THE FLAG MANIFOLD OF KAC-MOODY LIE ALGEBRA

By M. Kashiwara

0. Introduction. In this paper, we shall construct the flag variety of a Kac-Moody Lie algebra as an infinite-dimensional scheme. There are several constructions by Kac-Peterson ([K-P]), Kazhdan-Lusztig ([K-L]), S. Kumar ([Ku]), O. Mathieu ([M]), P. Slodowy ([S]), J. Tits ([T]), but there the flag variety is understood as a union of finite-dimensional varieties.

We give here two methods of construction of the flag variety. For a Kac-Moody Lie algebra \(g \), let \(\hat{g} \) be the completion of \(g \). The first construction is to realize the flag variety as a subscheme of \(\text{Grass}(\hat{g}) \), the Grassmann variety of \(\hat{g} \). More precisely, taking the Borel subalgebra \(b_- \subset \hat{g} \) and regarding this as a point of \(\text{Grass}(\hat{g}) \), we define the flag variety as its orbit by the infinitesimal action of \(\hat{g} \) in \(\text{Grass}(\hat{g}) \).

The other construction is to realize the flag variety as \(G/B_- \). Of course, in the Kac-Moody Lie algebra case, we cannot expect that there is a group scheme whose Lie algebra is \(g \). But we can construct a scheme \(G \) on which \(g \) acts infinitesimally from the left and the right. Then we define the flag variety \(G/B_- \), where \(B_- \) is the Borel subgroup. More precisely, we consider the ring of regular functions as in [K-P]. Then its spectrum admits an infinitesimal action of \(g \). But its action is not locally free. Roughly speaking, \(G \) is the open subscheme where \(g \) acts locally freely (Proposition 6.3.1).

The flag variety of a Kac-Moody algebra shares the similar properties to the finite-dimensional ones, such as Bruhat decompositions.

I would like to acknowledge mathematicians I saw at Tata Institute, especially S. Kumar, Moody, Verma. I also thank for hospitalities of the staffs in The Johns Hopkins University during my preparing this article.

Manuscript received 5 December 1988.

161
1. Scheme of countable type.

1.1. In this paper, we treat infinite-dimensional schemes such as A^∞, P^∞, etc. We shall discuss their local properties briefly.
Let k be a commutative ring.

Definition 1.1.1. A k-algebra A is called of countable type over k, if A is generated by k and countable numbers of elements.

The following is easily proven just as in EGA.

Lemma 1.1.2. Let X be a scheme over k. Assume that there is an open affine covering $X = \bigcup U_j$ of X such that $\Gamma(U_j; \mathcal{O}_X)$ is of countable type. Then, for any open affine subset U of X, $\Gamma(U; \mathcal{O}_X)$ is of countable type.

Definition 1.1.3. A scheme X over k is called of countable type if for any open affine subset U of X, $\Gamma(U; \mathcal{O}_X)$ is a k-algebra of countable type.

Lemma 1.1.4. Let k be a noetherian ring. Then any ideal of a k-algebra A of countable type is generated by countable elements.

Proof. Assume A is generated by x_i, $(i = 1, 2, \ldots)$. Then for any ideal I of A, $I \cap k[x_1, \ldots, x_n]$ is generated by finitely many elements.

Lemma 1.1.5. Let k be an algebraically closed field such that k is not a countable set, and let X be a k-scheme of countable type. If X has no k-valued point, then X is empty.

Proof. We may assume $X = \text{Spec}(A)$ and $A \cong k[T_n; n \in \mathbb{N}] / I$, where T_n are indeterminates. Then I is generated by countably many elements f_j. Let k^\prime be the subring of k generated by the coefficients of the f_j. Set $A^\prime = k^\prime[T_n; n \in \mathbb{Z}] / I^\prime$ where I^\prime is the ideal generated by f_j. Then $A \cong k \otimes_k A^\prime$. If $A \neq 0$, there is a homomorphism $A^\prime \to K^\prime$ from A^\prime to a field K^\prime. We may assume K^\prime is generated by the image of A^\prime as a field. Then K^\prime has at most countable transcendental dimension over the prime field. Hence $k^\prime \to k$ splits $k^\prime \to K^\prime \varphi \to k$ for some φ. Therefore X has a k-valued point.

Proposition 1.1.6. Let k be a noetherian ring, and $A \cong \lim_{n} A_n$, where $\{A_n\}_{n \in \mathbb{N}}$ is an inductive system of k-algebra of finite type and $A_n \to A_{n+1}$ is flat. Then $\mathcal{O}_{\text{Spec}(A)}$ is a coherent ring.

Proof. Any homomorphism $\varphi : A^{\otimes m} \to A$ comes from some φ^\prime:
$A^\otimes m \to A_n$. Then $\text{Ker } \varphi'$ is finitely generated over A_n and hence $\text{Ker } \varphi \cong A \otimes_{A_n} \text{Ker } \varphi'$ is also finitely generated over A.

Let us give an example.

Example 1.1.7. Infinite-dimensional affine space: $A^\infty = \text{Spec } k[X_i; i \in \mathbb{N}]$. The set of k-valued points of A^∞ is $\{(x_i)_{i \in \mathbb{N}}; x_i \in k\}$. The structure ring is coherent by Proposition 1.1.6, since $k[X_i; i \in \mathbb{N}] = \bigcup_{m,k} k[X_1, \ldots, X_m]$.

2. Grassmann variety.

2.1. Let k be a base field.

Definition 2.1.1. An l.c. k-vector space V is a k-vector space with a topology satisfying

(i) The addition map $V \times V \to V$ is continuous.
(ii) V is Hausdorff and complete.
(iii) The open k-vector subspaces form a neighborhood system of 0.

Let V_1 and V_2 be two l.c. vector spaces. We set

\[(2.1.1) \quad V_1 \otimes V_2 = \lim_{U_1, U_2} (V_1/U_1) \otimes (V_2/U_2)\]

where U_j ranges over open linear subspaces of 0 in V_j ($j = 1, 2$). We endow $V_1 \otimes V_2$ with the structure of l.c. vector space such that $\text{Ker } (V_1 \otimes V_2 \to (V_1/U_1) \otimes (V_2/U_2))$ form a neighborhood system of 0.

Definition 2.1.2. An l.c. k-vector space V is called a c.l.c. k-vector space if V is an l.c. k-vector space and it satisfies furthermore

(iv) There is a decreasing sequence $\{W_n\}_{n \in \mathbb{Z}}$ of open vector subspaces forming a neighborhood system of 0 such that $V = \bigcup_{n \in \mathbb{Z}} W_n$ and $\dim W_n/W_m < \infty$ for $n \leq m$.

Remark that in this case the family $\mathcal{F}(V)$ of open vector subspace W of V which is contained by some W_n is independent from the choice of $\{W_n\}$. In fact, $\mathcal{F}(V)$ is the family of open vector subspaces W of V such that $\dim(W/W') < \infty$ for any open subspace $W' \subset W$.
2.2. For a c.l.c. vector space V, define the Grassmann variety as follows.

For a k-scheme S, set $\mathcal{O}_S \otimes V = \lim_{W \in \mathcal{F}(V)} \mathcal{O}_S \otimes (V/W)$ and consider the functor

\[(2.2.1) \quad \text{Grass}(V) : S \mapsto \{ \mathcal{F} ; \mathcal{F} \text{ is a sub-\mathcal{O}_S-module of } \mathcal{O}_S \otimes V \text{ such that locally in the Zariski topology there exists a } W \in \mathcal{F}(V) \text{ such that } \mathcal{F} \to \mathcal{O}_S \otimes (V/W) \text{ is an isomorphism} \} \]

For $W \in \mathcal{F}(V)$, we set

\[(2.2.2) \quad \text{Grass}_W(V) : S \mapsto \{ \mathcal{F} ; \mathcal{F} \text{ is a sub-\mathcal{O}_S-module of } \mathcal{O}_S \otimes V \text{ such that } \mathcal{F} \to \mathcal{O}_S \otimes (V/W) \text{ is an isomorphism} \} \]

Hence $\text{Grass}(V) = \bigcup_W \text{Grass}_W(V)$ in the Zariski topology.

Proposition 2.2.1. Grass(V) is represented by a separated scheme.

Proof. This proposition follows from the following two statements

\[(2.2.3) \quad \text{Grass}_W(V) \text{ is represented by an affine scheme of countable type.} \]

\[(2.2.4) \quad \text{For } W, W' \in \mathcal{F}(V), \text{ there exists } f \in \Gamma(\text{Grass}_W(V) ; \mathcal{O}) \text{ and } f' \in \Gamma(\text{Grass}_{W'}(V) ; \mathcal{O}) \text{ such that } \text{Grass}_W(V) \cap \text{Grass}_{W'}(V) \text{ is represented by the open subscheme defined by } f \neq 0 \text{ of } \text{Grass}_W(V) \text{ and that we have } ff' = 1 \text{ on } \text{Grass}_W(V) \cap \text{Grass}_{W'}(V) . \]

We shall prove first (2.2.3). Let us take $\{ e_i \}_{i \in I}$ in V such that $\{ e_i \}$ forms a base of V/W. Take $\{ u_j \}_{j \in J}$ in W such that u_j tends to 0 and any element of W is uniquely written as $\Sigma a_j u_j$ ($a_j \in k$). Then for a scheme S and $\mathcal{F} \in \text{Grass}_W(V)(S)$, there exist $a_{ij} \in \mathcal{O}(S)$ such that \mathcal{F} is generated by $e_i + \Sigma_j a_{ij} u_j$. Hence Grass$_W(V)$ is represented by Spec$(k[T_{ij} ; i \in I, j \in J])$.

Now, we shall prove (2.2.4).

For $\mathcal{F} \in \text{Grass}(V)(S)$, let \mathcal{G} be the cokernel of $\mathcal{F} \to \mathcal{O}_S \otimes V/(W \cap W')$, and consider the diagram
\[
\begin{align*}
0 & \longrightarrow \mathcal{O}_S \otimes W/(W \cap W') \overset{\cong}{\longrightarrow} \mathcal{O}_S \otimes W/(W \cap W') \longrightarrow 0 \\
0 & \longrightarrow \mathcal{F} \longrightarrow \mathcal{O}_S \otimes V/(W \cap W') \longrightarrow \mathcal{G} \longrightarrow 0 \\
\mathcal{F} & \longrightarrow \mathcal{O}_S \otimes V/W
\end{align*}
\]

Hence if \(\mathcal{F} \in \text{Grass}_W(V)(\mathcal{S}) \), \(\mathcal{G} \) is isomorphic to \(\mathcal{O}_S \otimes W/(W \cap W') \). The similar diagram obtained by exchanging \(W \) and \(W' \) shows that \(\mathcal{O}_S \otimes W'/(W' \cap W') \rightarrow \mathcal{G} \) and \(\mathcal{F} \rightarrow \mathcal{O}_S \otimes V/W' \) has the same kernel and the cokernel. Hence if we denote by \(f \) the determinant of \(\psi : \mathcal{O}_S \otimes W'/(W \cap W') \rightarrow \mathcal{G} \cong \mathcal{O}_S \otimes W/(W \cap W') \), then \(\text{Grass}_W(V) \cap \text{Grass}_{W'}(V) \) is defined by \(f \neq 0 \). On \(\text{Grass}_W(V) \), we define \(f' \) as the determinant of \(\psi' : \mathcal{O}_S \otimes W/(W \cap W') \rightarrow \mathcal{G} \cong \mathcal{O}_S \otimes W'/(W \cap W') \). Then since \(\psi \) and \(\psi' \) are inverse to each other on \(\text{Grass}_W(V) \cap \text{Grass}_{W'}(V) \), we have \(ff' = 1 \) there.

