Similarity of Crystal Bases

Masaki Kashiwara

Abstract

We show that the crystal $B(\lambda)$ associated with the irreducible highest weight module with highest weight λ is embedded into the crystal $B(m \lambda)$ for any positive integer m. As an application, we prove that Littelmann's path crystal coincides with $B(\lambda)$.

1. Introduction

In [6], Littelmann introduced a crystal structure on the space of paths. This has a following similarity property. For a positive integer m, let us denote by S_{m} the dilatation by m, i.e. $S_{m}(\pi)(t)=m \pi(t)$ for a path π. Then it satisfies

$$
S_{m}\left(\widetilde{e}_{i} \pi\right)=\widetilde{e}_{i}^{m} S_{m}(\pi) \text { and } S_{m}\left(\widetilde{f_{i}} \pi\right)=\widetilde{f_{i}^{m}} S_{m}(\pi) \text { for any path } \pi
$$

In this note, we show that a similar property holds for the crystals associated with irreducible highest weight modules. As an application, we prove Littelmann's conjecture : the path crystal of L-S paths is isomorphic to the crystal associated with irreducible highest weight modules.

2. Review on Crystals

Let us recall briefly the notion of crystals (see [3], [5]).
We are given following data:

$$
\begin{aligned}
& P: \text { a free } \mathbb{Z} \text {-module (called a weight lattice) }, \\
& I: \text { an index set for simple roots, } \\
& \alpha_{i} \in P: \text { called a simple root }(i \in I), \\
& h_{i} \in P^{*}=\operatorname{Hom}(P, \mathbb{Z}): \text { called a simple coroot }(i \in I) .
\end{aligned}
$$

We assume that $\left(\left\langle h_{i}, \alpha_{j}\right\rangle\right)_{i, j \in I}$ is a symmetrizable generalized Cartan matrix. By definition, a crystal B is a set equipped with a map

$$
\begin{aligned}
& w t: B \rightarrow P \\
& \widetilde{e}_{i}: B \rightarrow B \sqcup\{0\}, \\
& \widetilde{f_{i}}: B \rightarrow B \sqcup\{0\} \quad \text { for } i \in I, \\
& \varepsilon_{i}, \varphi_{i}: B \rightarrow \mathbb{Z} \sqcup\{-\infty\} .
\end{aligned}
$$

Here 0 is a ghost element. We assume the following conditions.
(C1): $\varphi_{i}(b)=\varepsilon_{i}(b)+\left\langle h_{i}, w t(b)\right\rangle$ for any $b \in B$ and any $i \in I$.
(C2): If $b \in B$ satisfies $\widetilde{e}_{i} b \neq 0$, then we have

$$
\begin{aligned}
& w t\left(\widetilde{e}_{i} b\right)=w t(b)+\alpha_{i} \quad \text { and } \\
& \varepsilon_{i}\left(\widetilde{e}_{i} b\right)=\varepsilon_{i}(b)-1 \\
& \varphi_{i}\left(\widetilde{e}_{i} b\right)=\varphi_{i}(b)+1
\end{aligned}
$$

(C3): If $b \in B$ satisfies $\widetilde{f}_{i} b \neq 0$, then we have

$$
\begin{aligned}
& w t\left(\widetilde{f}_{i} b\right)=w t(b)-\alpha_{i}, \\
& \varepsilon_{i}\left(\widetilde{f_{i}} b\right)=\varepsilon_{i}(b)+1, \\
& \varphi_{i}\left(\widetilde{f_{i}} b\right)=\varphi_{i}(b)-1
\end{aligned}
$$

(C4): For $b_{1}, b_{2} \in B$ and $i \in I, b_{1}=\widetilde{f_{i}} b_{2}$ is equivalent to $b_{2}=\widetilde{e}_{i} b_{1}$.
(C5): If $b \in B$ satisfies $\varphi_{i}(b)=\varepsilon_{i}(b)=-\infty$, then

$$
\widetilde{e}_{i} b=\widetilde{f}_{i} b=0
$$

Then the crystals form a tensor category (see [3], [5]).
The crystal T_{λ} is a crystal $\left\{t_{\lambda}\right\}$ with

$$
w t\left(t_{\lambda}\right)=\lambda \text { and } \varepsilon_{i}\left(t_{\lambda}\right)=\varphi_{i}\left(t_{\lambda}\right)=-\infty
$$

