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Similarity of Crystal Bases 

Masaki Kashiwara 

ABSTRACT. We show that the crystal B(~) associated with the irreducible 
highest weight module with highest weight ~ is embedded into the crystal 
B(m~) for any p<isitive integer m. As an application, we prove that Littel-
mann's path crystal coincides with B{~). 

1. Introduction 

In (6], Littelmann introduced a crystal structure on the space of paths. This 
has a following similarity property. For a positive integer m, let us denote by Sm 

the dilatation by m, i.e. Sm(7r)(t) = m1r(t) for a path 1r. Then it satisfies 

Sm(ei1r) = efSm(1r) and Sm(h7r) = J;msm(1r) for any path 1r. 

In this note, we show that a similar property holds for the crystals associated 
with irreducible highest weight modules. As an application, we prove Littelmann's 
conjecture : the path crystal of L-S paths is isomorphic to the crystal associated 
with irreducible highest weight modules. 

2. Review on Crystals 

Let us recall briefly the notion of crystals (see [3], [5]). 
We are given following data: 

P: a free Z-module (called a weight lattice), 

I : an index set for simple roots , 

ai E P : called a simple root ( i E J) , 

hi E P* = Hom(P, .Z) : called a simple coroot (i E J). 
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We assume that ((hi,aj))i,jEI is a symmetrizable generalized Cartan matrix. By 
definition, a crystal B is a set equipped with a map 

wt:B--+P, 

ei : B ---+ B u {0}, 

h : B ---+ B U {0} for i E I, 

ei, cpi : B---+ .Z U { -oo }. 

Here 0 is a ghost element. We assume the following conditions. 

{Cl}: cpi(b) = ei(b) +(hi, wt(b)) for any bE B and any i E I. 
{C2}: If bE B satisfies eib =f. 0, then we have 

wt(eib) = wt(b) + ai and 

ei(eib) = ei(b)- 1, 

cpi(eib) = cpi(b) + 1. 

{C3}: If bE B satisfies hb =1- 0, then we have 

wt(hb) = wt(b) - ai, 

ei(hb) = ei(b) + 1, 

cpi(hb) = cpi(b)- 1. 

{C4}: For b1, b2 E B and i E I, b1 = hb2 is equivalent to b2 = eib1. 
{C5}: If bE B satisfies cpi(b) = ei(b) = -oo, then 

eib = hb = o. 
Then the crystals form a tensor category (see [3], [5]). 
The crystal T>. is a crystal {t>.} with 

wt(t>.) = >. and ei(t>.) = cpi(t>.) = -oo. 

Fori E I, Bi is a crystal {bi(n); n E Z} with 

cpj(bi(n)) = ej(bi(n)) = -oo for j =1- i, 

cpi(bi(n)) = n, ei(bi(n)) = -n and 

eibi(n) = bi(n + 1), hbi(n) = bi(n- 1). 

The element bi ( 0) is also denoted by bi. 
For >. E P+ = {>. E P; (hi,>.) ~ 0 for any i E I}, let us denote by B(>.) the 

crystal associated with the irreducible highest weight module with highest weight 
>.. The unique vector of B(>.) of weight >.is denoted by U>.. Similarly let us denote 
B(oo) the crystal associated with u,;-(g) (cf. [3], [5]). Then there is an embedding 
B(>.) <---+ B(oo) ® T>.. There is also an embedding B(oo) <---+ B(oo) ® Bi for any 
i E I. 
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3. Similarity 

Let us fix a positive integer m. Take .A E P +. 
The purpose of this section is to show the following theorem. 

THEOREM 3.1. There exists a unique injective map 

S>.. : B(.A) ~ B(m.A) 

satisfying the following conditions: 

(3.1) 

(3.2) 

For any bE B(.A), we have 

wtlS>..(b)l = m wt(b), 
£i S>..(b) = m £i(b), 

<tJi S>..(b) = m <tJi(b). 

Forb E B(.A) and i E J, we have 

S>..(eib) = eimS>..(b), S>..(hb) = hmS>..(b). 

Here 8>..(0) is understood to be 0. 

In particular we have 

(3.3) 

Similarly, we have 

THEOREM 3.2. There is a unique injective map 

8 00 : B(oo) ~ B(oo) 

satisfying the two properties similar to (3.1} and (3.2}. 

