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1 Question of translating the algorithm

Question Can we translate

the algorithm in char = 0 via (σ, µ̃, s)-method

into the one in char = p > 0 ?

Answer YES !

Basic structure remains the same.

Inductive weaving of the strand

& construction of the modification

◦ Unit (σ, µ̃, s) makes sense

via the notion of LGS H.

◦ Modification (I, E) makes sense

via the construction of

“Cpc” (at the analytic level) and “Bd”

Termination in the horizontal direction

◦ Main mechanism of induction on (σ, t)

is valid.
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Choice of the center

Ci = Supp(Imi
i ) nonsingular

Case: · · · (σmi
i , ∞, 0)

Use Nonsinularity Principle

Case: · · · (σmi
i , 0, 0, Γ) MONOMIAL CASE

Use what ???

Ci = Supp(Imi
i ) transversal to Ei

The same argument as before.

Termination in the vertical direction

Crucial Claim inv(Pi) ≤ inv(Pi−1).

Proof ???

Claim inv(Pi) < inv(Pi−1).

Assuming Crucial Claim ,

the same proof works.

Claim 6 ∃ an infinite sequence

inv(P0) > inv(P1) > · · ·

> inv(Pi−1) > inv(Pi) > · · ·
.

The same proof works.
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2 Power Series Expansion w.r.t. LGS

Given

I = D(I); a D-saturated idealisitic filtration

H; an LGS of I

Power Series Expansion

w.r.t.

H = {(hα, peα)}l
α=1 LGS

hα = xpeα

α mod m
peα+1
P

and its associated reg. sys. of parameters

(x1, · · · , xl, xl+1, · · · , xd).

∀f ∈ ÔW,P

∃! f =
∑

cB(f)HB , HB = hb1
1 · · · h

bl
l

and

degxα
cB(f) ≤ peα − 1 for α = 1, · · · , l,

i.e.,

cB(f) =
∑

0≤nα≤peα−1 cn1···nl
xn1

1 · · · x
nl
l

with cn1···nl
∈ k[[xl+1, · · · , xd]]
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Coefficient Lemma

(f, a) ∈ D(̂I) = D̂(I)

=⇒

(cB(f), a − |[B]|) ∈ D(̂I)

where |[B]| = b1p
e1 + · · · + blp

el.

In particular,

(cO(f), a) ∈ D(̂I).
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Example of the use of Power Series Expansion &

Coefficient Lemma in translating the algorithm

Case:inv≤j−1(Pi) < inv≤j−1(Pi−1)

◦ Description of

µ̃j
i = µH(D(Ij−1

i )

= inf
{
ord

(
cO(f)

)
/a;

(f, a) ∈ D(Ij−1
i ), a ∈ Z>0

}
makes sense thanks to Power Series Expansion.

◦ Decsription of

NaiveCpc(Ij−1
i )

= G

D(Ij−1
i ) ∪

 ( cO(f) , µ̃j
i · a);

(f, a) ∈ D(Ij−1
i ), a ∈ Z>0




and

Cpc(Ij−1
i ) = G

[
IL

{
D

(
NaiveCpc(Ij−1

i )
)}]

makes sense thanks to Power Series Expansion

at the analytic level.

(at the algebraic level ?
partial← Lecture 5 by Kawanoue)
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◦ Independence of “Cpc” from the choice of

LGS H and (x1, · · · , xl, xl+1, · · · , xd) holds

thanks to D-saturation and Coefficient Lemma

Case:inv≤j−1(Pi) < inv≤j−1(Pi−1)

We use the “logarithmic versions” of

Power series Expansion &

Coefficient Lemma
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3 Question of validity of the translated

algorithm

Question Will the translated algorithm

via (σ, µ̃, s)-method in char = p > 0 work ?

Answer NO !

We have trouble handling

MONOMIAL CASE

Crucial Claim inv(Pi) ≤ inv(Pi−1).

