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0. INTRODUCTION 

The purpose of this article is to show that some finiteness theorem (= 
finite dimensionality of the space of solutions) holds for a class of systems of 
linear differential equations of infinite order. Although finiteness theorems 
for holonomic systems of (micro-)differential equations of finite order have 
recently become quite popular, the character of the theorems which we 
present here is different from the results for equations of finite order. Hence, 
in this introduction, we discuss a simple and instructive example so that it 
may help the reader’s understanding of the character of the results in this 
article. As the example will indicate, our results have close connection with 
the celebrated result of Hamburger on the characterization of the c-function 
of Riemann, although we deal with theta functions (Hamburger [2], Hecke 
[3], and Weil [8]; see also Ehrenpreis and Kawai [ 11). This connection was 
pointed out to one of us (T.K.) by Professor L. Ehrenpreis. Concerning the 
basic properties of linear differential operators of infinite order, we refer the 
reader to Sato-Kawai-Kashiwara [6, Chap. II]’ (hereafter referred to as 
S-K-K). Here we only emphasize that a linear differential operator of 
infinite order acts upon the sheaf of holomorphic functions as a sheaf 
homomorphism. Hence our main result (Theorem 2.14 in Section 2) is of 
local character. This forms a striking contrast to the hitherto known way of 
characterizing theta functions through their automorphic properties. 

Now, in order to provide an example of our results, let us show how the 
theta zero-value (Nullwerte) is related to a system of linear differential 
equations of infinite order. In order to fix the notations, let us consider 

h(r) = 2 exp(n \/-1v*r) 
v.z 

’ Note, however, that in accordance with the notations used in recent literature, we use QF 
(resp., gx) to denote the sheaf of linear differential operators of infinite (resp., finite) order. 
The quoted article uses Qx (resp., 9;) instead of g; (resp., gx). Note also that all operators 
considered here are with holomorphic coeffkients. 
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on the domain C + =def {r E c; Im r > o}. Then, at least formally, h(?) is 
annihilated by the following inflnite product of linear differential operators: 

Since we know 

again, f?umally, we find 

Q, = Jm sinh ,/m 

=$I0 (y&l (Gf)‘“. 

(0.3) 

(0.4) 

Although the above reasoning is a heuristic one, the resulting operator Q, 
(understood as the right hand side of (0.4)) is a well-defined linear 
differential operator of infinite order, and 

(0.5) 

holds on C +. However, this equation only cannot characterize h(7), because 
any function of the form 

(0.6) 

satisfies Eq. (0.5) if it converges absolutely and uniformly .on each compact 
subset of C +. Needless to say, this infinite dimensionality of the solutions of 
Bq. (0.5) is due to the fact that the operator Q, is of infinite order. 

In passing, Jacobi’s imaginary transformation tells us 

h(r) = exp(z n/4) t-1’2h(-l/r). (0.7) 

By applying the same reasoning as above to the right hand side of (0.7), 
we obtain another equation, 

Q2 (7, -$) h(7) = 0, (O-8) 
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where 

Again, Q2 only cannot characterize h(z), because any function of the form 

c b, r-“’ exp(--71\/-1 v’/r) (0.9) 

satisfies (0.8) if it converges absolutely and uniformly. However, if we 
consider Eqs. (0.5) and (0.8) simultaneously, we may expect some finiteness 
theorem for the equations. Showing that it is really the case is the aim of this 
article (Theorem 2.14 in Section 2). Although we have so far considered 
equations with one unknown function, using equations with several unknown 
functions is more advantageous in developing the general theory. For 
example, if we introduce h(r) = ‘(h,(r), h2(t)), where h,(s) = h(r) and AZ(r) = 
,Y, 2n \/--r v exp(rr fl V’Z) (=O), then the equations corresponding to 
(0.5) and (0.8) take the following form, 

(0.10) 

where 

and 

(0.11) 

Since Eq. (0.10) is more symmetric than (0.5) and (0.8), we formulate our 
results using the matrix notations. We end this introduction by noting the 
following properties (A) and (B) of Pis. A suitable generalization of these 
properties is the starting point of the reasoning in Section 2. 

(A) Every component of (uPI + bP,)’ (a, b E C) is a linear 
differential operator of order at most one; that is, ord(uP, + bP,) is (at most) 
l/2 in the sense of Definition l.l(ii) of Section 1. 
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This guarantees, in particular, that each component of exp P, (j = 1,2) is 
a linear differential operator of infinite order. 

(Et) [Pi, P2] = 2x -1, holds. Here I2 denotes the 2 X 2 identity 
matrix. 

This guarantees 

(expP,-l)(expP,-l)=(expP,-l)(expP,-1). (0.13) 

(See Theorem 1.4 in Section 1.) Hence system (0.10) is in involution. 
‘4 The essential part of this article was announced in Sato [5] with more 
emphasis on the miciolocal aspect of the problem. 

List of notations 

x: A complex manifold. 
9*: The sheaf of linear differential operators of finite 

order on X. The subscript X is often omitted in this 
symbol and also in other symbols given below. 

222: The sheaf of linear differential operators of infinite 
order on X. 

%(m): The sheaf of linear differential operators of order 
equal to or at most m on X. 