For $i \in I, B_{i}$ is a crystal $\left\{b_{i}(n) ; n \in \mathbb{Z}\right\}$ with

$$
\begin{aligned}
& \varphi_{j}\left(b_{i}(n)\right)=\varepsilon_{j}\left(b_{i}(n)\right)=-\infty \text { for } j \neq i \\
& \varphi_{i}\left(b_{i}(n)\right)=n, \varepsilon_{i}\left(b_{i}(n)\right)=-n \text { and } \\
& \widetilde{e}_{i} b_{i}(n)=b_{i}(n+1), \widetilde{f_{i}} b_{i}(n)=b_{i}(n-1)
\end{aligned}
$$

The element $b_{i}(0)$ is also denoted by b_{i}.
For $\lambda \in P_{+}=\left\{\lambda \in P ;\left\langle h_{i}, \lambda\right\rangle \geq 0\right.$ for any $\left.i \in I\right\}$, let us denote by $B(\lambda)$ the crystal associated with the irreducible highest weight module with highest weight λ. The unique vector of $B(\lambda)$ of weight λ is denoted by u_{λ}. Similarly let us denote $B(\infty)$ the crystal associated with $U_{q}^{-}(\mathfrak{g})$ (cf. [3], [5]). Then there is an embedding $B(\lambda) \hookrightarrow B(\infty) \otimes T_{\lambda}$. There is also an embedding $B(\infty) \hookrightarrow B(\infty) \otimes B_{i}$ for any $i \in I$.

3. Similarity

Let us fix a positive integer m. Take $\lambda \in P_{+}$.
The purpose of this section is to show the following theorem.
Theorem 3.1. There exists a unique injective map

$$
S_{\lambda}: B(\lambda) \rightarrow B(m \lambda)
$$

satisfying the following conditions:
For any $b \in B(\lambda)$, we have

$$
\begin{align*}
w t\left(S_{\lambda}(b)\right) & =m w t(b), \tag{3.1}\\
\varepsilon_{i}\left(S_{\lambda}(b)\right) & =m \varepsilon_{i}(b), \\
\varphi_{i}\left(S_{\lambda}(b)\right) & =m \varphi_{i}(b) \tag{3.2}
\end{align*}
$$

For $b \in B(\lambda)$ and $i \in I$, we have

$$
S_{\lambda}\left(\widetilde{e_{i}} b\right)=\widetilde{e}_{i}^{m} S_{\lambda}(b), S_{\lambda}\left(\widetilde{f}_{i} b\right)=\widetilde{f}_{i}^{m} S_{\lambda}(b)
$$

Here $S_{\lambda}(0)$ is understood to be 0 .
In particular we have

$$
\begin{equation*}
S_{\lambda}\left(u_{\lambda}\right)=u_{m \lambda} . \tag{3.3}
\end{equation*}
$$

Similarly, we have
Theorem 3.2. There is a unique injective map

$$
S_{\infty}: B(\infty) \rightarrow B(\infty)
$$

satisfying the two properties similar to (3.1) and (3.2).
Proof of Theorems 3.1, 3.2. The uniqueness is obvious. Since $B(\lambda)$ is embedded into $B(\infty) \otimes T_{\lambda}$, Theorem 3.1 is an immediate consequence of Theorem 3.2 .

Let us prove Theorem 3.2. Let us take a sequence $\left\{i_{1}, i_{2}, \cdots\right\}$ in I such that $\left\{n ; i_{n}=i\right\}$ is an infinity set for every $i \in I$. Then by $[\mathbf{3}], B(\infty)$ is embedded into the crystal $B=\left\{\cdots \otimes f_{i_{2}}^{a_{2}} b_{i_{2}} \otimes f_{i_{1}}^{a_{1}} b_{i_{1}} \in \cdots \otimes B_{i_{2}} \otimes B_{i_{1}} ; a_{k} \geq 0\right.$ for every k and $a_{k}=0$ for $\left.k \gg 0\right\}$. Let $\Psi: B(\infty) \rightarrow B$ be the embedding. Let us define the map $S: B \rightarrow B$ by

$$
S\left(\cdots \otimes f_{i_{2}}^{a_{2}} b_{i_{2}} \otimes f_{i_{1}}^{a_{1}} b_{i_{1}}\right)=\cdots \otimes f_{i_{2}}^{m a_{2}} b_{i_{2}} \otimes f_{i_{1}}^{m a_{1}} b_{i_{1}} .
$$