We present some easy BAD EXAMPLES .
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4 Bad examples

Example 1

◦ Invariant µ̃ strictly increases after “permissible”

blowup.; Trouble with Crucial Claim

char(k) = 2

Ij−1
i (x2 + f11y4, 2)

(f18z4, 2) /f18 (z4, 2)

D
E

j−1
i,young

(Ij−1
i ) f ∂

∂f
(x2 + f11y4, 2)

= (f11y4, 1) /f9 (f2y4, 1) Ej−1
i,young = {F}, F = {f = 0}

Hi = {(x2 + f11y4, 2)} = {(h, 2)}

µF = 9 i.e., divisible mod Hi by f9 per level

µ̃j
i = 2

Blowup with center (x, f, z)
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Description after blowup

w.r.t. (x′ = x/f, y, z′ = z/f, f)

π](Ij−1
i ) π](x2 + f11y4, 2)

= (x′2 + f9y4, 2)

π](f18z4, 2)

= (f20z′4, 2) /f18 (f2z′4, 2)

π](f11y4, 1)

= (f10y4, 1) /f9 (fy4, 1)

D
E

j−1
i+1,young

(Ij−1
i+1) =

D
E

j−1
i+1,young

(π](Ij−1
i ))

f ∂
∂f

(x′2 + f9y4, 2)

= (f9y4, 1) /f9 (y4, 1) Ej−1
i+1,young = {Fnew}, Fnew = {f = 0}

Hi+1 = {(x′2 + f9y4, 2)}
µFnew = 9 i.e., divisible mod Hi+1 by f9 per level

µ̃j
i+1 = 3 > 2 = µ̃j

i
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Source of trouble

(f11y4, 1)
f ∂

∂f←− (x2 + f11y4, 2)

↓ π] ↓ π]

(f10y4, 1) 6= (f9y4, 1)
f ∂

∂f←− (x′2 + f9y4, 2)

Conclusion: We will have trouble showing

Crucial Claim inv(Pi) < inv(Pi−1).
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Example 2

◦ We get thrown out of the monomial case after

blowup.; Trouble with MONOMIAL CASE.

char(k) = 2

Imi−1
i (x2 + f10yz, 2)

(f20, 2) /f20 (1, 2)

D
E

mi−1
i,young

(Imi−1
i ) ∂

∂y
(x2 + f10yz, 2)

= (f10z, 1) /f10 (z, 1)

∂
∂z

(x2 + f10yz, 2)

= (f10y, 1) /f10 (y, 1) E
mi−1
i,young = {F}, F = {f = 0}

Hi = {(x2 + f10yz, 2)} = {(h, 2)}

µF = 10 i.e., divisible mod Hi by f10 per level

µ̃
mi
i = 0

We are in MONOMIAL CASE.

Blowup with center (x, f) defining

Supp

(
D

E
mi−1
i,young

(Imi−1
i )|F

)
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Description after blowup

w.r.t. (x′ = x/f, y, z, f)

π](Imi−1
i ) π](x2 + f10yz, 2)

= (x′2 + f8yz, 2)

π](f20, 2) = (f18, 2) /f16 (f2, 2)

π](f10z, 1) = (f9z, 1) /f8 (fz, 1)

π](f10y, 1) = (f9y, 1) /f8 (fy, 1)

D
E

mi−1
i+1,young

(Imi−1
i+1 ) = D

E
mi−1
i+1,young

(π](Imi−1
i ))

∂
∂y

(x′2 + f8yz, 2)

= (f8z, 1) /f8 (z, 1)

∂
∂z

(x′2 + f8yz, 2)

= (f8y, 1) /f8 (y, 1) E
mi−1
i+1,young = {Fnew}, Fnew = {f = 0}

Hi+1 = {(x′2 + f8yz, 2)}
µFnew = 8 i.e., divisible mod Hi+1 by f8 per level

µ̃
mi
i+1 = 1 > 0 = µ̃j

i



Introduction to IFP (13)