M,PA ~,PF): The sheaf of r x t matrices whose components 
belong to 9x or 92. 

ord P for P in M,(g,): See Definition 1.1 (ii), in Section 1. 

1. A COMPOSITION RULE FOR exp P’s 

The purpose of this section is to prove a variant of Campbell-Hausdorff 
formula in its simplest form (Theorem 1.4.) The results in this section will be 
used in Section 2 in an essential manner. As we will see by examples given in 
Section 3, it is inevitable to formulate the problem modulo some Q-module. 

Let us first prepare some notations. In what follows, X denotes a complex 
manifold. 

DEFINITION 1.1. Let P be an r x r matrix of linear differential operators 
on X. Let P,,, (1 Q i, j < r) denote its (i,j)‘component. 

(i) camp-ord P is, by definition, max,,,,,,,ordP,,,. ‘Here ordP,,, 
denotes the order of the differential operator P,.,. 

(ii) If there exist real numbers a and c such that 

comp-ord Pk Q [ak] + c (1.1) 
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holds for every non-negative integer k, then we say that the order of the 
matrix P is a, and we denote it by ord P. Here Pk denotes the kth power of P 
and [ak] denotes the maximal integer that is smaller than or equal to ak. 

In connection with this definition, let us note the following fact: 
If ord P is strictly smaller than 1, then exp P (= C,“=OP’/j!) belongs to 

Mr W). 
See S-K-K [6, pp. 438-4421 for the proof of this fact. 
Now, let R, (I = l,..., d) be in M,(C@z) and let Y denote the left 9z-module 

C;‘=, ??3iR,. In what follows & and & denote @‘cg 9x and @c@ a$‘, 
respectively. They are, by the definition (S-K-K [6, p. 418]), sub-rings of 
%W Accordingly, let 9 and y* denote GY and @Y, respectively. 
Since & is an exact functor, 3 = 8ch Y and Too = @c& (~97 @,,Y) 
hold. 

LEMMA 1.2. Let P be in M,(9x) and suppose that it satisfies the 
following conditions: 

YPCY, 

ordP< 1. 

(1.2) 

(1.3) 

Then, for any S(z) (z E C) in Too, we have 

S(z) exp(zP) E 9’“. (l-4) 

ProoJ Define Y(m) by Q(m)‘nY. Since (Y(m)},,, is a good 
filtration of Y, 

Y(m) = sq?l - m,) Y(m,) (m 2 4 (1.5) 

holds for sufficiently large m,. On the other hand, it follows from the 
definition that there exist constants a (0 < a < 1) and c such that 

camp-ord Pk Q [ak] + c (1.6) 

holds for every non-negative integer k. Hence (1.2) entails 

Y(m,) Pk c Y(m, + [ak] + c). 

Then we see from (1.5) 

Y (m,) Pk c @( [ak] + c) Y(m,). (13) 

U-7) 
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Let us now choose a system {R 
matrix R by 

}fL’:, of generators of S(q) and defme a 

RI 

0 

: . m  

R& 

Then there exists a matrix P(k) which satisfies the following condition: 

In what follows, we denote by p(k) the big matrix in (1.9). 
Now, (1.8) entails 

camp-ord P(k) Q [ak] + c. (1.10) 

On the other hand, we find 

ji(k)& = 

Therefore we obtain 

J’(k) 
** . 

PV 
(1.11) 

camp-ord &k)“k +’ < ([cd] + c)n + WI + c)h (1.12) 

where n is an arbitrary positive integer and J is a non-negative integer 
smaller than k. Hence, for every non-negative integer p, 

camp-ord &k)p < ap +pc/k + ([ak] + c)(k - 1) (1.13) 

holds. Since (z is strictly smaller than I, there exists k, such that * 

a + c/k0 < 1 (1.14) 

holds. Then it follows from the definition that 

ord &k,,) < 1 (1.15) 
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holds. This implies 

exp(z&(k,)) E am (2 E cc). 

Furthermore (1.9) entails 

R(k,) exp(zP) = exp(z&)) Rl(k,), 

(1.16) 

(1.17) 

where k(k,) denotes 

Since R;Pj is contained in g([aj] + c)Z(m,), (1.17) and (1.16) imply 

RI exp(zP) E 3 O” (1.18) 

for I = l,..., d’. Since y* is also generated by {RI}::, as a &‘-module, 
(1.18) proves the required result. Q.E.D. 

PROPOSITION 1.3. Let P and Q be in M,(CSX) and suppose that they 
satisfy conditions (1.2) and (1.3). Further suppose that 

[P, Q] G cl, ’ mod 3 (1.19) 

holds for some complex number c. Then, for any complex number z, we have 

exp(zP) Q exp(-zP) = Q + cz mod 3”. (1.20) 

Prooj Let S, F(z), and G(z) denote [P, Q] - c, exp(zP) Q exp(-zP), and 
F(z) - (Q + cz), respectively. Then we have 

i?G(z) aF(z) -=--c 
8Z C?Z 

= [P, F(z)] - c 

= [P, F(z) - Q - cz] + [P, Q + cz] - c 

= [P, G(z)] + S. (1.21) 

It is also clear that 

G(O)=0 (1.22) 

* Here Z, denotes the r X r identity matrix. In what follows we abbreviate cl, to c for 
simplicity. 
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holds. Let us now denote exp(-zP) G(z) exp(zP) by 
from (1.21) that 