179 

PROOF OF THEOREMS 3.1, 3.2. The uniqueness is obvious. Since B(.A) is em-
bedded into B(oo) ® T>.., Theorem 3.1 is an immediate consequence of Theorem 
3.2. 
Let us prove Theorem 3.2. Let us take a sequence { i1, i2, .. ·} in I such that 
{n; in = i} is an infinity set for every i E J. Then by [3], B(oo) is embedded into 
the crystal B = { · · · ® f'/;2 bi2 ® f~ 1 bi1 E · · · ® Bi2 ® Bi1 ; ak 2: 0 for every k and 
ak = 0 fork» 0}. Let 111 : B(oo) ~ B be the embedding. Let us define the map 
S:B~Bby 

Then we can easily verify that S satisfies the conditions (3.1) and (3.2). Hence the 
composition B(oo) ~ B ~ B decomposes into B(oo) ~ B(oo) ~Band 800 

satisfies the desired property. 0 
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4. Littelmann's Path Crystal 

Littelmann defined a crystal structure on the path space P on ~ = P ®z JR. 
He also conjectured that for any A E P + the crystal P>. generated by the straight 
path 11">. connecting 0 and A is isomorphic to B(A). In this section, let us give a 
proof of his conjecture (another proof is given by A. Joseph). 

A path is, by definition, a continuous piecewise linear map 1r: [0, 1]--+ ~such 
that 1r(O) = 0 and 7r(1) E P. We say that two paths 1r1 and 1r2 are equivalent if 
there exist surjective continuous (not necessarily strictly) increasing maps 1/J1 , 1/J2 : 
[0, 1 J --+ [0, 1] such that 1r1 o 1/J1 = 1r2 o 1/J2. 

Let P be the set of equivalence classes of paths. Littelmann defined two crystal 
structures on P (see [6], [7]); they are almost similar but one behaves well un-
der tensor product and the other under similarity. To fix idea, we shall use the 
last definition (in [7]). We shall not recall the definition but we only recall their 
properties. 

(4.1) 

(4.2) 

For 1r E P, wt(1r) = 1r(1): 

For 1r E P, ci(7r) =max (Z n {-(hi, 1r(t)); 0 ~ t ~ 1}). 

For a positive integer m, let us define Sm : P--+ P by Sm(7r)(t) = m1r(t). 

(4.3) Sm satisfies the properties (3.1) and (3.2). 

The crystal P behaves well under tensor product with a small reservation. For 
11"1, 1r2 E P and i E I, let 11"1 * 11"2 denote the concatenation of 1r1 and 1r2, namely: 

{ 11"1 (2t) 0 ~ t ~ 1/2' 
(7r1 * 7r2)(t) = 11"1(1) + 7r2(2t- 1) 1/2 ~ t ~ 1. 

Let us denote by Pint the largest full subcrystal of P such that 

(4.4) 

ci(7r) = max{-(hi,7r(t));O ~ t ~ 1} for any i E I and 1r E Pint· 

The concatenation induces a morphism of crystals 

Pint® Pint 
w 

11"1 ® 11"2 

For..\ E P+, let P>. be the smallest full subcrystal containing 11">., where 7r>.(t) = 
tA (0 ~ t ~ 1). Littelmann([6]) proved P>. C Pint· 

THEOREM 4.1. There is a unique isomorphism of crystals B(A) --+ P>. sending 

the highest weight vector U>. to 11">.. 
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PROOF. The uniqueness is obvious. Let us prove that there is a morphism 

sending U>. to ?T>.. In order to see this, it is enough to show 

For i1, · · · , in and ill··· ,in E I, - -- - - - -lit··· finU>. =fit··· finU>. ¢:} lit·· ·lin1T>. = h · · · fin1T>.. 
(4.5) 

For i1,··· ,in E I, - - -fit • · ·lin U>. = 0 ¢:} lit • • ·lin 1T>. = 0. 
(4.6) 

The proof being similar, let us only prove (4.5). 
Let W be the Weyl group. Then, for w E W, B(.A)w>. consists of a single 

element, which we shall denote by Uw>.. We have, for i E I and w E W 

If (hi, w>-.) ~ 0, then we have 
€i(Uw>.) = 0, ~i(Uw>.) =(hi, WA) and flh;,w>.) = Us;w>.· 

(4.7) 

(4.8) 
If (hi, w>-.) :::; 0, then we have 
€i(Uw>.) = -(hi,w>-.), ~i(Uw>.) = 0 andei-(h;,w>.) = Us;w>.· 

For a reduced expression w = Sit · · · Sin, we set 

Then we have 

The similar properties hold with 1Tw>. instead of Uw>.· 

For a positive integer m, let Gm : B(m.A) - B(m)®m be the morphism that 
sends Um>. to u~m. Then Gm o Sm: B(.A)- B(m)®m is a map that satisfies (3.1) 
and (3.2). 