Then we can easily verify that S satisfies the conditions (3.1) and (3.2). Hence the composition $B(\infty) \xrightarrow{\Psi} B \xrightarrow{S} B$ decomposes into $B(\infty) \xrightarrow{S_{\infty}} B(\infty) \xrightarrow{\Psi} B$ and S_{∞} satisfies the desired property.

4. Littelmann's Path Crystal

Littelmann defined a crystal structure on the path space \mathcal{P} on $P_{\mathbb{R}}=P \otimes_{\mathbb{Z}} \mathbb{R}$. He also conjectured that for any $\lambda \in P_{+}$the crystal \mathcal{P}_{λ} generated by the straight path π_{λ} connecting 0 and λ is isomorphic to $B(\lambda)$. In this section, let us give a proof of his conjecture (another proof is given by A. Joseph).

A path is, by definition, a continuous piecewise linear map $\pi:[0,1] \rightarrow P_{\mathbb{R}}$ such that $\pi(0)=0$ and $\pi(1) \in P$. We say that two paths π_{1} and π_{2} are equivalent if there exist surjective continuous (not necessarily strictly) increasing maps ψ_{1}, ψ_{2} : $[0,1] \rightarrow[0,1]$ such that $\pi_{1} \circ \psi_{1}=\pi_{2} \circ \psi_{2}$.

Let \mathcal{P} be the set of equivalence classes of paths. Littelmann defined two crystal structures on \mathcal{P} (see [6], [7]); they are almost similar but one behaves well under tensor product and the other under similarity. To fix idea, we shall use the last definition (in [7]). We shall not recall the definition but we only recall their properties.

For $\pi \in \mathcal{P}, w t(\pi)=\pi(1)$:

$$
\begin{equation*}
\text { For } \pi \in \mathcal{P}, \varepsilon_{i}(\pi)=\max \left(\mathbb{Z} \cap\left\{-\left\langle h_{i}, \pi(t)\right\rangle ; 0 \leq t \leq 1\right\}\right) \tag{4.1}
\end{equation*}
$$

For a positive integer m, let us define $S_{m}: \mathcal{P} \rightarrow \mathcal{P}$ by $S_{m}(\pi)(t)=m \pi(t)$.
S_{m} satisfies the properties (3.1) and (3.2).
The crystal \mathcal{P} behaves well under tensor product with a small reservation. For $\pi_{1}, \pi_{2} \in \mathcal{P}$ and $i \in I$, let $\pi_{1} * \pi_{2}$ denote the concatenation of π_{1} and π_{2}, namely:

$$
\left(\pi_{1} * \pi_{2}\right)(t)= \begin{cases}\pi_{1}(2 t) & 0 \leq t \leq 1 / 2 \\ \pi_{1}(1)+\pi_{2}(2 t-1) & 1 / 2 \leq t \leq 1\end{cases}
$$

Let us denote by $\mathcal{P}_{\text {int }}$ the largest full subcrystal of \mathcal{P} such that

$$
\varepsilon_{i}(\pi)=\max \left\{-\left\langle h_{i}, \pi(t)\right\rangle ; 0 \leq t \leq 1\right\} \text { for any } i \in I \text { and } \pi \in \mathcal{P}_{\text {int }} .
$$

The concatenation induces a morphism of crystals

$$
\begin{array}{ccc}
\mathcal{P}_{\text {int }} \otimes \mathcal{P}_{\text {int }} & \longrightarrow & \mathcal{P}_{\text {int }} \tag{4.4}\\
\Psi & & \Psi \\
\pi_{1} \otimes \pi_{2} & \longmapsto & \pi_{1} * \pi_{2}
\end{array}
$$

For $\lambda \in P_{+}$, let \mathcal{P}_{λ} be the smallest full subcrystal containing π_{λ}, where $\pi_{\lambda}(t)=$ $t \lambda(0 \leq t \leq 1)$. Littelmann $([6])$ proved $\mathcal{P}_{\lambda} \subset \mathcal{P}_{\text {int }}$.