H(z). Then it follows 

$ H(z) = -, exp(-zP) PG(z) exp(zP) 

Wz) +. exp(-zP) az exp(zP) 

+ exp(-zP) G(z)P exp(zP) 

- Ip, G(z)]). exp(zP) 
= exp(-zP) S exp(zP). (1.23) 

Since exp(-zP) belongs to %03 by assumption (1.3), Lemma 1.2 implies 

aH(z) 
DEFY (1.24) 

Hence aH(z)/az has the form 

5 h,iWb 
I=1 

(1.25) 

with h,(z) (I = l,..., d) belonging to a$‘, where {R,}f==, are the system of 
generators of 3. Then, by defining I,(z) by 15 h,(w) dw, we find 

(1.26) 

It also folloks from the definition that 

H(0) - 5 I,(O) R, = H(0) = 0 (1.27) 
I=1 

holds. Therefore we conclude that H(z) belongs to ?“. It then follows from 
the definition of H(z) and Lemma 1.2 that G(z) belongs to 3,. This proves 
the required relation (1.20). Q.E.D. 

THEOREM 1.4. Let P and, Q be the same as in Proposition 1.3. Then, for 
any complex number z, we have 

exp(zP) exp(zQ) = exp mod.-.+, (1.28) 
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in particular, 

expPexpQ=exp (P+Q+$) mod CSF OgXZg. (1.29) 

Proof. Let @(z, P, Q, c) denote exp(zP) exp(zQ) exp(-cz2/2). Then we 
have 

$- = P@ + exp(zP) Q exp(zQ) exp - CZ@J 
(1.30) 

= P@ + exp(zP) Q exp(-zP) @ - cz@. 

Hence, by the aid of Proposition 1.3, we find 

$=(P+Q+.S(z))@ (1.31) 

with S(z) in Too. Then Lemma 1.2 guarantees that 

$(P+Q)@’ mod Tm. (1.32) 

Now let us consider !P=deT @ - exp(z(P + Q)). It then follows from (1.32) 
that 

(1.33) 

holds. Furthermore !P(O) = 0 holds. Hence, by using the same reasoning as 
was used at the end of the proof of Proposition 1.3, we conclude that Y(z) 
belongs to yW. Thus we have shown 

exp(zP) exp(zQ) exp 

This immediately implies (1.28) and (1.29). 

mod Tm. 

Q.E.D. 

2. THETA FUNCTIONS AND JACOBI FUNCTIONS 

Let X be an open subset of Cc” and let t = (t , ,..., tm) denote a coordinate 
system on it. Let .A’” be a coherent GZX-module WJ>, where 7 has the form 
(Cy= I g;R,) with R, (I = I,..., d) in Mr(GX), 
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DEFINITION 2.1 (Jacobi structure). Let P be a set of matrices P, 
(j = l,..., 2n) of linear diierential operators on X. If P satisfies the following 
conditions (2.1), (2.2) and’(2.3), we call it a Jacobi structure (with respect to 
4. 

P, E M,(@J and TP, c J’ holds for j = l,..., 2n. 
zn 

(2.1) 

For any (ci ,..., czrr) in C’“, ord 
( > 

c c,P, < 1. (2.2) 
l-1 

There exists a matrix E = (e,J in SL(2n; Z) 
which satisfies the following relation: (2.3) 

[P,, P,] E -2n j/T e,k mod f (1 Q j, k < 2n). 

Remark 2.2. If there is no fear of confusions, we often omit the phrase 
“with respect to .M.” 

Remark 2.3. We call the matrix E the structure matrix of the Jacobi 
structure P. 

DEFINITION 2.4. Let P be a Jacobi structure with respect to N. If an r- 
tuple of holomorphic function h(t) on X satisfies the following Eqs. (2.4) and 
(2.5) with some c = (ci ,..., czn) E C’“, we call h(f) a Jacobi function. 

(exp pi> W = cl 40 (j = l,..., 2x). (2.4) 

R&t) = 0 (I = l,..., d). (2.5) 

The set of all Jacobi functions is denoted by J(P, c). 

Remark 2.5. (i) By using Theorem 1.4, we obtain the following 
relation (2.6) from condition (2.3): 

exp P, exp Pk I exp(P, + Pk - n Q e,& 

G exp P, exp P, exp(-2x fl e,& ’ 

= exp Pk exp P, mod gCO O. 3. (2.6) 

Hence, considering the simultaneous eigenvalue problem (2.4) with the 
subsidiary condition (2.5) makes sense. 

(ii) Condition (2.2) guarantees that exp P, belongs to gp. Hence the 
notion of Jacobi functions is a local one. 

DEFIN~ON 2.6. Let P be a Jacobi structure with respect to N. If an r- 
vector of hyperfunctions 8(x 1 t) on ‘RF x X satisfies the following relations 
(2.7), (2.8), (2.9) and (2.10), then we call it a theta function (associated with 
P). 
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- 72 \/=i(EX)j ) #(X 1 t) = Pjs(X ( t)T3 j = l,..., 2n, 

R,6(x 1 t) = 0, I = l,..., d. 

$-6(x ) t) = o,4 p = l,..., m. 
P 

For each v in Z “‘, there exists a constant c(v) so that 

6(x + v I t) = c(v) exp(;rr fl(Ev, x)) 6(x ) t) 

holds. 