Now take i1, · · · , in E I and i1, · · · , in E I. Then for an integer m that contains 
sufficiently many divisors, we have 

Gm 0 Sm(ht ... hn U>.) = Fwt U>. ® ... ® Fw'ffl U>. and 

G o S (!-- · · · f-- u') = F , u' ® · · · ® F , u, . m m Jl Jn A w 1 A wm ""' 

for some w1,··· ,wm,w~,···w~ E W. 

Then we have 

Gm o Sm(ht · · · hn 7r>.) = Fwt?T>. * · · · * Fwm 1T>. and 

G 0 s (!-- ... !-- 1T') = F '1T' * ... * F I 1T' m m Jt Jn " wt " w.,. " · 
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182 MASAKI KASHIWARA 

Finally, we conclude 

- -- - --h · · · /inU>. = Ji1 · · ·JinU>. 

<::::==} Fw 1 U>. ® · · · ® Fwm U>. = Fw~ U>. ® · · · ® Fw:.,. U>. 

<::::==} w1>. = w~>., · · · , WmA = w~>. 

-- - -- -
<::::==} /i1 • · • fin 'lr>. = Ji1 • · ·fin 'lr>. • 

5. Variants 

0 

Let (I, P) be data as in §1. Let J be another finite set and let ~ : I - J 
be a surjective map. To each i E I we associate a positive integer mi. We set 
iii = I: miai E P. Let us denote by P the subset of P consisting of>. E P 

iE~- 1 (j) 

such that, for any j E J, ~;(hi,>.) is an integer and does not depend on the choice 
of i E ~- 1 (j). Then for j E J, hi E P* is well defined by (hj, >.) = ~;(hi,>.) for 
i E ~- 1 (j) and>. E P. 

We assume the following properties. 

(5.1) (hi,ai') = 0 for i,i' E I such that ~(i) = ~(i') and i =f. i', 
(5.2) iij belongs to P for any j E J. 

Then ( J, P) defines another data. 
Let P+ = P n P+. For>. E P+, let B(>.) be the crystal with highest weight >. 

over (I, P) and BJ(>.) the crystal with highest weight >.over (J, P), 

THEOREM 5.1. There exists a unique mapS: BJ(>.)- B(>.) such that 

(5.3) 

(5.4) 

(5.5) 

wt(S(b)) = wt(b), 

S(ejb) = II e~i S(b), 
iE~-l (j) 

s(jjb) = II im;S(b). 
iE~- 1 (j) 

Note that for i,i' E ~- 1 (j), ei and e~ (resp. hand J;.') commute by (5.1), 
Theorem 3.1 is a special case of this theorem where we take the identity as~- As in 
Lusztig([S]), an automorphism of a Dynkin diagram gives such examples (by taking 

mi = 1). 
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t t ........................ t 
o( o-----o-- ...... --<> 

Cn 0 ~ ······--<> 

E6 

0 

1 t 
F4 o--o~o 0 
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-······ 
A(1) 

(2) 
Dn o( o-······-o )o 

.D(1) >-······-< n+2 

~. l 1 ~ 
(1) 

Cn o==-7'-······-o( o 

Di~, >-······-< 
~ 1 l 0 

A~~- 1 o ).o-······-< 
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SIMILARITY OF CRYSTAL BASES 185 

A(2) 
2n o~······~ 

Here are other examples. The numbers indicate mi. 

1 1 1 
······--o 

A2n-l 2 1 1 1 
······--o 

l t t t 
Cn 0~······---o 

::s: 1 
As 

1 

t t 
G2 0 ~X> 

PROOF OF THEOREM 5.1. The proof is similar to the proof of Theorems 
- J 3.1 and 3.2. For j E J, let Bi be the (I, P)-crystal ®iE~-l(j)Bi. Let Bi be 

the (J, P)-crystal corresponding to j E J. Let Si : Bf -+ iJi be the map given 
by Si(bi(n)) = ®iE~-l(j)bi{nmi)· Take a sequence j1,i2, · · · in J in which every 
element of J appears infinitely many times. Set BJ = · · · ® B1 ® B'h and iJ = 
· · · ® ( ®iE~-l(h) Bi) ® ( ®iE~-l(jl) Bi). Then we consider the embedings \If J : 

B(oo)-+ BJ and \If: B{oo)-+ B. Now 8 = ®nSin defines a map Fl]-+ B. We can 
see easily that S satisfied the conditions (5.3), {5.4) and {5.5). Hence there exists 
S: BJ(oo)-+ B(oo) such that \If o S = 8 o \If J· 0 

Licensed to Kyoto University.  Prepared on Fri Jul 29 02:20:07 EDT 2022for download from IP 130.54.130.253.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



186 MASAKI KASHIWARA 

REMARK 5.2. The corresponding relation between the quantized universal en-
veloping algebras Uq(g) and Uq(gJ) are not known. 
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