THEOREM 4.1. There is a unique isomorphism of crystals $B(\lambda) \rightarrow \mathcal{P}_{\lambda}$ sending the highest weight vector u_{λ} to π_{λ}.

Proof. The uniqueness is obvious. Let us prove that there is a morphism

$$
B(\lambda) \rightarrow \mathcal{P}_{\lambda}
$$

sending u_{λ} to π_{λ}. In order to see this, it is enough to show

$$
\begin{align*}
& \text { For } i_{1}, \cdots, i_{n} \text { and } j_{1}, \cdots, j_{n} \in I, \\
& \widetilde{f}_{i_{1}} \cdots \widetilde{f}_{i_{n}} u_{\lambda}=\widetilde{f}_{j_{1}} \cdots \widetilde{f}_{j_{n}} u_{\lambda} \Leftrightarrow \widetilde{f}_{i_{1}} \cdots \widetilde{f}_{i_{n}} \pi_{\lambda}=\widetilde{f}_{j_{1}} \cdots \widetilde{f}_{j_{n}} \pi_{\lambda} . \tag{4.5}\\
& \text { For } i_{1}, \cdots, i_{n} \in I \\
& \widetilde{f}_{i_{1}} \cdots \widetilde{f}_{i_{n}} u_{\lambda}=0 \Leftrightarrow \widetilde{f_{i_{1}}} \cdots \widetilde{f}_{i_{n}} \pi_{\lambda}=0 . \tag{4.6}
\end{align*}
$$

The proof being similar, let us only prove (4.5).
Let W be the Weyl group. Then, for $w \in W, B(\lambda)_{w \lambda}$ consists of a single element, which we shall denote by $u_{w \lambda}$. We have, for $i \in I$ and $w \in W$

$$
\begin{align*}
& \text { If }\left\langle h_{i}, w \lambda\right\rangle \geq 0 \text {, then we have } \\
& \varepsilon_{i}\left(u_{w \lambda}\right)=0, \varphi_{i}\left(u_{w \lambda}\right)=\left\langle h_{i}, w \lambda\right\rangle \text { and } \widetilde{f}_{i}^{\left\langle h_{i}, w \lambda\right\rangle}=u_{s_{i} w \lambda} . \tag{4.7}\\
& \text { If }\left\langle h_{i}, w \lambda\right\rangle \leq 0 \text {, then we have } \\
& \varepsilon_{i}\left(u_{w \lambda}\right)=-\left\langle h_{i}, w \lambda\right\rangle, \varphi_{i}\left(u_{w \lambda}\right)=0 \text { and } \widetilde{e}_{i}^{-\left\langle h_{i}, w \lambda\right\rangle}=u_{s_{i} w \lambda} . \tag{4.8}
\end{align*}
$$

For a reduced expression $w=s_{i_{1}} \cdots s_{i_{n}}$, we set

$$
F_{w}=\widetilde{f}_{i_{1}}^{\left(h_{i_{1}}, s_{i_{2}} \cdots s_{n} \lambda\right\rangle} \cdots \widetilde{f}_{i_{n}}^{\left\langle h_{i_{n}}, \lambda\right\rangle}
$$

Then we have

$$
F_{w} u_{\lambda}=u_{w \lambda}
$$

The similar properties hold with $\pi_{w \lambda}$ instead of $u_{w \lambda}$.
For a positive integer m, let $G_{m}: B(m \lambda) \rightarrow B(m)^{\otimes m}$ be the morphism that sends $u_{m \lambda}$ to $u_{\lambda}^{\otimes m}$. Then $G_{m} \circ S_{m}: B(\lambda) \rightarrow B(m)^{\otimes m}$ is a map that satisfies (3.1) and (3.2).