(2.7) 

cw 

(2.9) 

(2.10) 

Remark 2.7. We call condition (2.10) the quasi-periodicity condition 
after the terminology used for the classical elliptic theta functions. 

Remark 2.8. Condition (2.3) guarantees that Eqs. (2.7) and (2.8) are 
compatible. 

Remark 2.9. Since the system of differential equations (2.7), (2.8) and 
(2.9) is elliptic, a theta function discussed here is necessarily real analytic. 
Furthermore, as our later argument will show, it can be extended as a 
holomorphic function on Czn X X. 

Now we list the results which clarify the relations between Jacobi 
functions and theta function. 

THEOREM 2.10. Let P be a Jacobi structure with respect to .A’-. Then we 
have the following: 

(i) If h(t) belongs to J(P, c), then 

V(X I t) dTf ew ( 1 5 XjPj h(t) 
j=l 

is a theta function with 

c(v) = (-1) ~ltii<k<2nvjvkejk ,-$I . . . c5)22n. (2.11) 

Furthermore, ~(0 ) t) = h(r) holds. 

(ii) If 6(x I t) is a theta function, then 6(0 ( t) belongs to J(P, C) with Cj 

(1 <j < 2n) being given by ~((0 ,..., 0, ‘T, 0 ,..., 0)). Furthermore, 6(x I t) = 
exp(C;“, , xjPj) 6(0 I t) holds. 

3 Here and in what follows, (EC), denotes the jth component of the vector Ex, namely, 
(Ex), = z::“= I ejkxk. 

’ Here I?/&, denotes the Cauchy-Riemann operator, namely, alai,, = l/2(8/&7, + 
fl a/&,], where up = Re f, and rP = Im tp. 
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Remurk 2.11. This theorem tells us that a Jacobi function may be called 
a theta zero-value on the analogy of the terminology used for elliptic theta 
functions. 

Pruqf. (i) It is clear that &c 1 t) defined above satisfies (2.8) and (2.9). 
Hence it follows from Theorem 1.4 that we have 

dxIt)=exptxJP,)exP (&xkPk)ev (--+[XJ~Z,XP~]) hyi 12) 

= exp(x,P,) exp 2 x P 
(,,, k 4 ( 

exp z fl x 
J (,,, ‘k 4 )& 

C e x 

Since e,, = 0, (2.12) entails 

=pJp+nn c 

(k,, ) 
eJ&xk p - n fl(Ex)Jp 

= PJcp. (2.13) 

Thus we have verified that cp satisfies (2.7). By exactly the same reasoning, 
we see that 

cp(x + a ) t) = exp(n fl(Ea, x)) exp exp 
(J4 ’ ‘1 

f a P h(t) 

(i. 14) 

holds for every Q =def (a, ,..., a2J in R2”. On the other hand, again by 
Theorem 1.4 we obtain from (2.4) and (2.5) 

exp (j,tl ‘J’J) Ir@)= exP (n fi ( I<J~<2a yIvkeJk)) 3 cr”‘h(‘) 

(2.15) 

for any v =dcf (v, ,..., v2J in Z’“. Hence, by choosing a in (2.14) to be in the 
lattice ZZn, we find 

q(x + v 1 t) = (-1)zL~<k<2n”JYke~k 5 c;j exp(n fl(Ev, x)) q?(x ) C) 
J=l 

(v E Z2”). (2.16) 

607/41/3-6 
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Therefore ~(x 1 I) satisfies (2.10) with C(V) being given by (2.11). Since it is 
clear that ~(0 ( t) = h(t), this completes the proof of (i). 

(ii) Since R, and alai, are differential operators in t-variables, 
R,6(0 1 t) = 0 and (a/8$) 6(0 1 t) = 0 hold for any I and any p. Hence we can 
use the same reasoning as in the proof of (i) to find that 6(x 1 t) =der 
exp(Cj”, 1 xjpj) @(O I t) satisfies Eqs. (2.7), (2.8) and (2.9). Furthermore 
6(x ( t) is holomorphic on C*” XX, Since 6(0 1 t) = 6(0 1 t) holds by the 
definition, and since 6(x ( t) is also analytic (Remark 2.9), the local 
uniqueness assertion in the Cauchy-Kovalevsky theorem guarantees that 
8(x I t) = 6(x I t) holds on IR*” x X. In particular, we have 

exp 
( 1 
5 vjPj 6(0 I t) = &iv ( t) = @(VI t) 
j=l 

(2.17) 

for each v = (v, ,..., vZn) in Z*“. 
On the other hand, the quasi-periodicity condition asserts 

6(v ) 2) = c(v) 6(0 ( t). (2.18) 

Combining (2.17) and (2.18), we obtain 

(exp Pj) @(O 1 t> = c(vj) fl(O 1 t), 1 <j< 2n, 

where vi = (O,..., 0, i, O,..., 0). Thus we have verified that 6(0 ( t) belongs to 
J(P, c) with cj being given by c(vj). This completes the proof of (ii). Q.E.D. 