Corollary 2.2.2. Grass\(_W(V)\) is open in Grass\((V)\) and isomorphic to \(A^\infty \) (if \(\dim V = \infty \)).

Corollary 2.2.3. (i) For \(W, W' \in \mathcal{F}(V) \), Grass\(_W(V) \cap \text{Grass}_{W'}(V) = \emptyset \) if \(\dim W/(W \cap W') \neq \dim W'/(W \cap W') \).

(ii) Fix \(W \in \mathcal{F}(V) \). Then

\[
\text{Grass}(V) = \bigcup_{d \in \mathbb{Z}} \text{Grass}^d(V) \quad \text{and} \quad \text{Grass}^d(V) = \bigcup_{W'} \text{Grass}_W(V)
\]

where \(W' \) ranges over \(\mathcal{F}(V) \) with \(\dim W/(W \cap W') = \dim W'/(W \cap W') = d \).

2.3. Let \(G \) be an affine group scheme over a field \(k \). We say that \(G \) acts on a \(k \)-vector space (or \(V \) is a \(G \)-module) if \(V \) is an \(\mathcal{O}(G) \)-comodule; i.e. there is a comultiplication \(\mu : V \to \mathcal{O}(G) \otimes V \) such that

\[
(2.3.1) \quad V \longrightarrow \mathcal{O}(G) \otimes V \quad \text{and} \quad V \longrightarrow \mathcal{O}(G) \otimes V \\
\downarrow \quad \quad \quad \quad \downarrow \mu_g \otimes V \\
k \otimes V \quad \mathcal{O}(G) \otimes \mathcal{O}(G) \otimes V
\]

commutes, where \(\mathcal{O}(G) \to k \) is the evaluation map at the identity and \(\mu_G \).
\(\mathcal{O}(G) \to \mathcal{O}(G) \otimes \mathcal{O}(G) \) is the comultiplication. As well-known, in this case, \(V \) is a union of finite-dimensional sub-\(G \)-modules.

Now, let \(V \) be an \(l.c. \) \(k \)-vector space. We endow \(\mathcal{O}(G) \) with the discrete topology. We say that \(V \) is a \((l.c.) \) \(G \)-module if there is given a continuous comultiplication \(V \to \mathcal{O}(G) \hat{\otimes} V \) such that

\[
(2.3.2) \quad V \to \mathcal{O}(G) \hat{\otimes} V \quad \text{and} \quad V \to \mathcal{O}(G) \hat{\otimes} V
\]

commute. In this case, there exists a neighborhood system of \(0 \) by linear subspaces \(U_i (i \in I) \) such that \(V/U_i \) is a \(G \)-module and \(V/U_i \to V/U'_i \) is a morphism of \(G \)-modules if \(U_i \subset U'_i \).

Proposition 2.3.1. If \(V \) is a \(c.l.c. \) \(G \)-module, then \(G \) acts on Grass(\(V \)).

Proof. It is enough to construct

\[
G(\mathcal{S}) \times \text{Grass}(V)(\mathcal{S}) \to \text{Grass}(V)(\mathcal{S})
\]

functorially in \(S \). An \(S \)-valued point of \(G \) gives \(\mathcal{O}(G) \to \mathcal{O}(S) \).

Then we obtain

\[
g : \mathcal{O}_S \hat{\otimes} V \overset{\mathcal{O}_S \hat{\otimes} G}{\to} \mathcal{O}_S \hat{\otimes} \mathcal{O}(G) \hat{\otimes} V \overset{a}{\to} \mathcal{O}_S \hat{\otimes} V.
\]

This is an isomorphism. Hence for \(F \subset \mathcal{O}_S \otimes V, \varphi(F) \subset \mathcal{O}_S \hat{\otimes} V \) and it gives the map Grass(\(V \))(\(S \)) \to Grass(\(V \))(\(S \)).

3. **Kac-Moody Lie algebra.**

3.1. Following Kac, Moody, Mathieu, we start by the following data: a free \(\mathbb{Z} \) module \(P \), at most countably generated, and \(a_i \in P \) and \(h_i \in \text{Hom}_\mathbb{Z}(P, \mathbb{Z}) \) indexed by an index set \(I \).

We set \(t^0 = C \otimes_\mathbb{Z} P, \ t = \text{Hom}_C(t^0, C) \equiv \text{Hom}_\mathbb{Z}(P, C) \) with the structure of \(l.c. \) vector space induced from the discrete topology of \(t^0 \). We assume the following conditions:
(3.1.1) \(\left\{ \langle \alpha_i, h_j \rangle \right\}_{i,j} \) is a generalized Cartan matrix, i.e. \(\langle \alpha_i, h_j \rangle \in \mathbb{Z} \), \(\langle \alpha_i, h_i \rangle = 2 \), \(\langle \alpha_i, h_j \rangle \leq 0 \) for \(i \neq j \) and \(\langle \alpha_i, h_j \rangle = 0 \) iff \(\langle \alpha_i, h_i \rangle = 0 \).

(3.1.2) For any \(i \), there is \(\lambda \in \mathcal{P} \) such that \(\langle \lambda, h_i \rangle > 0 \) and \(\langle \lambda, h_j \rangle = 0 \) for any \(j \neq i \).

(3.1.3) \(\{ \alpha_i \}_{i \in I} \) is linearly independent.

(3.1.4) For any \(\lambda \in \mathcal{P} \), \(\langle h_i, \lambda \rangle = 0 \) except finitely many \(i \).

Let \(\mathcal{G} \) be the Lie algebra generated by \(t \) and symbols \(e_i, f_i \) \((i \in I) \) with the following recover relations:

(3.1.5) \([h, e_i] = \alpha_i(h)e_i \) and \([h, f_i] = -\alpha_i(h)f_i \) for \(h \in t \).

(3.1.6) \([e_i, f_j] = \delta_{ij}h_i \).

(3.1.7) \((a e_i)^{1-\alpha_i(h_i)} e_j = 0 \) and \((a f_i)^{1-\alpha_i(h_i)} f_j = 0 \) for \(i \neq j \).

Let \(n \) (resp. \(n_- \)) be the Lie subalgebra generated by \(e_i \) (resp. \(f_i \)) \(i \in I \). Then we have (e.g. [K])

\[
\mathcal{G} = n \oplus t \oplus n_-. \tag{3.1.8}
\]

Set

\[
b = t \oplus n, \quad b_- = t \oplus n_- \tag{3.1.9}
\]

\[
\mathcal{G}_i = t \oplus Ce_i \oplus Cf_i, \quad p_i = \mathcal{G}_i + n, \quad p_i^- = \mathcal{G}_i + n^- \tag{3.1.10}
\]

Let \(\Delta \) be the set of roots of \(\mathcal{G} \) and \(\Delta_+ \) and \(\Delta_- \) the set of roots of \(n \) and \(n_- \), respectively, and let \(\mathcal{G}_\alpha \) be the root space with root \(\alpha \in \Delta \). We set

\[
n_i = \bigoplus_{\alpha \in \Delta_+} \mathcal{G}_\alpha, \quad n_i^- = \bigoplus_{\alpha \in \Delta_-} \mathcal{G}_\alpha \tag{3.1.11}
\]

Let \(W \) be the Weyl group, i.e. the subgroup of \(\text{GL}(t^0) \) generated by the simple reflections \(s_i \) \((i \in I) \), where
(3.1.12) \[s_i(\lambda) = \lambda - \langle h_i, \lambda \rangle \alpha_i. \]

We also denote by \(W' \) the braid group generated by \(s_i \ (i \in I) \) with the fundamental relation

\[s_i s_j = s_j s_i \quad \text{if} \quad \langle h_i, \alpha_j \rangle = 0 \]

\[s_i s_j s_i = s_j s_i s_j \quad \text{if} \quad \langle h_i, \alpha_j \rangle = \langle h_j, \alpha_i \rangle = -1 \]

(3.1.13)

\[(s_i s_j)^2 = (s_j s_i)^2 \quad \text{if} \quad \langle h_i, \alpha_j \rangle \langle h_j, \alpha_i \rangle = 2 \]

\[(s_i s_j)^3 = (s_j s_i)^3 \quad \text{if} \quad \langle h_i, \alpha_j \rangle \langle h_j, \alpha_i \rangle = 3 \]

Then as is well-known, \(W \) is isomorphic to the quotient of \(W' \) by the subgroup generated by \(w s_i^2 w^{-1} \ (i \in I) \).

For \(w \in W \), we denote by \(l(w) \) the length of \(w \), i.e. the smallest number \(l \) such that \(w \) is the product of a sequence of length \(l \) in \(\{s_i\} \). Recall that

(3.1.14) \[l(w) = \#(\Delta_+ \cap w\Delta_-). \]

Also recall that \(l(s_i w) < l(w) \) if and only if \(w^{-1} \alpha_i \in \Delta_- \). Note also there exists a unique injection \(\iota : W \to W' \) such that

(3.1.15) \[\iota(1) = 1, \quad \iota(s_i) = s'_i \quad \text{and} \quad \iota(ww') = \iota(w)\iota(w') \]

\[\text{if} \quad l(ww') = l(w) + l(w'). \]

By this, we sometimes embed \(W \) into \(W' \).