Now take $i_{1}, \cdots, i_{n} \in I$ and $j_{1}, \cdots, j_{n} \in I$. Then for an integer m that contains sufficiently many divisors, we have

$$
\begin{aligned}
& G_{m} \circ S_{m}\left(\tilde{f}_{i_{1}} \cdots \tilde{f}_{i_{n}} u_{\lambda}\right)=F_{w_{1}} u_{\lambda} \otimes \cdots \otimes F_{w_{m}} u_{\lambda} \quad \text { and } \\
& G_{m} \circ S_{m}\left(\widetilde{f}_{j_{1}} \cdots \widetilde{f}_{j_{n}} u_{\lambda}\right)=F_{w_{1}^{\prime}} u_{\lambda} \otimes \cdots \otimes F_{w_{m}^{\prime}} u_{\lambda} .
\end{aligned}
$$

for some $w_{1}, \cdots, w_{m}, w_{1}^{\prime}, \cdots w_{m}^{\prime} \in W$.
Then we have

$$
\begin{aligned}
& G_{m} \circ S_{m}\left(\widetilde{f}_{i_{1}} \cdots \widetilde{f}_{i_{n}} \pi_{\lambda}\right)=F_{w_{1}} \pi_{\lambda} * \cdots * F_{w_{m}} \pi_{\lambda} \quad \text { and } \\
& G_{m} \circ S_{m}\left(\widetilde{f}_{j_{1}} \cdots \widetilde{f}_{j_{n}} \pi_{\lambda}\right)=F_{w_{1}^{\prime}} \pi_{\lambda} * \cdots * F_{w_{m}^{\prime}} \pi_{\lambda}
\end{aligned}
$$

Finally, we conclude

$$
\begin{aligned}
& \tilde{f}_{i_{1}} \cdots \tilde{f}_{i_{n}} u_{\lambda}=\widetilde{f}_{j_{1}} \cdots \tilde{f}_{j_{n}} u_{\lambda} \\
\Longleftrightarrow & F_{w_{1}} u_{\lambda} \otimes \cdots \otimes F_{w_{m}} u_{\lambda}=F_{w_{1}^{\prime}} u_{\lambda} \otimes \cdots \otimes F_{w_{m}^{\prime}} u_{\lambda} \\
\Longleftrightarrow & w_{1} \lambda=w_{1}^{\prime} \lambda, \cdots, w_{m} \lambda=w_{m}^{\prime} \lambda \\
\Longleftrightarrow & F_{w_{1}} \pi_{\lambda} * \cdots * F_{w_{m}} \pi_{\lambda}=F_{w_{1}^{\prime}} \pi_{\lambda} * \cdots * F_{w_{m}^{\prime}} \pi_{\lambda} \\
\Longleftrightarrow & \widetilde{f}_{i_{1}} \cdots \tilde{f}_{i_{n}} \pi_{\lambda}=\widetilde{f}_{j_{1}} \cdots \tilde{f}_{j_{n}} \pi_{\lambda} .
\end{aligned}
$$

5. Variants

Let (I, P) be data as in $\S 1$. Let J be another finite set and let $\xi: I \rightarrow J$ be a surjective map. To each $i \in I$ we associate a positive integer m_{i}. We set $\tilde{\alpha}_{j}=\sum_{i \in \xi^{-1}(j)} m_{i} \alpha_{i} \in P$. Let us denote by \widetilde{P} the subset of P consisting of $\lambda \in P$ such that, for any $j \in J, \frac{1}{m_{i}}\left\langle h_{i}, \lambda\right\rangle$ is an integer and does not depend on the choice of $i \in \xi^{-1}(j)$. Then for $j \in J, \tilde{h}_{j} \in \widetilde{P}^{*}$ is well defined by $\left\langle\tilde{h}_{j}, \lambda\right\rangle=\frac{1}{m_{i}}\left\langle h_{i}, \lambda\right\rangle$ for $i \in \xi^{-1}(j)$ and $\lambda \in \widetilde{P}$.

We assume the following properties.

$$
\begin{align*}
& \left\langle h_{i}, \alpha_{i^{\prime}}\right\rangle=0 \text { for } i, i^{\prime} \in I \text { such that } \xi(i)=\xi\left(i^{\prime}\right) \text { and } i \neq i^{\prime}, \tag{5.1}\\
& \tilde{\alpha}_{j} \text { belongs to } \widetilde{P} \text { for any } j \in J . \tag{5.2}
\end{align*}
$$

