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Similarity of Crystal Bases

Masaki Kashiwara

ABSTRACT. We show that the crystal B(\) associated with the irreducible
highest weight module with highest weight A is embedded into the crystal
B(m) for any positive integer m. As an application, we prove that Littel-
mann’s path crystal coincides with B()).

1. Introduction

In [6], Littelmann introduced a crystal structure on the space of paths. This
has a following similarity property. For a positive integer m, let us denote by Sy,
the dilatation by m, i.e. Sy,{m)(t) = mn(t) {for a path w. Then it satisfies

S (€;m) = & Sm () and Sp(fir) = fSm(r) for any path .

In this note, we show that a similar property holds for the crystals associated
with irreducible highest weight modules. As an application, we prove Littelmann’s
conjecture : the path crystal of L-S paths is isomorphic to the crystal associated

with irreducible highest weight modules.

2. Review on Crystals

Let us recall briefly the notion of crystals (see [3], [5]).
We are given following data:
P : a free Z-module (called a weight lattice),
I : an index set for simple roots,
o; € P : called a simple root (i € I),
h; € P* = Hom(P,Z) : called a simple coroot (i € I).
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178 MASAKI KASHIWARA

We assume that ((hi,@;))ijer is a symmetrizable generalized Cartan matrix. By
definition, a crystal B is a set equipped with a map

wt:B— P,

€ : B— BU{0},

fi:B—BuU{0} foriel,

€i,p; : B— Z U {~0}.

Here 0 is a ghost element. We assume the following conditions.
(C1): ¢i(b) = &i(b) + (hi, wt(b)) for any b € B and any i € I.
(C2): If b € B satisfies €;b # 0, then we have

wt(e;b) = wt(b) + o; and
ei(eb) = €;i(b) — 1,
pi(eib) = pi(b) + 1.
(C3): If b € B satisfies f;b # 0, then we have
wt(fib) = wi(b) — o,
ei(fib) = €:(b) + 1,
pi(Jib) = pi(b) - 1.
(C4): For by, by € Band i € I, by = f;b, is equivalent to by = &b;.
(C5): If b € B satisfies ¢;(b) = €;(b) = —o0, then
gb=fib=0.
Then the crystals form a tensor category (see [3], [5]).
The crystal T} is a crystal {¢,} with

wt(ty) = A and &;(tn) = i(tr) = —0.

For i € I, B; is a crystal {b;(n);n € Z} with

@;(bi(n)) = ¢€;(bi(n)) = —oco for j #1i,
vi(b;(n)) =n, g;(b;j(n)) = —n and
€bi(n) = bi(n+1), fibi(n) =bi(n—1).

The element b;(0) is also denoted by b;.

For A € P, = {\ € P;(h;,\) > 0 for any ¢ € I}, let us denote by B(\) the
crystal associated with the irreducible highest weight module with highest weight
. The unique vector of B()) of weight A is denoted by uy. Similarly let us denote
B(00) the crystal associated with U (g) (cf. [3], [5]). Then there is an embedding
B()\) — B(c0) ® Tx. There is also an embedding B(oo) — B(oo) ® B; for any
iel
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SIMILARITY OF CRYSTAL BASES 179
3. Similarity

Let us fix a positive integer m. Take A\ € P,..
The purpose of this section is to show the following theorem.

THEOREM 3.1. There exists a unique injective map
Sy : B(\) = B(m)\)

satisfying the following conditions:

(3.1) For any b € B(\), we have
wt(Sx(b)) = m wt(b),
€i(Sx(b)) = m &;(b),

@i (Sx(b)) = m @i(b).

(3.2) For b e B()\) and ¢ € I, we have

Sx(Eb) = &™SA(b), Sa(fib) = fi Sa(b).

Here S»(0) is understood to be 0.

In particular we have

(3.3) Sa(ur) = uma.
Similarly, we have
THEOREM 3.2. There is a unique injective map
Soo : B(00) — B(00)
satisfying the two properties similar to (3.1) and (3.2).