An element \(h \) of \(i \) is called regular if \(\langle h, \alpha \rangle \neq 0 \) for any \(\alpha \in \Delta \). Such an element always exists. We set

(3.1.16) \[P_+ = \{ \lambda \in P; \langle \lambda, h_i \rangle \geq 0 \ \text{for any} \ i \}. \]

For any finite set \(J \) of \(I \), we set

(3.1.17) \[P_J^+ = \{ \lambda \in P_+; \langle \lambda, h_i \rangle = 0 \ \text{for} \ i \in I \setminus J \}. \]

If we set \(P_0 = \{ \lambda \in P; \langle \lambda, h_i \rangle = 0 \ \text{for} \ i \in I \} \) then \(P_0 \) is a free \(\mathbb{Z} \)-module and \(P_J^+/P_0 \) is a finitely generated semigroup.
3.2. Now, we shall define a completion of \mathcal{G}. For a subset \mathcal{S} of Δ_+, we set

$$n_\mathcal{S} = \bigoplus_{\alpha \in \mathcal{S}} \mathcal{G}_\alpha.$$

We set

$$(3.2.2) \quad \hat{\mathcal{G}} = \lim_{\mathcal{T}} \mathcal{G}/n_\mathcal{S} = b_+ \bigoplus_{\alpha \in \Delta_+} \mathcal{G}_\alpha$$

where \mathcal{S} ranges over the subsets of Δ_+ such that $\Delta_+ \setminus \mathcal{S}$ is finite. We define the subalgebras $\hat{\mathcal{P}}, \hat{\mathcal{N}}, \hat{\mathcal{B}}, \hat{\mathcal{N}}$ of $\hat{\mathcal{G}}$, similarly. We set also

$$(3.2.3) \quad \hat{\mathcal{U}}(\mathcal{G}) = \bigcup_l \hat{\mathcal{U}}_l(\mathcal{G})$$

Then $\hat{\mathcal{U}}(\mathcal{G})$ is an algebra containing $\mathcal{U}(\mathcal{G})$ as a subalgebra.

3.3. In general, let \mathcal{G} be a Lie algebra. A vector v of a \mathcal{G}-module V is called \mathcal{G}-finite if v is contained in a finite-dimensional sub-\mathcal{G}-module of V. We call a \mathcal{G}-module V is locally finite if any element of V is \mathcal{G}-finite.

Let us define a ring homomorphism

$$(3.3.1) \quad \delta : \mathcal{U}(\mathcal{G}) \to \mathcal{U}(\mathcal{G}) \otimes \mathcal{U}(\mathcal{G})$$

by $\delta(A) = A \otimes 1 + 1 \otimes A$ for $A \in \mathcal{G}$, and an anti-ring automorphism

$$(3.3.2) \quad a : \mathcal{U}(\mathcal{G}) \to \mathcal{U}(\mathcal{G})$$

by $A^* = -A$ for $A \in \mathcal{G}$. Then δ defines $\mathcal{U}(\mathcal{G})^* \otimes \mathcal{U}(\mathcal{G})^* \to (\mathcal{U}(\mathcal{G}) \otimes \mathcal{U}(\mathcal{G}))^*$

$\to \mathcal{U}(\mathcal{G})^*$ and this gives a commutative ring structure on $\mathcal{U}(\mathcal{G})^*$.

The right and left multiplication of \mathcal{G} on $\mathcal{U}(\mathcal{G})$ induces the two \mathcal{G}-module structures on $\mathcal{U}(\mathcal{G})^*$:

$$(3.3.3) \quad (R(A)f)(P) = f(PA), \quad (L(A)f)(P) = f(a(A)P)$$
for $A \in U(\mathfrak{G})$, $f \in U(\mathfrak{G})^*$ and $P \in U(\mathfrak{G})$. Then $R(A)$ and $L(A)$ are derivations of the ring $U(\mathfrak{G})^*$ for any $A \in \mathfrak{G}$.

Now let \mathfrak{G} be an abelian Lie algebra acting on the Lie algebra \mathfrak{G} semi-simply, t an abelian subalgebra of \mathfrak{G} stable by \mathfrak{G}, and $P \subset t^*$ a sub-\mathbb{Z}-module stable by \mathfrak{G}. We assume that t acts semi-simply on \mathfrak{G} by the adjoint action and its weights belong to P.

Then, we set

$$
(3.3.5) \quad A(\mathfrak{G}, t, P, \mathfrak{G}) = \bigoplus_{\lambda \in P} \{ f \in U(\mathfrak{G})^*; f \text{ satisfies the following conditions (3.3.6), (3.3.7) and (3.3.8)} \}.
$$

(3.3.6) f is \mathfrak{G}-finite with respect to L and R.

(3.3.7) f is a weight vector with weight λ with respect to the left action of t.

(3.3.8) f is \mathfrak{G}-finite.

Then $f \in U(\mathfrak{G})^*$ belongs to $A(\mathfrak{G}, t, P, \mathfrak{G})$ if and only if there exists a two-sided ideal I of $U(\mathfrak{G})$ such that

(3.3.9) $f(U(\mathfrak{G})/I) = 0$,

(3.3.10) $\dim U(\mathfrak{G})/I < \infty$,

(3.3.11) I is \mathfrak{G}-invariant,

(3.3.12) t acts semi-simply on $U(\mathfrak{G})/I$ by the left multiplication and its weights belong to P.

Then one can see easily that $A(\mathfrak{G}, t, P, \mathfrak{G})$ is a subring of $U(\mathfrak{G})^*$ and the multiplication map $\mu : U(\mathfrak{G}) \otimes U(\mathfrak{G}) \to U(\mathfrak{G})$ induces the homomorphism

$$
(3.3.13) \quad U(\mathfrak{G})^* \bigcap U(\mathfrak{G})^* \quad \longrightarrow \quad (U(\mathfrak{G}) \otimes U(\mathfrak{G}))^*
$$

With this, $\text{Spec}(A(\mathfrak{G}, t, P, \mathfrak{G}))$ becomes an affine group scheme (see [M]).
We write

\[(3.3.14) \quad G(\mathcal{G}, t, P, \alpha) = \text{Spec}(A(\mathcal{G}, t, P, \alpha)).\]

Remark that \(g \mapsto g^{-1}\) is given by \(a : U(\mathcal{G}) \to U(\mathcal{G})\).

When \(\alpha = 0\), we write \(G(\mathcal{G}, t, P)\) for \(G(\mathcal{G}, t, P, \alpha)\) for short.

\[3.4.\quad \text{Coming back to the situation in Section 3.1, we define the affine group schemes } B, B_-, T, U, U_-, G_i, U_i, U_i^-, P_i, P_i^- \text{ as follows. This construction is due to Mathieu [M].}\]

\[
\begin{align*}
B &= G(b, t, P), \\
B_- &= G(b_-, t, P), \\
T &= G(t, t, P), \\
U &= G(n, 0, 0, t), \\
U_- &= G(n_-, 0, 0, t), \\
G_i &= G(\mathcal{G}_i, t, P), \\
U_i &= G(n_i, 0, 0, t), \\
U_i^- &= G(n_i^-, 0, 0, t), \\
P_i &= G(p_i, t, P), \\
P_i^- &= G(p_i^-, t, P), \\
G_i^+ &= G(t \oplus C e_i, t, P), \\
G_i^- &= G(t \oplus C f_i, t, P).
\end{align*}
\]

Then we have ([M])

\[B = T \bowtie U = G_i^+ \times U_i,\]
M. KASHIWARA

\[B_- = T \times U_- = G_i^- \times U_i^- , \]

\[P_i = G_i \times U_i \supset B \supset T , \]

\[P_i^- = G_i^{-} \times U_i^{-} \supset B_- \supset T , \]

\[T = \text{Spec } \mathbb{C}[P] , \]

\[U \cong \text{Spec } S(\bigoplus_{\alpha \in \Delta^+} \mathfrak{g}^{\alpha^*}) , \]

\[U_- \cong \text{Spec } S(\bigoplus_{\alpha \in \Delta_-} \mathfrak{g}^{\alpha^*}) , \]

\[G_i^+ = G_i \cap B , \quad G_i^- = G_i \cap G_- . \]

More generally, for a subset \(S \) of \(\Delta^+ \) such that \((S + S) \cap \Delta^+ \subset S \), we set \(n_S = \bigoplus \mathfrak{g}_{\alpha} \) and \(U_S = G(n_S, 0, 0, t) \).

Then for \(S \supset S' \) such that \(S \setminus S' \) is a finite set and that \((S + S') \cap \Delta^+ \subset S' \), \(n_S/n_{S'} \) is a finite-dimensional nilpotent Lie algebra and if we denote by \(\exp(n_S/n_{S'}) \) the associated unipotent group, we have

\[U_S \cong \lim_{S \to S'} \exp(n_S/n_{S'}). \]

3.5. The group \(P_i \) acts on the c.l.c. space \(\mathcal{G} \) by the adjoint action. In fact, \(\text{ad} : p_i \to \text{End } (\mathcal{G}) \) extends to \(\text{ad} : U(p_i) \to \text{End } (\mathcal{G}) \). Moreover, for any ideal \(\mathcal{A} \) of \(p_i \) with \(\text{codim } p_i/\mathcal{A} < \infty \), \(\mathcal{G}/\mathcal{A} \) is locally \(p_i \)-finite. Hence, for any \(A \in \mathcal{G} \), there is a two-sided ideal \(I \) of \(U(p_i) \) with \(\dim \ U(p_i)/I < \infty \) and \(\text{ad}(I)A \subset \mathcal{A} \). Hence the morphism \(P \to \text{ad}(P)A \) from \(U(p_i) \) to \(\mathcal{G}/\mathcal{A} \) splits as \(U(p_i)/I \to \mathcal{G}/\mathcal{A} \). Hence this gives an element of \((U(p_i)/I)^* \otimes \mathcal{G}/\mathcal{A} \subset U(p_i)^* \otimes (\mathcal{G}/\mathcal{A}) \). This element clearly belongs to \(A(p_i, t, P) \otimes (\mathcal{G}/\mathcal{A})^* \). Thus we obtained \(\mathcal{G}/\mathcal{A} \to A(p_i, t, P) \otimes (\mathcal{G}/\mathcal{A})^* \). Since \(\lim_{i \to I} \mathcal{G}/\mathcal{A} = \hat{\mathcal{G}} \), we obtain \(\hat{\mathcal{G}} \to \mathcal{O}(P_i) \otimes \hat{\mathcal{G}} \). This gives an action of \(P_i \) on \(\hat{\mathcal{G}} \).

Clearly the action of \(B \) on \(\hat{\mathcal{G}} \) obtained from the action of \(P_i \) does not depend on \(i \in I \).

Especially, \(P_i \) acts on the Grassmann variety \(\text{Grass}(\hat{\mathcal{G}}) \) by Proposition 2.3.1.
4. The first construction of the flag variety.

4.1. In this section, for a Kac-Moody Lie algebra \mathfrak{g}, we construct its flag variety as a subscheme of $\text{Grass}(\mathfrak{g})$. We keep the notations in Section 3.

4.2. Since \mathfrak{g} is a c.l.c. vector space, $\text{Grass}(\mathfrak{g})$ is a separated scheme. Since $\mathfrak{g} = \mathfrak{b}_- \oplus \mathfrak{n}_+$, \mathfrak{b}_- gives a \mathbb{C}-valued point of $\text{Grass}(\mathfrak{g})$. We denote this point by x_0. By Section 3.5, P_i and B act on $\text{Grass}(\mathfrak{g})$.