Then (J, \widetilde{P}) defines another data.
Let $\widetilde{P}_{+}=\widetilde{P} \cap P_{+}$. For $\lambda \in \widetilde{P}_{+}$, let $B(\lambda)$ be the crystal with highest weight λ over (I, P) and $B_{J}(\lambda)$ the crystal with highest weight λ over (J, \widetilde{P}),

Theorem 5.1. There exists a unique map $S: B_{J}(\lambda) \rightarrow B(\lambda)$ such that

$$
\begin{align*}
& w t(S(b))=w t(b) \tag{5.3}\\
& S\left(\tilde{e}_{j} b\right)=\prod_{i \in \xi^{-1}(j)} \tilde{e}_{i}^{m_{i}} S(b), \tag{5.4}\\
& S\left(\tilde{f}_{j} b\right)=\prod_{i \in \xi^{-1}(j)} \tilde{f}_{i}^{m_{i}} S(b) \tag{5.5}
\end{align*}
$$

Note that for $i, i^{\prime} \in \xi^{-1}(j), \tilde{e}_{i}$ and \tilde{e}_{i}^{\prime} (resp. \tilde{f}_{i} and $\tilde{f}_{i}{ }^{\prime}$) commute by (5.1), Theorem 3.1 is a special case of this theorem where we take the identity as ξ. As in $\operatorname{Lusztig}([8])$, an automorphism of a Dynkin diagram gives such examples (by taking $m_{i}=1$).

Here are other examples. The numbers indicate m_{i}.

Proof of Theorem 5.1. The proof is similar to the proof of Theorems 3.1 and 3.2. For $j \in J$, let \tilde{B}_{j} be the (I, P)-crystal $\otimes_{i \in \xi^{-1}(j)} B_{i}$. Let B_{j}^{J} be the (J, \tilde{P})-crystal corresponding to $j \in J$. Let $S_{j}: B_{j}^{J} \rightarrow \tilde{B}_{j}$ be the map given by $S_{j}\left(b_{j}(n)\right)=\otimes_{i \in \xi^{-1}(j)} b_{i}\left(n m_{i}\right)$. Take a sequence j_{1}, j_{2}, \cdots in J in which every element of J appears infinitely many times. Set $\tilde{B}_{J}=\cdots \otimes B_{j_{2}}^{J} \otimes B_{j_{1}}^{J}$ and $\tilde{B}=$ $\cdots \otimes\left(\otimes_{i \in \xi^{-1}\left(j_{2}\right)} B_{i}\right) \otimes\left(\otimes_{i \in \xi^{-1}\left(j_{1}\right)} B_{i}\right)$. Then we consider the embedings Ψ_{J} : $B(\infty) \rightarrow \tilde{B}_{J}$ and $\Psi: B(\infty) \rightarrow \tilde{B}$. Now $\tilde{S}=\otimes_{n} S_{j_{n}}$ defines a map $\tilde{B}_{J} \rightarrow \tilde{B}$. We can see easily that S satisfied the conditions (5.3), (5.4) and (5.5). Hence there exists $S: B_{J}(\infty) \rightarrow B(\infty)$ such that $\Psi \circ S=\tilde{S} \circ \Psi_{J}$.

REmark 5.2. The corresponding relation between the quantized universal enveloping algebras $U_{q}(\mathfrak{g})$ and $U_{q}\left(\mathfrak{g}_{J}\right)$ are not known.

References

[1] M. Kashiwara, Crystallizing the q-analogue of universal enveloping algebra, Commun. Math. Phys. 133 (1990), 249-260.
[2] , On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465-516.
[3] , Crystal base and Littelmann's refined Demazure character formula, Duke Math. J. 71 (1993), 839-858.
[4] , Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), 383-413.
[5] , On crystal bases, Representations of Groups, Proceedings of the 1994 Annual Seminar of the Canadian Math. Soc., Banff Center, Banff, Alberta, June 15-24, B.N. Allison and G.H. Cliff, eds., CMS Conference Proceedings, 16 155-197, Amer. Math. Soc., Providence, RI.
[6] P. Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody Lie algebra, Invent. Math. 116 (1994), 329-346.
[7] , Path and root operators in representation theory, Ann. Math. (to appear).
[8] G. Lusztig, Introduction to Quantum Groups, Progress in Math. 110, Birkhäuser (1993).
Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan E-mail address: masaki@kurims.kyoto-u.ac.jp