Now that we have established the correspondence between Jacobi 
functions and theta functions, we embark on the proof of the finite dimen- 
sionality of J(P, c). As we mentioned in the introduction, this is an analogue 
for theta functions of the classical Hamburger theorem for the c-function of 
Riemann. To prove the desired result, however, we need to require that the 
Jacobi structure in question should satisfy condition (2.21) stated below. In 
order to state the condition we prepare some notations: 

First let us note that condition (2.1) makes it possible to define an 
endomorphism Qj of N by assigning QPju to Qu, where u is a generator of 
M and Q belongs to g$. In what follows, we denote by u@j the image of u 
by Gj ; that is, Qj is, by definition, to act upon x from the right. By this 
convention, PjP,u corresponds to u@j”k. Let W denote the Z-module 
of!!, Z!Pj. Since it follows from (2.3) that 

@j@k-@k@j=-2q/Tejk (1 ,<.A k < 2n) (2.19) 

holds, we can define a skew-symmetric inner product (@, @‘) of @ and @’ 
in W by @a’ - @I@. For a subspace V of W, V1 denotes the subspace 
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( !P E W, (@, Y) = 0 holds for every @ in V}. Let Vo and (I”), denote the 
vector spaces 0 @ V and CR @ V’, respectively. Since the inner product 
introduced in the above is non-degenerate, we see 

dim Vo + dim( V’)o = 2n. 

Hence, if V = V’- holds, then dim Vo = n holds. In this case we say that V is 
Lagrangian. In what follows, for Q in M,(Ld,) which is equal to C& CjP, 
modulo Y with complex numbers c,, we let @(Q) denote ci!!1 ci@,. 

DEFINITION 2.12. A partial Jacobi system Y(v) associated with a 
Lagrangian subspace V of W is, by definition, the following gX-module: 

c 
@(Q)EY 

(2.20) 

DEFINITION 2.13. A pair (P, 7) is said to be maximal if there exists a 
Lagrangian subspace V of W such that the associated partial Jacobi system 
U(V) is a holonomic system.5 

Now, the condition that guarantees the finite dimensionality of J(P, c) is 
the following: 

The pair (P, 7) is maximal. (2.21) 

In fact, assuming this condition, we have the following 

THEOREM 2.14. Let P be a Jacobi structure with respect to a CZx-module 
Y = 59;/3’. Suppose that the pair (P, 3) is maximal. Then, dim, J(P, c) is 
finite for every c in C 2n Furthermore, it is independent of c, if c belongs to , 
(C - {O})Z? 

Remark 2.16. Since exp(-P,) exp(P,) is the identity operator, J(P, c) 
consists of only zero, if some c, = 0. This is the reason why the set 
(Cc - {O})“’ appears in the theorem. 

Proof. Let us first show the finite dimensionality of J(P, c). As we have 
noticed in Remark 2.15 above, dim J(P, c) = 0 if some c, = 0. Therefore there 
is nothing to prove in this case. Hence we assume 

Cj# 0 (j = l,..., 2n). (2.22) 

Now, by virtue of Theorem 2.10, it suffices to show the finite dimen- 

’ The terminology “maximally overdetermined system” is used in S-K-K (6) etc. See (4) 
and the references cited there for the theory of holonomic systems. 
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sionality of the space of thata functions, assuming that the constant C(V) in 
condition (2.10) is given by (2.11). 

As (P, .T’) is maximal by the assumption, there exists a Lagrangian 
subspace V= @3!!n+, Z@j of W such that the associated partial Jacobi 
system Y(v) is holonomic. We first show that we may assume without loss 
of generality that E has the form 

0 -I, [ 1 I, 0 * 

Since ‘E = -E and det E = 1 hold by the definition, the theory of elementary 
divisors tells us that there exists a matrix A = (a,,),<,,,<,, which satisfies the 
following conditions: 

ajjE Z (1 ,< i,j < 2n), IdetAI= 1, (2.23) 

AEtA= I -1” [ I 9 
n 

(2.24) 

2n 

s aijGj=O (l<i<n) and 5 aijQji V (n+ l<i<2n). 
j=n+l j=n+l 

(2.25) 

Let I?= (c?(,),,~,~<~,, and B = (blj)l<,,i~2n denote AE ‘A and ‘A-‘, respec- 
tively. Note that (2.23) guarantees that every b, is an integer. Let us now 
introduce a new coordinate 2 = (2, ,..., Tz2,) and a new Jacobi structure P= 
(p’, ,***, pz,,) by 

Zn 

Zi = c buxj 
j=l 

(i = l,..., 2n) 

and 

pi = 5 aijpj (i = l,..., 2n), 
i=l 

(2.26) 

(2.27) 

respectively. We now show that, if we define fl(.? 1 t) by S(tAZ) t), then 
&Z I t) is a theta function associated with the Jacobi structure F. Since 
I% = AEx holds by the definition, we find the following (2.28) from (2.7): 

.X=.42 
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=Ft t,; ( ) w I 0 (i = l,..., 2ni (2.28) 

Since R,%(x’It)=O (l<I<d) and (a/%fp)%(ZIt)=O (l<p<m) clearly 
hold, it now suffices to show the quasi-periodicity of %(Z ) t). Since every 
component of A is an integer, every component of ‘Aj4 is also an integer, if 
so is every component of the column vector p = ‘@i ,..., p&. Hence, by using 
(2.10), we find 