PROOF OF THEOREMS 3.1, 3.2. The uniqueness is obvious. Since B()\) is em-
bedded into B(co) ® T», Theorem 3.1 is an immediate consequence of Theorem
3.2.

Let us prove Theorem 3.2. Let us take a sequence {i,%2,---} in I such that
{n;i, = 4} is an infinity set for every ¢ € I. Then by [3], B(o0) is embedded into

the crystal B = {--- ® f;?b;, ® f;''b;, -+ ® B;, ® B;,;ar > 0 for every k and
ar =0 for k> 0}. Let ¥ : B(0) —» B be the embedding. Let us define the map
S:B — B by

S(-® fi7bi, ® £i7'bi)) = - ® fi7%bi, ® fi7 b,

Then we can easily verify that S satisfies the conditions (3.1) and (3.2). Hence the
composition B(oo) 2.5 B decomposes into B(oo) See, B(o0) 2, Band Soo
satisfies the desired property. O
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4. Littelmann’s Path Crystal

Littelmann defined a crystal structure on the path space P on Pg = P ®z R.
He also conjectured that for any A € P, the crystal Py generated by the straight
path 7 connecting 0 and A is isomorphic to B(A). In this section, let us give a
proof of his conjecture (another proof is given by A. Joseph).

A path is, by definition, a continuous piecewise linear map = : [0,1] — Pg such
that 7(0) = 0 and n(1) € P. We say that two paths m; and 7 are equivalent if
there exist surjective continuous (not necessarily strictly) increasing maps v, ¥s :
[0,1] — [0,1] such that m; o ¢ = 73 0 9.

Let P be the set of equivalence classes of paths. Littelmann defined two crystal
structures on P (see [6], [7]); they are almost similar but one behaves well un-
der tensor product and the other under similarity. To fix idea, we shall use the
last definition (in [7]). We shall not recall the definition but we only recall their

properties.
(4.1) For 7 € P, wit(m) = w(1).
(4.2) For m € P, &;(m) = max (Z N {—(h;,7(t));0 < ¢ < 1}).

For a positive integer m, let us define S,, : P — P by S,,(7)(t) = mn(t).
(4.3) Sy, satisfies the properties (3.1) and (3.2).

The crystal P behaves well under tensor product with a small reservation. For

m,m € P and i € I, let m; * mo denote the concatenation of m; and 9, namely:

_ ] m(2t) 0<t<1/2,
(m1 *7r2)(t)—{ m(l) +m(2—1) 1/2<t<1.

Let us denote by P;,; the largest full subcrystal of P such that

g;(m) = max{—(h;, 7(t));0 <t <1} for any ¢ € I and 7 € Pip;.

(4.4) The concatenation induces a morphism of crystals

Pint ® Ping — int
V] W
1 & o — ] % Wg.

For X € Py, let P» be the smallest full subcrystal containing 7, where 7 (t) =
tA (0 <t <1). Littelmann([6]) proved Px C Pin:.

THEOREM 4.1. There is a unique isomorphism of crystals B(\) — Py sending

the highest weight vector uy to my.
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SIMILARITY OF CRYSTAL BASES 181

PRrROOF. The uniqueness is obvious. Let us prove that there is a morphism
B(A) — Py

sending uy to 7. In order to see this, it is enough to show
For ila"‘ ,in and jlv"' ,jn € Ia
fir oo finun = fi o fipun & fiy oo fioma = i fiama
For iy,--- ,i, € I,
f fznu)\—o - le"'finﬂz\zo-
The proof being similar, let us only prove (4.5).
Let W be the Weyl group. Then, for w € W, B(\)y,» consists of a single

(4.5)

(4.6)

element, which we shall denote by u,. We have, for i € I and w € W
If (h;,wA) > 0, then we have

4.7 ~h;
) () = 0, @i(tan) = (hiy wA) and T =y .
(4.8) If (h;, wA) <0, then we have

' €i(Uwr) = —(hi, wA), @i(uwr) =0 ande—w“wn = Us;wA-

For a reduced expression w = s;, - - 8;,,, we set

By = s | flhad

i1
Then we have
qu/\ = Uwh -

The similar properties hold with 7, instead of .