4.3. Set $s_i' = \exp(-e_i)\exp(f_i)\exp(-e_i) \in G_i \subset P_i$. Then $s_i'^4 = 1$ and s_i' acts on \mathfrak{g}. This extends to the group homomorphism:

\[(4.3.1) \quad W' \to \text{Aut}(\mathfrak{g}).\]

In order to see this, it is enough to prove the braid relation (3.1.13) when the Lie algebra generated by e_i, e_j, f_i, f_j is finite-dimensional. Then the braid condition holds in the corresponding simply connected semi-simple group.

The morphism (4.3.1) induces

\[(4.3.2) \quad W' \to \text{Aut}(\text{Grass}(\mathfrak{g})).\]

We have also

\[(4.3.3) \quad \text{The image of Ker}(W' \to W) \text{ in Aut}(\mathfrak{g}) \text{ belongs to the image of } T \text{ in Aut}(\mathfrak{g}).\]

In fact, Ker$(W' \to W)$ is generated by the $w s_i'^2 w^{-1}$, which belongs to T.

Since $[t, b_-] \subset b_-$, we have

\[(4.3.4) \quad Tx_0 = x_0.\]

Hence for $w \in W$, $w' x_0$ does not depend on the choice of a representative w' of w in W'. We denote it by $w x_0$.

4.4. As in (2.2.2), we set

\[(4.4.1) \quad \text{Grass}_a(\mathfrak{g}) = \{ W \in \text{Grass}(\mathfrak{g}); W \oplus \mathfrak{n} \cong \mathfrak{g} \}.\]
This is an affine open subscheme of Grass(\(\hat{G}\)).

Lemma 4.4.1. The morphism \(U \to \text{Grass}(\hat{G})\) given by \(U \ni g \mapsto gx_0\) is an embedding.

Proof. First we shall show \(Ux_0 \subset \text{Grass}_\alpha(\hat{G})\). For this, it is enough to show, for any \(g \in U\),

\[
(4.4.2) \quad gb_+ \oplus \hat{n} = \hat{G}.
\]

But this is obvious because \(\hat{n}\) is stable by \(U\). Hence it is enough to show that \(U \to Y = \text{Grass}_\alpha(\hat{G})\) is a closed embedding. In order to see this, let us take a regular element \(h\) of \(t\) (i.e. \(\langle h, \alpha \rangle \neq 0\) for any \(\alpha \in \Delta\)). Then for any \(F \in \text{Grass}_\alpha(\hat{G})\), \(F \oplus \hat{n} = \hat{G}\), and hence there exists \(\psi(F) \in \hat{n}\) with \(h - \psi(F) \in F\). This defines a morphism

\[
\psi : Y \to \hat{n}.
\]

If we combine \(U \to Y \overset{\psi}{\to} \hat{n}\), this is given by

\[
U \ni g \mapsto h - g^{-1}h \in \hat{n}.
\]

Hence it is enough to show the following lemma.

Lemma 4.4.2. Let \(h\) be a regular element of \(t\). Then, the morphism \(U \to h + \hat{n}\) given by \(g \mapsto gh\) is an isomorphism.

Proof. Let \(S\) be a subset of \(\Delta_+\) such that \((S + \Delta_+) \cap \Delta_+ \subset S\) and \(\Delta_+ \setminus S\) is finite. Then \(U \to h + \hat{n}\) induces \(U/U_S \to (h + n)/n_S\), and it is enough to show that this is an isomorphism. Now \(U/U_S\) acts on \(b/n_S\). For \(A \in n/n_S\), the isotropy group at \(h + A\) is the identity. In fact this follows from

\[
(4.4.3) \quad \{E \in n; [h + A, E] \in n_S\} = n_S.
\]

Since \(\dim (h + n)/n_S = \dim U/U_S\), \((U/U_S)(h + A)\) is open in \((h + n)/n_S\). Thus \((U/U_S)(h + A)\) and \((U/U_S)h\) intersect. This shows \(U/U_S \cong (U/U_S)h = (h + n)/n_S\).
4.5. We have

\[(4.5.1) \quad Bx_0 = Ux_0\]

because \(Tx_0 = x_0\) and \(B = UT\). For \(w \in W\), let us denote

\[(4.5.2) \quad B \cap ^wB = A(t \oplus \bigoplus_{\alpha \in \Delta_+ \cap ^w\Delta_+} S_\alpha, t, P)\]

\[B \cap ^wB_- = A(t \oplus \bigcap_{\alpha \in \Delta_+ \cap ^w\Delta_-} S_\alpha, t, P).\]

They are subgroups of \(B\). Similarly, we define \(U \cap ^wU\) and \(U \cap ^wU_-\). Then we have

\[(4.5.3) \quad U = (U \cap ^wU) \times (U \cap ^wU_-) \approx (U \cap ^wU_-) \times (U \cap ^wU).\]

We have also

\[(4.5.4) \quad (B \cap ^wB_-)wx_0 = x_0.\]

Lemma 4.5.1. For \(w \in W\), \(Bs_iBwx_0 \subseteq Bwx_0 \cup Bs_iwx_0\).

Proof. We have \(Bs_iBwx_0 \subseteq P_iwx_0\). Since \(P_i = BG_i \subseteq B(G_i \cap ^wB_-) \cup Bs_i(G_i \cap ^wB_-), \)

\(P_iwx_0 \subseteq B(G_i \cap ^wB_-)wx_0 \cup Bs_i(G_i \cap ^wB_-)wx_0 \subseteq Bwx_0 \cup Bs_iwx_0\).

Note that for \(w_1, w_2 \in W\), \(w_1Bw_2x_0\) does not depend on the representatives in \(W\) of \(w_1, w_2 \in W\). Hence we denote \(w_1Bw_2x_0\) for it.

Lemma 4.5.2. Let \(w \in W\).

(i) If \(l(w) > l(s,w)\), \(Bs_iBwx_0 = Bs_iwx_0\).

(ii) If \(l(w) < l(s,w)\), \(Bs_iBwx_0 = P_iwx_0 \cup Bs_iwx_0\).

Proof. If \(l(s,w) < l(w)\), then \(w^{-1}\alpha_i \in \Delta_-\). Hence \(G_i^+ = G_i \cap B \subset ^wB_-\) and \(s_iB \subset s_iU_iG_i^+ \subset Bs_iG_i^+\). Hence we have \(Bs_iBwx_0 = Bs_iG_i^+wx_0 = Bs_iwx_0\).

If \(l(s,w) > l(w)\), then we have \(Bs_iBs_iwx_0 = Bwx_0\) since \(l(s Is, w) < l(s, w)\). Hence \(Bs_iBwx_0 = Bs_iBs_iBwx_0\). Since \(Bs_iBs_iB = P_i\), \(Bs_iBwx_0 = P_iwx_0\) and it contains \(wx_0\) and \(s_iwx_0\).
Lemma 4.5.3. \(wBx_0 \subset U_{w' \leq w} Bw' x_0 \), where \(\leq \) is the Bruhat order (the order generated by \(s_{i_1} \cdots s_{i_k-1} s_{i_k+1} \cdots s_{i_l} \leq s_{i_1} \) for a reduced expression \(s_{i_1} \cdots s_{i_l} \)).

Proof. We shall prove by the induction of \(l(w) \). If \(l(w) = 0 \), it is trivial. Otherwise, set \(w = s_i w' \) with \(l(w) = 1 + l(w') \). Then by the hypothesis of the induction, \(wBx_0 \subset \bigcup \mathcal{w} \subset w \), \(s_i Bw'' x_0 \subset \bigcup \mathcal{w} \subset w \), \(Bs_i w'' x_0 \subset \bigcup \mathcal{w} \subset w \). Hence \(wBx_0 \subset \bigcup \mathcal{w} \subset w \).

Lemma 4.5.4.

(i) \(Bw x_0 \cap \text{Grass}_{\mathring{n}}(\mathfrak{G}) = \emptyset \) if \(w \neq 1 \).

(ii) \(wBx_0 \cap \text{Grass}_{\mathring{n}}(\mathfrak{G}) \subset Bx_0 \).

Proof. (i) Let \(g \in B \) and assume that \(gwB \in \mathfrak{G}/\mathring{n} \). Then \(wb \in \mathfrak{G}/\mathring{n} \). Hence \(w \Delta = \Delta \), which implies \(w = 1 \).

(ii) follows from (i) and the preceding lemma.

Corollary 4.5.5. \(X = \bigcup_{w \in W} wBx_0 \) is a subscheme of \(\text{Grass}(\mathfrak{G}) \) and \(wBx_0 \) is open in \(X \) for any \(w \in W \).

This easily follows from \(X \cap \text{Grass}_{\mathring{n}}(\mathfrak{G}) = Bx_0 \).

Definition 4.5.6. We call \(X \) the flag variety of \(\mathfrak{G} \).

Since \(\text{Grass}(\mathfrak{G}) \) is a separated scheme, \(X \) is also a separated scheme, and \(\{ wBx_0 \} \) is an open affine covering of \(X \). Note that \(X \) is not quasi-compact if \(W \) is an infinite group. I do not know whether \(X \) is a closed subscheme of \(\text{Grass}(\mathfrak{G}) \) or not.

Lemma 4.5.7. \(Bw x_0 \) is a closed subscheme of \(wBx_0 \) and we have a commutative diagram:

\[
\begin{array}{ccc}
Bw x_0 & \rightarrow & wBx_0 \\
\uparrow & & \uparrow \\
\mathring{n} \cap w^{-1} \mathring{n} & \rightarrow & \mathring{n}
\end{array}
\]

(4.5.5)

Proof. We have \(U = (U \cap w U) \times (U \cap w U) \). Since \((U \cap w U) x_0 = x_0 \), we have \(Uw x_0 = (U \cap w U)wx_0 = w^{-1} U \cap U x_0 \). Then the lemma follows from Lemma 4.4.1.

Corollary 4.5.8. \(Bw x_0 \) is affine and codimension \(l(w) \) in \(X \).

Proposition 4.5.9. \(X(\mathbb{C}) = \bigsqcup_{w \in W} Bw x_0 \).
Proof. By Lemma 4.5.3, it is enough to show \(Bw_x_0 = Bw'x_0 \) implies \(w = w' \).

We have \(wx_0 \in Bw'x_0 \subset w'Bx_0 \). Hence \(w'^{-1}wx_0 \subset Bw'^{-1}wx_0 \cap Bx_0 \). Then Lemma 4.5.4 implies \(w' = w \).

Lemma 4.5.10. Let \(w_1, w_2 \in W \) and assume \(l(w_1s_iw_2) = l(w_1) + l(w_2) + 1 \). Then \(Bw_1s_iw_2x_0 \subset Bw_1w_2x_0 \).