This means that %(Z I t) also satisfies the quasi-periodicity condition. 
Therefore %(Z I t) is a theta function associated with the Jacobi structure p. 
Since 8(0 I t) = %(0 ) C) holds by the definition, and since 6(x” I t) is uniquely 
determined by 6(0 I t) (Theorem 2.1O(ii)), it suffices to show the finite dimen- 
sionality of the space of theta functions associated with i? Note that (2.25) 
guarantees that (F, Y) is maximal. Thus we may assume without loss of 
generality that E has the form 

Now, let us choose constants a, (j = l,..., 2n) so that the following holds: 

exp(w &i a,) = cj 0’ = l,..., 2n). (2.29) 

Thanks to assumption (2.22), such constants a, really exist. Using these 
constants a,, we define an analytic function ~(x 1 t) by 

exp x0 ( ( i (X,+LII)(Xl+“+(Ilt”)))%(XIr). j=l 

In what follows, let x’ etc. and x” etc. denote, respectively, (x ,,..., x,) etc. 
and (x,,+ , ,..., xZn) etc. For the brevity of notation, we also denote 
CL wj+n etc. by (x’, x”) etc. 
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We now show that the quasi-periodicity condition (2.10) entails the 
periodicity of r with respect to x”-variables. In fact, using the fact that c(v) 
is given by (2.11) and the fact that 

E= -In [ 1 Itl ’ 
we find, for each v = (v’, v”) in Z *“, the following relation: 

?f(x’ + v’, x” + v” 1 t) 

= exp(n fl(x/ + v’ + a’, xN + vN + a’)) 6(x + u 1 t) 

= exp(rr fl(x’ + v’ + a’, x” + v” + ~2~)) 

x (-,)W.U”) In ci”j ew@ fl(<- v”, x’) + (v’, xl’))) 6(x 1 t) 

= exp(2n n( v’, x”)) exp(z -(XI + a’, xN + a”)) 6(x 1 t) 

= exp(2n \/-1(v’, x”)) tl(x 1 t). (2.30) 

In particular, we have 

r(x’, x” + v” ( t) = q(x’, x” I t) (2.3 1) 

for any vN in Z”. 
Thus, ~(x’, x” ) t) is a real analytic function periodic in x”. Hence, it has 

the form 

withf,(x’ 1 t) being given by 

1 

I 5 ’ . . . qfx’, xN ( t) exp(-2z fl@, x”)) dx”. 
0 0 

(2.32) 

(2.33) 

Here and in what follows, dx” denotes n;!!,, , dXj* Now, by (2.30), we 
have 

q(x’ + p, x” ( t) = exp(2+, x”)) ~(x’, x” ( t) (2.34) 
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for any p in H”. Hence it follows from (2.33) that 

&Ax + P I a =f, -,w I 0 (2.35) 

holds for every p in Z”. This means that q(x 1 t), and hence 6(x 1 t), is 
uniquely determined by the function&(x 1 t) globally defined on IF?:, X X. 

Now, thanks to the particular form of the matrix E, Eqs. (2.7) imply the 
following: 

g/o(xt 1 t) = -&J’ * * * j-I tl(x’, x” I 0 dx” 
0 

+; . ..~~exp(n~(x’+u~.x~~+u”))B(x’,x”lf)dx” 

= o’= l,..., n) (2.36) 

and 

27rfl xj+2 fo(x’ 1 t) 
( 1 
1 

1 I 
’ a = . . . - t#l(x’, x” 1 t) du” 

1, ..:Jy:. (l,$(x’,x”p)dx” 

= -4+n t,; ( ) &(x’ 1 f) (j = l,..., n). (2.37) 

It is clear that R,(t, a/af)&(x ) t) = 0 and (r7/a~Jfo(x 1 t) = 0 hold for any I 
and p. Since Y(V) = LP(Ci$ n+, ZG,) is holonomic by the assumption, 

dim, Xu*=o,(Y( V’), @& < co (2.38) 

holds for any point p in X. Hence, if we denote by F--a,i2 the vector space 
formed by the collection of possiblef,(-a’/2 I t), it follows from (2.37) that 
dim, F-n,,2 is finite. Next, by using the fact that R,(f, 8/at)fo(-a’/2 1 t) = 0 
(Z = l,..., d), we conclude from Theorem 1.4 that 
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%(X' I t)=exP (,$ (Xj+$) ("fl"j+" 

+'j (IT$)))fO (-$I t, 

is a solution of the following Eqs. (2.39) considered on IR” XX: 

( 
a a -- 

aXj 
nflaj+.-Pj 4z 

( 1) %W I 0 = 0 (j = l,..., n). 

(2.39) 

Here we have used condition (2.2) to guarantee that rpO(x’ 1 t) is well-defined 
over IR” X X (actually over C” X X). 

In view of the uniqueness of the solution to the Cauchy problem for Eqs. 
(2.39) with the Cauchy data on {(x’, t) E I?” XX, x’ = 0}, we find that 
&x’ 1 t) =fO(x’ 1 t) holds on R” XX. Since qO(x’ 1 t) is uniquely determined 
by&(-a’/2 1 t), the finite dimensionality of the space F-,,,* implies the finite 
dimensionality of the space of all possible &(x’ ( t). Since we know that 
6(x ) t) is uniquely determined by fO(x’ 1 t), the space of theta functions is 
finite dimensional. Hence it follows from Theorem 2.10 that dim,J(P, c) is 
linite. 

