondence (Theorem 9.4.2), there exists L € D?(anythc_c((cxan)
such that K ~ ®(L). By Theorem 9.6.1, there exists £ € D‘I’(’ coh(Zx ») such
that DRx (%) ~ L. Then Proposition 9.6.3 implies

RHom'}) (M @ K, Oxwn(N))

(Lj* (4 © IndS 2),C>(Sg))[—dx].

~ top
~ RHom (9.Kz)

Then the result follows from Corollary 10.4.5 and Proposition 9.3.2. Q.E.D.

Let us illustrate Theorem 10.4.6 in the case .# = Zx » and K is a twisted
Gr-equivariant sheaf supported on a Gr-orbit Z of X2,
Let us take a point « € Z. Let V be a finite-dimensional Ggr N B(x)-module

whose differential coincides with gg N b(z) — b(z) Aco Endc (V).
Then the Cauchy-Riemann equations give a complex

(10.4.2) (ZGnove /\ n(x))GRmB(x)

Then its cohomology groups belong to MGg, .

Indeed, if F is the 7y-twisted local system on Z associated with V* (see
Lemma 9.1.1), then (10.4.2) is isomorphic to RHom's? (.4 ® itF, Oxan (X))
(up to a shift). Here i: Z — X" is the embedding,
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