Proof. Since \(l(w_1s_i) > l(w_1) \), we have \(w_1 \alpha_i \in \Delta_+ \), and hence \(G_i \cap w_i^{-1}B \subset G_i \cap B \). Since \(l(s_iw_2) > l(w_2) \), \(w_2^{-1} \alpha_i \in \Delta_+ \) and hence \(G_i \cap w_2B_- \subset G_i \cap B_- \). Since \((G_i \cap B)(G_i \cap B_-) \) is dense in \(G_i \), we obtain

\[
Bw_1s_iw_2x_0 \subset Bw_1G_iw_2x_0 \subset \overline{Bw_1(G_i \cap w_i^{-1}B)(G_i \cap w_2B_-)w_2x_0} = \overline{Bw_1w_2x_0}.
\]

Proposition 4.5.11. \(\overline{Bw_0} = \cup_{w' \preceq w} \overline{Bw'x_0} \).

Proof. We shall prove first \(\overline{Bw_0} \supset Bw'x_0 \) if \(w' \preceq w \) by the induction of \(l(w') \). If \(l(w') = 0 \), then \(w = w' = e \) and this is evident. If \(l(w') > 0 \), there is \(w_1, w_2 \in W \) and \(i \) such that \(w' = w_1s_iw_2 \), \(w_1w_2 \preceq w \) and \(l(w') = l(w_1) + l(w_2) + 1 \). Hence \(Bw'x_0 \subset Bw_1w_2x_0 \subset Bw_0x_0 \).

Now, we shall prove the converse inclusion.

In order to see this, we shall prove that \(Bw_0 \supset Bw'x_0 \) implies \(w \preceq w' \) by the induction of \(l(w') \). If \(l(w') = 0 \), \(w \neq 1 \) implies \(Bw_0 \cap Bx_0 = 0 \). Hence \(Bw_0 \cap Bx_0 = 0 \). Assume that \(l(w') > 0 \). Then there is \(i \) such that \(l(s_iw') < l(w') \). Thus we have \(Bw_0 \supset Bw_0 \supset Bw'x_0 = Bw'x_0 \) by Lemma 4.5.2.

If \(l(s_iw) < l(w) \), then by Lemma 4.5.2, \(Bw_0 \supset Bw_0 \supset Bw'x_0 \) and hence \(s_iw \geq s_iw' \), which implies \(w \geq w' \).

If \(l(s_iw) > l(w) \), then \(Bw_0 \supset Bw_0 \supset Bw'x_0 \) and hence \(w \geq s_iw \geq w' \).

Proposition 4.5.12. \(BwBx_0 = \cup_{w' \preceq w} \overline{Bw'x_0} \).

Proof. By Lemma 4.5.3, it is enough to show \(BwBx_0 \supset Bw'x_0 \) implies \(w \preceq w' \), or equivalently

\[
(4.5.8) \quad wBx_0 \cap Bw'x_0 \neq \emptyset \quad \text{implies} \quad w \preceq w'.
\]

We shall prove this by the induction on \(l(w) \). If \(l(w) = 0 \), this is
already proven. Assume \(l(w) > 0 \). Then there exists \(i \) such that \(w'' = s_i w \)
satisfies \(l(w'') < l(w) \). Then \(wb\mathcal{X}_0 \cap Bw'x_0 \neq \emptyset \) implies \(w''\mathcal{X}_0 \cap Bs_iBw'x_0 \neq \emptyset \).

If \(l(s_iw') < l(w') \), Lemma 4.5.2 implies \(w''\mathcal{X}_0 \cap Bs_iw'x_0 \neq \emptyset \).
Hence the hypothesis of the induction implies \(w'' \geq s_iw' \), which gives \(w \geq w' \). If \(l(s_iw') > l(w') \), then \(w''\mathcal{X}_0 \cap (Bs_iw'x_0 \cup Bw'x_0) \neq \emptyset \).
Hence \(w' \geq s_iw' \) or \(w'' \geq w' \). Hence in the both cases, we have \(w \geq w' \).

Corollary 4.5.13. \(Bw\mathcal{X}_0 = \bigcup_{w' \leq w} w'Bw\mathcal{X}_0 \).

Proof. If \(w' \leq w \), \(w'Bw\mathcal{X}_0 \subset \bigcup_{w' \leq w} Bw''x_0 \subset BwB\mathcal{X}_0 \). The inverse inclusion follows from \(w'Bw\mathcal{X}_0 \supset Bw'x_0 \) (Lemma 4.5.7).

Remark 4.5.14. For \(w, w' \in W \), we have

\[
\overline{Bwx_0} \cap w'Bw\mathcal{X}_0 \cong (U \cap \langle w' \rangle U) \times (\overline{Bwx_0} \cap w'(B \cap \langle w' \rangle B_-)x_0)
\]

because \(w'B\mathcal{X}_0 = (U \cap \langle w' \rangle U) \times w'(B \cap \langle w' \rangle B_-)x_0 \) and \(\overline{Bwx_0} \) is invariant by \(U \cap \langle w' \rangle U \). Then \(\overline{Bwx_0} \cap w'(B \cap \langle w' \rangle B_-)x_0 \) is a finite-dimensional variety. Thus, \(\overline{Bwx_0} \) is locally finite-dimensional or the product of a finite-dimensional variety and \(A^\infty \).

Proposition 4.5.15. \(X \) is irreducible.

Proof. Since \(X = \bigcup wB\mathcal{X}_0 \) is an open covering by irreducible subsets, it is enough to show \(wB\mathcal{X}_0 \cap w'B\mathcal{X}_0 \neq \emptyset \) for any \(w, w' \). This follows from \(Bw^{-1}wB\mathcal{X}_0 \supset B\mathcal{X}_0 \) (Proposition 4.5.12).

5. **The second construction of the flag variety.**

5.1. Following Kac-Peterson [K-P], we shall first define the ring of regular functions. Recall that \(U(\mathfrak{g})^* \) has the structure of two-sided \(\mathfrak{g} \)-modules (Section 3.3).

Definition 5.1.1. \(A(\mathfrak{g}, P) = \bigoplus_{\mu \in \mathcal{P}} \{ \varphi \in U(\mathfrak{g})^* ; \varphi \) satisfies the following conditions (5.1.1) and (5.1.2) \}.

(5.1.1) \(\varphi \) is finite with respect to the left action of \(p_i \) and the right action of \(p_i \) for all \(i \).

(5.1.2) \(\varphi \) is a weight vector of weight \(\mu \) with respect to the left action of \(t \).
Lemma 5.1.2. \(A(\mathcal{G}, P) \) is a subring of \(U(\mathcal{G})^* \).

This easily follows from the fact that \(\delta : U(\mathcal{G}) \to U(\mathcal{G}) \otimes U(\mathcal{G}) \) is \(p_i \)-linear with respect to the left and right actions.

Definition 5.1.3. We define \(G_\infty \) as \(\text{Spec}(A(\mathcal{G}, P)) \).

Lemma 5.1.4. Let \(V \) be a \(p_i \)-module, and \(v \in V \).

(i) If \(v \) is \(b \)-finite, then \(f_i v \) is also \(b \)-finite.

(ii) If \(v \) is \(b \)-finite and \(f_i^N v = 0 \) for \(N \gg 0 \), then \(v \) is \(p_i \)-finite.

Proof. Since \([b, f_i] \subset p_i = b + \mathbb{C}f_i \), we have

\[
(5.1.3) \quad U(b)f_i \subset U(b) + f_i U(b).
\]

This shows (i). If \(f_i^N v = 0 \), then \(U(p_i) v = \sum_{k<N} U(b) f_i^k v \), which shows (ii).

Lemma 5.1.5. Let \(V \) be a \(\mathcal{G} \)-module. Then, for any \(i \in I \), the set of \(p_i \)-finite vectors is a sub-\(\mathcal{G} \)-module.

Proof. It is enough to show that if \(v \) is a \(p_i \)-finite vector then \(f_j v \) is also \(p_i \)-finite vector for \(j \neq i \). By the preceding lemma, \(f_j v \) is \(b \)-finite. Hence it is enough to show \(f_i^N f_j v = 0 \) for \(N \gg 0 \). But this follows from (3.1.7) and \(f_i^N f_j v = \sum_k (a_{df_i}^k f_j) f_i^{N-k} v \).

Lemma 5.1.6. For any \(\lambda \in t^0 \), \(\lambda + N\alpha_i \) is not a weight of \(U(n_i) \) except finitely many \(N \in \mathbb{Z} \).

Proof. We may assume that \(\lambda \) is a weight of \(U(n_i) \) and \(I \) is finite. For \(\lambda = \sum \alpha_j \otimes \mathbb{Z} \alpha_j \), set \(|\lambda|' = \sum_{j \neq i} m_j \). Then if \(\alpha \) is a weight of \(n_i \), then \(|\alpha|' > 0 \). Now assume \(\lambda + N\alpha_i \) is a weight of \(U(n_i) \). Then

\[
\lambda + N\alpha_i = \sum_{\nu=1}^r \gamma_\nu
\]

where \(\gamma_\nu \) are weights of \(n_i \). Hence \(|\lambda|' = \sum_{\nu=1}^r |\gamma_\nu|' \). Hence \(r \leq |\lambda|' \) and \(|\gamma_\nu|' \leq |\lambda|' \). Since for any root \(\beta \), there is only finitely many roots of the form \(\beta + N\alpha_i \), there are only finitely many possibilities for \(\gamma_\nu \). Thus we obtain the result.

Lemma 5.1.7.

(i) \([n_i, f_i] \subset n_i \).
(ii) \((\text{ad} f_i)\) acts locally nilpotently on \(U(n_i)\).
(iii) For any two-sided ideal \(I\) of \(U(n_i)\) such that \([t, I] \subseteq I\) and \(\dim(U(n_i)/I) < 0\), there exists \(N\) such that

\[(a) \ (\text{ad} f_i)^m U(n_i) \subseteq I \text{ for } m \geq N.\]
\[(b) \ f_i^{N+m} U(n_i) \subseteq IC[f_i] + U(n_i)C[f_i] f_i^m \text{ for } m \geq 0.\]

Proof.

(i) follows from \((\Delta_+ - \alpha_i) \cap \Delta \subseteq \Delta_+ \setminus \{\alpha_i\}\).
(ii) follows from the fact that weights of \(U(n_i)\) belong to \(\Sigma Z_{\geq 0} \alpha_j\).
(iii) In order to see (a), it is enough to show, for any weight \(\beta\) of \(U(n_i)\), \(\beta + N\alpha_i\) is not a weight of \(U(n_i)\) if \(N \gg 0\). This follows from Lemma 5.1.6. (b) follows from (a) and \(f_i^{N+m} U(n_i) \subseteq \Sigma ((\text{ad} f_i)^k U(n_i)) f_i^{N+m-k}\).

Lemma 5.1.8. If \(\phi \in U(\mathfrak{g})^*\) is left \(b\)-finite and right \(p^-\)-finite, then \(\phi\) is left \(p^-\)-finite.