Finally we show that 

dim, J(P, c) = dim, J(P, c') (2.40) 

holds if both c and c’ belong to (C - {0})2”. Let uj (j= l,..., 2n) be 
constants which satisfy 

S- = exp(-2rr G(Ea)j) 
ci 

(j = l,..., 2n). (2.4 1) 

Since cj is different from 0 and since E is an invertible matrix, such a 
constant cj really exists. Then, by using Theorem 1.4, we find the following 
relation (2.42) for h(t) in J(P, c): 

(exP Pj> (exP (g, %Pk) ) W 

= ew (-2~ G ( jJl ejkak)) (ew ( $I aA)) (expp,) 40 

(2.42) 
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This means that ~xp<c:“,~ a,P,) h(t) belon’gs to J(P, c’). Since 
exp(C:1, a,P,) is an invertible linear differential operator, this implies 

dim, J(P, c) & dim, J(P, c’). (2.43) 

By changing the role of c and c’, we find the opposite inequtility, and hence 
(2.40). This completes the proof of the theorem. 

Remark 2.16. In the course of the proof of the theorem, we have 
obtained the following inequality: 

dim, J(P, c) < dim, F-(1,,2. (2.44) 

Our argument also shows that, if we can somehow verify the finite dimen- 
sionality of the space of (global) solutions of the system of Eqs. (2.36), 
(2.37), R,fo = 0 and (i3/L$Jfo = 0 for any 1 tid p, then dim, J(P, c) is seen 
to be finite for every c. 

3. EXAMPLES 

The purpose of this section is to present a recipe by which we can find 
examples of Jacobi structures. The recipe will make it clear that the 
introduction of the subsidiary system X facilitates the construction of Jacobi 
structures. 

To start with, let us consider an analytic function fo(x 1 t) defined on 
F?: x X which satisfies the following conditions (3.1) and (3.2): 

fo(x 1 t) is holomorphic in t. (3.1) 

There exist linear differential operators A,,& a/&), 
Bkk,(f, a/at) and C,,,(t, a/at) (1 <j, j’, k, k’, 1, I’ Q n) of order 
1 and defined on X which satisfy the following: (3.2) 

x,x,Jfo(x I l) = A,pfo(x I 4 (1 <M’ Q n), (3.2.a) 

Xk &m I 0 = Bwfo(x I 0 (3.2.b) 

-&$Xx I 0 = Gvfo(x I 4 (1 < z, I’ Q n). (3.2.~) 

Let us now consider a (2n + 1)-column vector f(x ) t) = ‘vb, x, fo,..., x, fo, 
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(a/ax,)&,..., @/8x,&). Define (2n + 1) x (2n + l)-matrix Pj (j = l,..., 2n) 

8 
Pj = 

G 

Bj, 

Bjj + 

Pj,, = -2X \/-1 

n+j 
0 i 0 

0 

Aj, 

A. Jn 

Bj, 

(j = l,..., n), (3.3.a) 

0 t 0 

0 
(j = l,..., n). (3.3.b) 

Here the symbol L etc. designates the (j + 1)th column etc. Let 2 denote 
the left gX-module {R(t, a/at) E Mzn+ ,(gX); R(t, a/at) f(x 1 t) = 0) and 
define A’ by C9pt1/T. It is then clear that the following relations hold: 

-g f(x 1 t) = Pjf(X / t) 
J 

(j = l,..., n) (3.4.a) 

27c flx,f(x [ t) = -P,+,f(x 1 t) 

Hence we obtain the following: 

(k = l,..., n). (3.4.b) 

ForR (t,$)inJ,R (t,$]Pj (I,$)f(xil) 

= 0 (j = l,..., n) holds. (3.5.a) 
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= -2w fl xk R 
( 1 
t, ; f(x 1 t) = 0 (k = l,..., n) holds. 

(3.5.b) 

0 = .p/ax, - Pj(f, apt), a/ax,, - P,,(t, apt)] f(x 1 t) 

= [Pj(f9 a/af), pjp(t9 a/af)] f(x 1 t, (1 <j,j’ < n). (3.5.c) 

0 = p/ax, - Pj(f, apt), 2a &ix/( + Pk+ Jt, apt)] f(x I t) 

= (2x fl a,, - [P,(t, wo, p,, ,(t, ~/WI> f(x I t) (1 <j, k Q n). 
(3.5.d) 

0 = [2aflx, +Pk+“(f, apt), 2w flXk, +Pk!+&, apt)] f(xI t) 

= Pk+nO, WG Pk’+nQ, W)l f(x I 0 (1 Q k, k’ < n). (3.5.e) 

These imply that TP, c 7 (j= l,..., 2n) holds and that (2n flS,, - 
[P,, Pk+,,]) etc. belongs to Y. Therefore conditions (2.1) and (2.3) are 
satisfied with the structure matrix 

EC ’ -*n [ 1 ** 0 
for the pair P= {Pj}j=l,...,2, and JLT. Hence it suffkes to verify (2.2) to 
claim that P is a Jacobi structure. Since Q =der cj! r c,Pl has the form 

0 c, ‘.. CT*” 

4 

I I 

0 
L 2n 

with L, (j = l,..., 2n) being a linear differential operator of order 1, Q’ has 
the form 

[‘,’ :t 
0 

1 1 -** C2nLl * 

: . 