For a positive integer m, let G, : B(mA\) — B(m)®™ be the morphism that
sends U to u$™. Then G 0 Sy : B(A) — B(m)®™ is a map that satisfies (3.1)
and (3.2).

Now take iq,--- ,i, € I and jq, -+ ,jn € I. Then for an integer m that contains

sufficiently many divisors, we have

Sm(ﬁ‘l "'fi,.UA) =F,un®---QF, u\, and
0 S (fjy -+ finua) = Fujua ® -+ ® Fuy ux.

for some wy, -+ , W, w}, - -w, € W.

Then we have

mOS (fll.‘.ﬁnﬂ/\)—:le”r/\*"'*meW)\ and

Gum 0 Sm(fir -+ finTa) = Fut T % -+ % Fyr 7y
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182 MASAKI KASHIWARA

Finally, we conclude

fivoo Finun = iy -+ fiua

Fpux®- - @ Fy uy = Fw;u,\ ® - ® Fw;nu,\
WIA = WA, WA = Wi, A

Fy,mxsx-ox By mx = Fyrmy® % Fyy my

Jir o finma = fiy oo fiama

f11d

5. Variants

Let (I, P) be data as in §1. Let J be another finite set and let £ : I — J
be a surjective map. To each ¢ € I we associate a positive integer m;. We set

&; = Y. mia; € P. Let us denote by P the subset of P consisting of A € P
i€€-1(4)

such that, for any j € J, (hz, A) is an integer and does not depend on the choice

of i € £71(j). Then for j E J, h; € P* is well defined by (hj, \) = i(hi’)‘> for

i€&1(j) and A € P.

We assume the following properties.
(5.1) (hiyair) =0 for 4,4 € I such that £(i) = £€(¢') and @ # ¢/,
(5.2) @; belongs to P for any j € J.

Then (J, }3) defines another data.
Let 13+ =Pn P,. For A € }3+, let B()) be the crystal with highest weight A
over (I, P) and By()) the crystal with highest weight A over (J, P),

THEOREM 5.1. There ezists a unique map S : Bj(\) — B()\) such that

(5.3) wt(S(b)) = wit(b

(5.4) seh= I *'"tS( ),
i€6~1(4)

(5.5) SO | 0
i€§~1(g)

Note that for 4,i’ € £71(j), & and €, (resp. f; and f;') commute by (5.1),
Theorem 3.1 is a special case of this theorem where we take the identity as £. As in
Lusztig([8]), an automorphism of a Dynkin diagram gives such examples (by taking
m; = 1).
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PROOF OF THEOREM 5.1.  The proof is similar to the proof of Theorems
3.1 and 3.2. For j € J, let B; be the (I,P)-crystal ®;e¢-1(;yBi. Let Bj be
the (J, P)-crystal corresponding to j € J. Let S; BjJ — B]‘ be the map given

by Sj(bj(n)) = ®;ce-1(;)bi(nm;). Take a sequence ji, j2,--- in J in which every

element of J appears infinitely many times. Set By = --- ® Bsz ® B]‘.’1 and B =
- ® ( ®iee-13j5) Bi) ® ( ®iee-1¢jy) Bi). Then we consider the embedings ¥ :
B(oo) — By and ¥ : B(oo) — B. Now § = ®,8;, defines a map By — B. We can
see easily that S satisfied the conditions (5.3), (5.4) and (5.5). Hence there exists

S : Bj(00) — B(o0) such that ¥ oS = So ;.
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REMARK 5.2. The corresponding relation between the quantized universal en-
veloping algebras U,(g) and U,(g;) are not known.
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