Proof. By Lemma 5.1.4, it is enough to show

\[(5.1.5) \quad L(f_i)^N \phi = 0 \quad \text{for} \quad N \gg 0.\]

There exists a two-sided ideal \(I\) of \(U(b)\) such that \(\phi(IU(\mathfrak{g})) = 0\) and \(\dim U(b)/I < \infty\). Then by the preceding lemma, there exists \(N\) such that

\[f_i^{N+m} U(n_i) \subseteq IU(\mathfrak{g}) + U(n_i) f_i^m U(p^-) \quad \text{for} \quad m \geq 0.\]

Since \(U(\mathfrak{g}) = U(n_i)U(p^-)\), we have

\[
\phi(f_i^{N+m} U(\mathfrak{g})) \subseteq \phi(IU(\mathfrak{g}) + U(n_i) f_i^m U(p^-))
\]

\[\subseteq \{R(f_i)^m R(U(p^-))\phi\}(U(\mathfrak{g})) = 0\]

for \(m \gg 0\).

Proposition 5.1.9. \(\mathcal{O}(G_\infty)\) is a two-sided sub-\(\mathfrak{g}\)-module of \(U(\mathfrak{g})^*\). This follows immediately from Lemma 5.1.5.

Let \(e \in G_\infty\) be the point given by \(U(\mathfrak{g}) \rightarrow U(\mathfrak{g})/U(\mathfrak{g})\mathfrak{g} \cong \mathbb{C}\).

Theorem 5.1.10.

(i) \(P_i\) acts on \(G_\infty\) from the left and \(P^-\) acts on \(G_\infty\) from the right.
(ii) The action of B on G_∞ induced from the one of P_i does not depend on i.

(iii) For $g \in G_i$, $ge = eg$.

Proof. The multiplication homomorphism $\mu_i : U(p_i) \otimes U(\mathfrak{g}) \to U(\mathfrak{g})$ gives a $\varphi : U(\mathfrak{g})^* \to (U(p_i) \otimes U(\mathfrak{g}^*))^*$. We shall show that

$$
(5.1.6) \quad \varphi(\Theta(G_\infty)) \subset \Theta(P_i) \otimes \Theta(G_\infty).
$$

Then φ is a ring homomorphism and defines $P_i \times G_\infty \to G_\infty$. It is easy to check this is an action of P_i. Similarly $U(\mathfrak{g}) \otimes U(p_i^\tau) \to U(\mathfrak{g})$ defines $G_\infty \times P_i^\tau \to G_\infty$ and it gives the right action of P_i^τ on G_∞. The rest is easy to check. Now, we shall show (5.1.6).

Let $f \in \Theta(G_\infty)$. Then by the definition, there exists a two-sided ideal I of $U(p_i)$ such that $f(IU(\mathfrak{g})) = 0$, $U(p_i)/I$ is finite-dimensional and that t acts semisimply and the weights belong to P.

Hence $f \circ \mu_i : U(p_i) \otimes U(\mathfrak{g}) \to \mathbb{C}$ splits to $U(p_i) \otimes U(\mathfrak{g}) \to (U(p_i)/I) \otimes U(\mathfrak{g})$. Hence f belongs to $(U(p_i)/I)^* \otimes U(\mathfrak{g})^* \subset \Theta(P_i) \otimes U(\mathfrak{g})^*$. Write $f = \sum \varphi_k \otimes \psi_k$ with $\varphi_k \in \Theta(P_i)$ and $\psi_k \in U(\mathfrak{g})^*$, such that $\{\varphi_k\}$ is linearly independent. Then there are $R_k \in U(p_i)$ such that $\varphi_k(R_k) = \delta_{kk'}$. Then $\psi_k(P) = f(R_kP)$ for any $P \in U(\mathfrak{g})$. Hence $\psi_k \in \Theta(G_\infty)$ by Proposition 5.1.9.

5.2. For $\Lambda \in t^0$, let us denote $K_\Lambda \in U(\mathfrak{g})^*$ given by

$$
(5.2.1) \quad K_\Lambda : U(\mathfrak{g}) \longleftrightarrow U(n) \otimes U(t) \otimes U(n_-) \longrightarrow U(t) \longrightarrow \mathbb{C}
$$

where the middle arrow is given by $U(n) \to U(n)/U(n)n \cong \mathbb{C}$ and $U(n_-) \to U(n_-)/U(n_-)n_- \cong \mathbb{C}$ and the last arrow is given by $h \mapsto -\Lambda(h)$. We have in the ring $U(\mathfrak{g})^*$

$$
(5.2.2) \quad K_{\Lambda_1} \cdot K_{\Lambda_2} = K_{\Lambda_1 + \Lambda_2} \quad \text{for} \quad \Lambda_1, \Lambda_2 \in t^0.
$$

(5.2.3) \quad L(h)K_\Lambda = \langle \Lambda, h \rangle K_\Lambda \quad \text{and} \quad R(h)K_\Lambda = -\langle \Lambda, h \rangle K_\Lambda

for $h \in t$, $\Lambda \in t^0$.

Lemma 5.2.1. Let $\varphi \in U(\mathfrak{g})^*$ be a left b-finite and right b_--finite element, a, b nonnegative integers. Assume that

$$
(5.2.4) \quad R(f_i)^{1+a} R(U(n_-)) \varphi = 0.
$$
(5.2.5) Either $R(e_i)^{1+b}(R(U(n_-)\varphi)|_{U(b)}) = 0$ or $L(e_i)^{1+b}L(U(n)\varphi) = 0$.

(5.2.6) Assume that t acts, by R, semisimply on $(R(U(b_-))\varphi)|_{U(b)} \subset U(b)^*$ and its weight Λ satisfies $\Lambda(h_i) \leq -a - b$ and $\Lambda(h_i) \in \mathbb{Z}$.

Then φ is p_i-finite.

Proof. Let N be an integer such that $N \geq 1 - \Lambda(h_i)$ for any weight Λ of $R(U(b_-))\varphi|_{U(b)}$. By Lemma 5.1.4, it is enough to show

(5.2.7) $L(f_i)^{N+m}\varphi = 0$ if $m \gg 0$.

Let I be the ideal of $U(b)$ given by $\{P \in U(b); L(P)\varphi = 0\}$. Then by Lemma 5.1.7 we have $f_i^{N+m}U(\mathfrak{g}) \subset U(n_i)f_i^N\mathcal{C}[e_i]U(b_-) + IU(\mathfrak{g})$. We have

(5.2.8) $f_i^Ne_i^k = \sum \frac{N!k!}{(N - \nu)!(k - \nu)!} e_i^{k-r}(-h_i - N - k + 2\nu; \nu)f_i^{N-r}$

where $(x; n) = x(x - 1) \cdots (x - n + 1)/n!$.

We obtain

(5.2.9) $\varphi(f_i^{N+m}U(\mathfrak{g})) \subset \sum_{0 \leq \nu \leq k, N} \varphi(U(n_i)e_i^{k-r}(-h_i - N - k + 2\nu; \nu)f_i^{N-r}U(b_-))$.

Hence it is enough to show

(5.2.10) $\varphi(U(n_i)e_i^{k-r}(-h_i - N - k + 2\nu; \nu)U(t)f_i^{N-r}U(n_-)) = 0$

for $0 \leq \nu \leq k, N$.

If $N - \nu \geq 1 + a$, (5.2.10) holds by (5.2.4). If $k - \nu \geq 1 + b$, (5.2.10) holds by (5.2.5). Hence we may assume $0 \leq N - \nu \leq a$ and $0 \leq k - \nu \leq b$. Then in this case, it is enough to show

(5.2.11) $(R((-h_i - N - k - 2\nu; \nu))R(U(b_-))\varphi)|_{U(b)} = 0$.

This is true, if for any weight Λ of $R(U(b_-))\varphi|_{U(b)}$ satisfies

$0 \leq -\Lambda(h_i) - N - k + 2\nu \leq \nu - 1$.

This is true if \(N \geq 1 - \Lambda(h_i), \) 0 \(\leq N - \nu \leq a \) and 0 \(\leq k - \nu \leq b. \)

Corollary 5.2.2. \(K_\Lambda \in \Theta(G_\infty) \) if \(\Lambda \in P_+. \)

In fact, we can apply the preceding lemma with \(a = b = 0. \)

5.3.

For a subset \(J \) of \(I, \) we set

\[
\Delta_J = \Delta \cap \left(\sum_{j \in J} \mathbf{Z} \alpha_j \right) \quad \text{and} \quad \Delta_J^\pm = \Delta^\pm \cap \Delta_J,
\]

\[
\mathcal{G}_J = t \oplus \bigoplus_{\alpha \in \Delta_J} \mathcal{G}_\alpha; \quad n_J^\pm = \bigoplus_{\alpha \in \Delta_+ \setminus \Delta_J} \mathcal{G}_\alpha.
\]

Then \(\mathcal{G} = n_J^+ \oplus \mathcal{G}_J \oplus n_J^- \) and \(U(\mathcal{G}) \cong U(n_J^+) \otimes U(\mathcal{G}_J) \otimes U(n_J^-). \)

We have

\[
[\mathcal{G}_J + n_J^+, n_J^+] \subset n_J^+.
\]

Since \(\mathcal{G}_J \) is also a Kac-Moody algebra, we set \(G_{J, \infty} \) the corresponding variety \(\text{Spec}(A(\mathcal{G}_J, P)). \) We also set \(U_J, U_J^+ \) the subgroups of \(U \) and \(U^- \) with the Lie algebra \(\hat{n}_J^+ \) and \(\hat{n}_J^- \). Set

\[
A_J = \bigoplus_{\mu \in P} \{ \varphi \in U(\mathcal{G})^*; \varphi \text{ is a weight vector of weight } \mu \text{ with respect to the left action of } t \text{ and } \varphi \text{ is left } p_j^- \text{-finite and right } p_j^- \text{-finite for any } j \in J \text{ and } \varphi \text{ is left } b^- \text{-finite and right } b^{-} \text{-finite} \}.
\]

Then we can easily show that

\[
A_J \text{ is a subring of } U(\mathcal{G})^* \text{ and a two-sided sub-} \mathcal{G} \text{-module of } U(\mathcal{G})^*.
\]

Lemma 5.3.4. \(A_J \cong \Theta(U_J) \otimes \Theta(G_J) \otimes \Theta(U_J). \)

Proof. We have

\[
\Theta(U_J) \otimes \Theta(G_J) \otimes \Theta(U_J)
\]

\[
\subset (U(n_J^+) \otimes U(\mathcal{G}_J) \otimes U(n_J^-))^* \cong (U(\mathcal{G}))^*.
\]