Zn --* C2nLZn 

] 

This means ord Q Q l/2. Thus condition (2.2) is also verified. 
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Now let us define a left ideal T0 of gx by 

and denote by V the characteristic variety of gx/G$. Define a subvariety A 
of T*X, the cotangent bundle of X, by 

((4 6 E v; q(A,,t)(t, 2) = 0, u,(Bkkt)(t, t) = 0 (1 <j,j’, k, k’ < n)} 

(3.7) 

and assume 

A is Lagrangian. (3.8) 

Here a,(A,j,) etc. denote the principal symbol of A,,, etc. Then we can verify 
that the solution space of the following Eqs. (3.9) is finite dimensional, and 
hence dimcJ(P, c) (c E Czn) is finite. (See Remark 2.16.) 

g f(x 1 t) = P,f(x ( t) 
j 

(j = l,..., n), 

2n &iXkf(X ( t) = -P,+,f(x 1 t) 

R(t, a/at) f(x 1 t) = 0 

(k = I,..., n), 

(R E 3). 

(3.9) 

In fact, as each solutionf(x ( t) of (3.8) is uniquely determined by f(0 I t), it 
suffices to verify the finite dimensionality of the vector space spanned by 
f(0 I c). Since the (j + 1)th component f,(O I t) of f(0 ( t) is zero for j = l,..., n, 
it suffices to study f,(O 1 t) for j = 0 and j = n + l,..., 2n. Let us now note that 
% v4 12” + 1 belongs to Y if S belongs to ZO. Hence we have 

~k,.Ll(O I 4 = 0 
~k’Jx0 I t) = 0 

Sx3(0 I 0 = 0 

(3.10) 

Then assumption (3.8) implies that the system that fO(O I t) satisfies is 
holonomic. 

Next let us study fi(0 ) t) for j = n + l,..., 2n. It follows from (3.4.a) and 
(3.4.b) that we have 

(1 <j,k,l,<n). (3.11) 
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Here we note 

-47r* & (w,ftx 10) 

= -4n*XjXk & f(x ( t) + x,d,,f(x 1 t) + x,&f(x 1 t) 
I 

and 

323 

(3.12) 

(3.13) 

In view of (3.12) and (3.13), the comparison of the first component of (3.11) 
entails 

Ajfn+,W)=O (1 G k, 1 B n). (3.14) 

Similarly, by calculating (~/~x,)(x,(~lax,) f(x I t)), we obtain 

b,fn+ ,(O I 0 = Wi,+,(O I 9. -(3.15) 

Since Sf"+,(O I t) = 0 holds for any S in TO, (3.14) and (3.15) imply that 
f,+,(O I t) satisftes a holonomic system. Thus we have shown the required 
finiteness property of {f(O I t)}. 

So far we have considered the problem starting from (3.2.a) - (3.2.~). We 
can, however, construct a Jacobi structure by the same method in a more 
general situation, that is, starting from the following (3.16.a) - (3.16.~) 
instead of (3.2.a) - (3.2.~): 

I f) = A,l. . .,,(G VW,(x I 4 (1 Qj, ,..J, Q n>, 
(3.16.a) 

x, +Xx I t) = B,dfr WWXx I 0, (3.16.b) 

am 
ax,, * * * ax& fQ(X 1 t) = ql.. .,,(‘, WO&(x I 0 (i Q j, ,-.,j, Q n), 

(3.16.~) 

601/41/3-7 
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where ordBjk=l, ordAj ,... jm=a and ordCj ,... j,=/3 (l<j, k<n, 
1 <j ,,..., j,,,<n) with a+/?=m and a,P<m. 

Since the argument is the same as before, we leave the detailed calculation 
to the reader. 

We end this section by giving simple examples of j&x ] t) which satisfy 
condition (3.2). 

EXAMPLE 1. Let t denote a symmetric matrix (tjk)l~j.k~n and let&(x ] t) 
be given by exp(lr d?(C ,G,,kGn tjkxjxk)). It is then clear that f,(x ] t) 
satisfies conditions (3.1) and (3.2). In this case, one can verify that the first 
component of the resulting Jacobi function with cj = 1 (j = l,..., 2n) is a 
constant multiple of the zero-value of the Riemann theta function 
c UEZ~ exP(7GiEj.k tjkVjVk))e 

EXAMPLE 2 (cf. Weil [7]). Let A, B and C be n x n constant matrices. 
Suppose that A is invertible and that B = (b,,)i<i,,G, and C = (cij)lCi,j<n are 
symmetric. Denote Cl,, bijy,yj and Cl,j Curlrj by b(y) and c(r), respec- 
tively. Let @(x, y, & A, B, C) denote 

exp(-2n ~(Ax - y, t) - K fl c(t) + n fl b(y)). 

Let q(y) be a tempered hyperfunction defined on I?” and define 
r@)(x I A 4 Cl by 

II @CT Y, t; A, B, C) P(Y) dv &. (3.17) 

Then, by choosing A, B and C as t-variables, one can verify that 
V(p)(x ] A, B, C) satisfies the condition (3.2) if Im B and -1m C are 
sufficiently large. 

More detailed discussion on this example will be given elsewhere, 
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