We shall show first \(A_J \subset \Theta(U_J) \otimes \Theta(G_J) \otimes \Theta(U_J). \) For \(f \in A_J, \) let \(\mathcal{G} \) be the annihilator in \(U(b) \) of \(L(U(b))f. \) Then \(f : U(\mathcal{G}) \rightarrow \mathbb{C} \) splits into \(U(\mathcal{G}) \cong U(n_J) \otimes U(\mathcal{G}_J) \otimes U(n_J^-) \rightarrow (U(n_J)/(\mathcal{G} \cap U(n_J))) \otimes U(\mathcal{G}_J) \otimes U(n_J^-). \) Hence \(f \) belongs to \(\Theta(U_J) \otimes (U(\mathcal{G}_J) \otimes U(n_J^-))^*. \) Similarly \(f \) belongs to
\[(U(n_J) \otimes U(G_J)) \otimes \Theta(U_J),\] and hence to the intersection \(\Theta(U_J) \otimes U(G_J)^* \otimes \Theta(U_J).\) Write \(f = \sum_{k=1}^N \varphi_k \otimes \psi_k \otimes \xi_k\) with \(\varphi_k \in \Theta(U_J), \psi_k \in U(G_J)^*, \xi_k \in \Theta(U_J).\) We take an expression such that \(N\) is minimal among them. Then there are \(S_k^* \in U(n_J)\) and \(R_k^* \in U(n_J)\) such that

\[\varphi_k(S_k^*) \psi_k(R_k^*) = \delta_{kk}.\] Hence \(\psi_k(P) = f(S_k^*PR_k^*).\) Since \(A_J\) is a two-sided \(G\)-module, \(\psi_k\) belongs to \(\Theta(G_J).\)

We shall prove the converse inclusion \(A_J \supseteq \Theta(U_J) \otimes \Theta(G_J) \otimes \Theta(U_J).\) In order to see this, it is enough to show that any element in \(\Theta(U_J) \otimes \Theta(G_J) \subset (U(n_J \oplus G_J))^*\) is \(b\)-finite and \(p_j\)-finite for any \(j \in J.\) For any \(\varphi \in \Theta(U_J),\) there exists a two-sided ideal \(\mathcal{G}\) of \(U(n_J)\) such that \([b, \mathcal{G}] \subset \mathcal{G},\) \(\dim U(n_J)/\mathcal{G}\) and \(\varphi(\mathcal{G}) = 0.\) For any \(\psi \in \Theta(G_J),\) there exists an ideal \(k\) of \(U(G_J \cap b)\) such that \(\dim (U(G_J \cap b)/k) < \infty\) and \(\psi(k) = 0.\) Since \(bU(n_J)\) \(\subset U(n_J) + U(n_J)(b \cap G_J),\) \(U(n_J) \otimes k + \mathcal{G} \otimes U(G_J)\) is a left \(b\)-module. Since \(\varphi \otimes \psi\) decomposes into

\[U(n_J) \otimes U(G_J) \rightarrow U(n_J + G_J)/(U(n_J) \otimes kU(G_J) + \mathcal{G} \otimes U(G_J))\]

\[\equiv (U(n_J)/\mathcal{G}) \otimes (U(G_J)/kU(G_J)),\]

\(\varphi \otimes \psi\) is \(b\)-finite.

We have

\[\text{ad}_{f_i}^N U(n_J) \subset \mathcal{G} \quad \text{for} \quad N \gg 0 \quad \text{for} \quad i \in J.\]

In fact, this follows from the fact that for any \(\lambda \in \mathfrak{l}^0, \lambda + m\alpha_i\) is a weight of \(U(n_J)\) except finitely many integer \(m\) (Lemma 5.1.6). Hence \(\varphi \otimes \psi\) is \(f_i\)-finite. Thus, \(\varphi \otimes \psi\) is \(p_j\)-finite for any \(j \in J.\) Since \(\varphi \otimes \psi\) is \(b\)-finite, we obtain \(\varphi \otimes \psi \in A_J.\)

Proposition 5.3.5. ([K-P]). \(A_J = \Theta(G_\infty)[K^\Lambda_1^{-1}; \Lambda \in P_+, h_j(\Lambda) = 0\) for \(j \in J].\)

Proof. Since \(K_\Lambda\) is invertible in \(\Theta(G_{j_\infty})\) if \(h_j(\Lambda) = 0\) for \(j \in \Lambda,\) we have

\[A_J \supseteq \Theta(G_\infty)[K^\Lambda_1^{-1}; \Lambda \in P_+, h_j(\Lambda) = 0\) for \(j \in J].\]

Now, we shall show the converse inclusion.

Let \(\varphi \in A_J.\) Then there exists \(a > 0\) such that \(R(n_-)^{1+a}\varphi = L(n)^{1+a}\varphi = 0.\) Let \(S\) be the set of weights of \(R(U(b_-))\varphi\) with respect to the right
action of t. Taking a sufficiently large, we may assume that $\langle \lambda, h_i \rangle \leq a$ for any $i \in I$ and $\lambda \in S$. Moreover, there exists a finite set K of I such that $R(e_i) \varphi = L(e_i) \varphi = 0$, $\langle \lambda, h_i \rangle = 0$ for any $i \in I \setminus K$ and $\lambda \in S$.

Now, let $A \in P_+$ be such that $h_j(A) = 0$ for $j \in J$ and $h_j(A) \geq a$ for $j \in K \setminus J$. Then $\varphi \cdot K_A$ is p_j-finite for $j \in J$ and p_j-finite for $j \in I \setminus J$ by Lemma 5.2.1. Hence $\varphi K_A \in \mathcal{O}(G_{\infty})$.

5.4. By Proposition 5.3.5, for finite subsets J and J' with $J \subset J'$, Spec(A_J) is an open subscheme of Spec$(A_{J'})$. We set $G_{\alpha f} = \bigcup_J U_J \times G_J \times U_J$ where J ranges through finite subsets of I. Then $G_{\alpha f}$ is an irreducible separated scheme, and $U \times T \times U_-$ is an open subscheme of $G_{\alpha f}$. The groups P_i and P_i^- act on $G_{\alpha f}$ from the left and the right, respectively.

Definition 5.4.1. Let G be the smallest open subset of $G_{\alpha f}$ containing $U \times T \times U_-$ closed by the left and right actions of G_i ($i \in I$).

5.5. Hence G is invariant by the left action of P_i, and the right action of P_i^-. Since $G_{\alpha f}$ is irreducible, G is also irreducible. In Section 6, we shall study more precisely the structure of $G_{\alpha f}$ in the symmetrisable case.

5.6. Since G_i acts on G_{∞}, $G_{\alpha f}$ and G, $s_{i'} \in G_i$ acts on them. Then we have the braid condition (3.1.13). In fact, if $i, j \in I$ satisfies $\langle h_i, \alpha_j \rangle \langle h_j, \alpha_i \rangle \leq 3$, then the semisimple part of $G_{i, j}$ is a finite-dimensional group. Thus we can apply the braid condition for finite-dimensional Lie group and hence $s_{i'}$ and $s_{i'}^j$ satisfy the braid condition in $G_{i, j}$. Since we can check easily that $G_{i, j}$ acts on $G_{\alpha f}$, $G_{\alpha f}$ and G, we obtain (3.1.13). Thus the braid group W' acts on G, $G_{\alpha f}$ and G_{∞}.

Let us embed W into W' by $w \mapsto s_{i_1} \cdots s_{i_r}$ where $w = s_{i_1} \cdots s_{i_r}$ is a reduced expression of w.

Lemma 5.6.1. $G = \bigcup_{w \in W} w(U \times T \times U_-)$

$= \bigcup_{w \in W} (U \times T \times U_-)w$.

In fact, we have $P_i^- = G_i \ U_- \text{ and } (U \times T \times U_-)P_i^- = U e \cdot P_i^- = U G_i e \cdot U_- = P_i e \cdot U_-$. Since $P_i \subset s_i B G_i \cup B G_i$, we have $P_i e \cdot U_- \subset s_i B e U_- \cup B e U_-$. Thus $\bigcup_{w \in W} w(U \times T \times U_-)$ is invariant by P_i^-. Hence if A (resp. A') is the smallest open subset containing $U \times T \times U_-$ and invariant by P_i (resp. P_i^-) for any i, we have $A \supset \bigcup_{w \in W} w(U \times T \times U_-) \supset A'$. Similarly $A \subset A'$. Hence $A = A' = \bigcup_{w \in W} w(U \times T \times U_-)$.
5.7. In general, let \(X \) be a scheme and \(G \) a group scheme acting on \(X \). We say that \(G \) acts locally freely on \(X \) if any point has a \(G \)-stable open neighborhood which is isomorphic to \(G \times U \) for some scheme \(U \). In this case, the quotient \(X/G \) in the Zariski topology is representable by a scheme. Note that \(X/G \) is not necessarily separated even if \(X \) is separated.

5.8. Now, \(B_- \) acts on \(G \) locally freely. Hence \(G/B_- \) is a scheme and covered by open affine subsets \(wU \times B_-/B_- \). Note that we have not yet shown that \(G/B_- \) is a separated scheme.

Proposition 5.8.1. \(X \equiv G/B_- \). Here \(X \) is the flag variety defined in Section 4.

Proof. We have \(G/B_- = \bigcup_{w \in W} wUB_-/B_- \) and \(X = \bigcup_{w \in W} wU x_0 \). We define for \(w \in W' \), the morphism

\[
\varphi_w : wUB_- \to wU x_0 \quad \text{by} \; \quad wgb_\rightarrow wg.
\]

We shall show

\[
(5.8.1) \quad \varphi_w = \varphi_{w'} \quad \text{on} \quad wUB_- \cap w'UB_-.
\]

This follows from the case where \(w' = 1 \). If \(w = 1 \), this is trivial. If \(w = s_i^\pm 1 \), then this is trivial because \(\varphi_w \) and \(\varphi_1 \) are the restrictions of \(P_i g U_i^- \to X \) given by \(g e g' \rightarrow g x_0 \; (g \in P_i, g' \in U_i^-) \).

Arguing by induction on the length of \(w \), we may assume \(w = s_i^\pm 1 w'' \) and

\[
\varphi_{w''} \big|_{w''U UB_- \cap U UB_-} = \varphi_1 \big|_{w''U UB_- \cap U UB_-}
\]

and hence

\[
\varphi_w \big|_{wU UB_- \cap s_i^\pm 1 U UB_-} = \varphi_{s_i^\pm 1} \big|_{wU UB_- \cap s_i^\pm 1 U UB_-}.
\]

Hence \(\varphi_w \) and \(\varphi_1 \) coincide on \(wU UB_- \cap s_i^\pm 1 U UB_- \cap U UB_- \). Since \(wU UB_- \cap s_i^\pm 1 U UB_- \cap U UB_- \) is open dense in \(wUB_- \cap w'UB_- \) and \(X \) is separated, we have (5.8.1).

Thus, we can construct \(\varphi : G \to X \) such that \(\varphi \big|_{wU UB_-} = \varphi_w \). Taking the quotient, we obtain \(\bar{\varphi} : G/B_+ \to X \).
By the definition, \(\tilde{\varphi} \) is \(W' \)-equivariant. Also, \(\tilde{\varphi} \) is \(B \)-equivariant. This is because \(\varphi_{|_{BeB_-}} \) is \(B \)-equivariant and \(BeB_- \) is open dense in \(G \).

Since \(\tilde{\varphi} \) is clearly a local isomorphism and surjective, it is enough to show that \(\tilde{\varphi} \) is injective. In order to see this, we shall prove that, for two \(C \)-valued points \(g, g' \) of \(G/B_- \), \(\varphi(g) = \varphi(g') \) implies \(g = g' \). Since \(\varphi \) is \(W' \)-equivariant, we may assume \(g \in BeB_-/B_- \). Since \(\varphi \) is \(B \)-equivariant, we may assume \(g = e \mod B_- \). Assume \(g' \in wUeb_-/B_- \) for \(w \in W \). Write \(g' = wuB_-/B_- \) for \(u \in U \). Then \(\varphi(g) = \varphi(g') \) implies \(x_0 = wux_0 \). Hence Proposition 4.5.9 implies \(w = 1 \) and Lemma 4.4.1 implies \(u = 1 \). Hence \(g = g' \).

6.1. In Section 6, we shall assume that the set \(I \) of simple roots is finite and the Kac-Moody Lie algebra is symmetrisable. Then by Gabber-Kac [G-K], any integrable \(U(\mathfrak{g}) \)-module generated by a highest weight vector is semisimple. For \(\Lambda \in P_+ \), let \(L_\Lambda \) be the irreducible \(\mathfrak{g} \)-module with highest weight \(\Lambda \). Then we have

Lemma 6.1.1. \(([K-P]). \ A(\mathfrak{g}, P) = \mathcal{O}(G_\infty) \cong \bigoplus_{\Lambda \in P_+} L_\Lambda \otimes L_\Lambda^*.

6.2. We shall assume further that any irreducible finite-dimensional representation of \(\mathfrak{g} \) is one-dimensional. This is equivalent to saying that any connected component of the Dynkin diagram of \(\mathfrak{g} \) is not finite-dimensional. In this case, letting \(P_0 = \{ \Lambda \in P; \langle \Lambda, h_j \rangle = 0 \text{ for any } j \} \), any irreducible finite-dimensional representation is \(C \) with weight \(\Lambda \in P_0 \).

Lemma 6.2.1. \(\bigoplus_{\Lambda \in P_+ \setminus P_0} (L_\Lambda \otimes L_\Lambda^*) \) is an ideal of \(A(\mathfrak{g}, P) \).

Proof. For \(\Lambda_1, \Lambda_2 \in P_+ \setminus P_0 \),

\[
(L_{\Lambda_1} \otimes L_{\Lambda_1}^*) \cdot (L_{\Lambda_2} \otimes L_{\Lambda_2}^*) \subset \sum_{\Lambda} L_\Lambda \otimes L_\Lambda^*
\]

where \(\Lambda \) ranges over the set \(\Lambda \) with \(L_\Lambda \subset L_{\Lambda_1} \otimes L_{\Lambda_2} \). If \(\Lambda \in P_0 \) and \(L_\Lambda \subset L_{\Lambda_1} \otimes L_{\Lambda_2} \), then we have a homomorphism \(L_{\Lambda_1}^* \otimes L_\Lambda \to L_{\Lambda_2} \). Therefore \(L_{\Lambda_2} \) has a lowest weight vector, which implies \(L_{\Lambda_2} \) is finite-dimensional. Hence \(\Lambda_2 \in P_0 \), which is a contradiction.

Definition 6.2.2. Let us define \(\infty \in G_\infty \) by
\[A(\mathcal{G}, P) \to A(\mathcal{G}, P)/(\sum_{\Lambda \in P_+ \setminus P_0} L_\Lambda \otimes L_\Lambda^*) \cong \bigoplus_{\Lambda \in P_0} CK_\Gamma \to C \]

where the last arrow is given by \(K_\Lambda \mapsto 1 \).

Note that

\[(6.2.1) \quad T \cdot \infty \equiv \text{Spec}(\mathcal{C}[K_\Lambda; \Lambda \in P_0]) \]

\[(6.2.2) \quad P_i \infty = \infty P_i^- = T \cdot \infty \quad \text{for any } i. \]

6.3. Proposition 6.3.1.

\[G_\infty \setminus T \cdot \infty = \bigcup_{w \in W'} \bigcup_{J \neq I} \langle w(U_J \times G_J \times U_J^-) \rangle = \bigcup_{w \in W'} \bigcup_{J \neq I} \langle (U_J \times G_J \times U_J^-)w \rangle. \]

Proof. The last identity can be proven as in the proof of Lemma 5.6.1. For \(v \in L_\Lambda, w \in L_\Lambda^* \), let us denote by \(\langle v, gw \rangle \) the corresponding function on \(g \in G_\infty \). Now, let \(g \) be an element of \(G_\infty \setminus T \cdot \infty \). Let us denote by \(G_f \) the subgroup of \(\text{Aut}(L_+) \) generated by the \(G_\). By the assumption, there is \(\Lambda \in P_+ \setminus P_0 \) and \(v \in L_\Lambda, w \in L_\Lambda^* \) such that \(\langle v, gw \rangle \neq 0 \). Then \(\langle v', L_\Lambda, \langle G_f v', gw \rangle = 0 \rangle \) is a \(\mathcal{G} \)-module. Hence, it is zero. Therefore, if we denote by \(v_\Lambda \) the highest weight vector of \(L_\Lambda \), then \(\langle G_f v_\Lambda, gw \rangle \neq 0 \). Hence there exists \(g_0 \in G_f \) such that \(\langle v_\Lambda, g_0^{-1} gw \rangle \neq 0 \). Since \(\bigcup w(U_J \times G_J \times U_J^-) \) is invariant by \(G_f \), we may assume from the beginning \(\langle v_\Lambda, gw \rangle \neq 0 \).

Similarly, \(\{w'; \langle v_\Lambda, gG_f w' \rangle = 0\} \) is \(\mathcal{G} \)-invariant and hence it is zero. Therefore if \(v^- \Lambda \) is the lowest weight vector of \(L_\Lambda^* \) such that \(\langle v_\Lambda, v^- \Lambda \rangle = 1 \), then \(\langle v^- \Lambda, gG_f v^- \Lambda \rangle \neq 0 \). Hence replacing \(g \) with an element in \(gG_f \), we may assume \(\langle v_\Lambda, g v^- \Lambda \rangle \neq 0 \). Since \(K_\Lambda(g) = \langle v_\Lambda, v^- \Lambda \rangle \neq 0, g \) belongs to \(U_{I \setminus \{j\}} \times G_{I \setminus \{j\}} \times U_{I \setminus \{j\}}^- \) for \(j \in I \) with \(\langle h_j, \Lambda \rangle \neq 0 \), by Proposition 5.3.5.

7. Example.

7.1. We shall give here one example \(A^{(1)} \). Let \(I \) be \(Z, P = \bigoplus_{i \in I} \mathbb{Z} \Lambda_i, \alpha_i = 2\Lambda_i - \Lambda_{i+1} - \Lambda_{i-1} \) and \(h_i \in t \) is given by \(\langle h_i, \Lambda_i \rangle = \delta_{ij} \).

Let \(V' = C^Z = \Pi_{i \in I} C_{V_i}, V_{\leq q} = \Pi_{i \leq q} C_{V_i} \subset V' \) for \(q \in \mathbb{Z} \) and \(V = \bigcup V_{\leq q} \). Let us define \(g \to \text{End}(V) \) by

\[t \ni h: \sum a_i v_i \ni \sum (\Lambda_i(h) - \Lambda_{i-1}(h)) a_i v_i \]
\[e_i : \sum a_j v_j \mapsto a_{i+1} v_i \]
\[f_i : \sum a_j v_j \mapsto a_i v_{i+1} . \]

For \(p \leq q \), let \(\text{GL}_{p,q}(\infty) \) be the subgroup of \(\text{GL}(V) \) given by

\[\{ g \in \text{End}(V) ; g \mid_{V_{\leq k}} \subset V_{\leq k} \text{ for } k < p \text{ or } k \geq q \text{ and } g \mid_{V_{\leq k}/V_{\leq k-1}} \text{ is invertible for } k < p \text{ or } k > q \text{ and } g \mid_{V_{\leq q}/V_{\leq p-1}} \text{ is invertible} \} . \]

This is an affine group scheme. With matrix expression, \(\text{GL}_{p,q}(\infty) = \{ (g_{ij}) ; g_{ij} = 0 \text{ for } j < i \text{ and } j < p, j < i \text{ and } i \geq q, g_{ii} \text{ invertible for } i < p \text{ or } i > q \text{ and } \det((g_{ij})_{p \leq i, j \leq q}) \text{ is invertible} \} . \) We define the affine group scheme \(\tilde{\text{GL}}_{p,q}(\infty) \) by

\[\tilde{\text{GL}}_{p,q}(\infty) = \text{GL}_{p,q}(\infty) \times \mathbb{C}^* . \]

We define for \(p' \leq p \leq q \leq q' \) \(\tilde{\text{GL}}_{p,q}(\infty) \rightarrow \tilde{\text{GL}}_{p',q'}(\infty) \) by

\[(g, c) \mapsto (g, c \det(g \mid_{V_{\leq q}/V_{\leq q}})). \]

Then for \(p'' \leq p' \leq p \leq q \leq q' \leq q'' \),

\[\tilde{\text{GL}}_{p,q}(\infty) \rightarrow \tilde{\text{GL}}_{p',q'}(\infty) \rightarrow \tilde{\text{GL}}_{p'',q''}(\infty) \]

commutes. We set

\[\tilde{\text{GL}}(\infty) = \lim_{\to} \tilde{\text{GL}}_{p,q}(\infty), \quad \text{GL}(\infty) = \lim_{\to} \text{GL}_{p,q}(\infty). \]

Then \(\tilde{\text{GL}}(\infty) \) and \(\text{GL}(\infty) \) are ind-objects in the category of schemes with group structure. The group \(\tilde{\text{GL}}_{p,q}(\infty) \) coincides with \(U_J \times G_J \) where \(J = \{ i \in \mathbb{Z} ; p \leq i \leq q \} . \) Note that we have an exact sequence

\[1 \rightarrow \mathbb{C}^* \rightarrow \tilde{\text{GL}}(\infty) \rightarrow \text{GL}(\infty) \rightarrow 1, \]

which does not split.
In this case, the flag variety is, under the notation in Corollary 2.2.3, \(\{(W_i)_{i \in \mathbb{Z}}; W_i \in \text{Grass}^i(V), W_i \subset W_{i+1}\} \).

R.I.M.S., KYOTO UNIVERSITY

REFERENCES