Source of trouble

(f10z, 1)
∂
∂y←− (x2 + f10yz, 2)

↓ π] ↓ π]

(f9z, 1) 6= (f8z, 1)
f ∂

∂f←− (x′2 + f8yz, 2)

Conclusion: We can NOT stay

in the MONOMIAL CASE.
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Example 3

◦ Failure to choose the nice center

(as naively expected) in MONOMIAL CASE

char(k) = 5

Imi−1
i (x5 + f4(y2 − z3), 5)

(f4, 4) /f4 (1, 4)

D
E

mi−1
i,young

(Imi−1
i )

f ∂
∂f

(x5 + f4(y2 − z3), 5)

= (4f4(y2 − z3), 4) /f4 (4(y2 − z3), 4)

∂
∂y

(x5 + f4(y2 − z3), 5)

= (2yf4, 4) /f4 (2y, 4)

∂
∂z

(x5 + f4(y2 − z3), 5)

= (−3z2f4, 4) /f4 (−3z2, 4) E
mi−1
i,young = {F}, F = {f = 0}

Hi = {(x5 + f4(y2 − z3), 5)} = {(h, 5)}

µF = 4 i.e., divisible mod Hi by f4 per level

µ̃
mi
i = 0

We are in MONOMIAL CASE.
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Naive choice of the center (x, f) defining

Supp

(
D

E
mi−1
i,young

(Imi−1
i )|F

)
following the analogy to the classical method

HOWEVER

Supp

(
D

E
mi−1
i,young

(Imi−1
i )

)
6⊃ Supp

(
D

E
mi−1
i,young

(Imi−1
i )|F

)
defined by defined by

(x, f, y2 − z3)︸ ︷︷ ︸ (x, f)

NOT nonsingular

Source of trouble

(4(y2 − z3)f4, 4)
f ∂

∂f←− (x5 + f4(y2 − z3)︸ ︷︷ ︸, 5)

(2yf4, 4)
∂
∂y←−

(−3z2f4, 4)
∂
∂z←−

invisible

after setting f = 0

Conclusion: We can NOT choose

a nice nonsingular center

in MONOMIAL CASE.
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5 Analysis of trouble

An element in LGS is of the form

h = xpe︸︷︷︸
Principal part

+ TAIL .

It is TAIL that is causing all the TROUBLE.

Conclusion We should incorporate the information

on TAIL into our algorithm.

How ?

h = xpe︸︷︷︸
Principal part

+ TAIL

δ: a diff. operator (of degree 0 < deg δ < pe)

δh = δxpe︸︷︷︸ +δ TAIL

=

0

Study of the derivatives of δh = δ TAIL

−→

Information on TAIL
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6 Introduction of invariant ν̃

SPIRIT: Mimic the construction of invariant µ̃

µ̃: Weak order

(order after divided as much as possible by

the defining equations of the exceptional divisors)

in regard to all the elements in DEyoung(I)

µ̃: Weak order

(order after divided as much as possible by

the defining equations of the exceptional divisors)

in regard to all the derivatives of LGS
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Definition of ν̃j
i

D
E

j−1
i,young

(Ij−1
i ) := J

H = {(hα, peα)}l
α=1 an LGS

{peα}l
α=1 = {pe1 < · · · pem} = {peβ}m

β=1

ν̃j
i = νH,E

j−1
i,young

(J)

:= νH(J) −
∑

Fλ⊂E
j−1
i,young

νλ

where

Dt

E
j−1
i,young

(Jp
eβ) with t ∈ Z>0, peβ − t > 0

:= {(f, peβ − t) = (δ(g), peβ − t);

δ ∈ Diff t
Ei,young

, g ∈ Jp
eβ}

νH(J) := inf{ord(cO(f))/(peβ − t);

(f, peβ − t) ∈ Dt

E
j−1
i,young

(Jp
eβ),

t ∈ Z>0, peβ − t > 0, f =
∑

cB(f)HB}

νλ := inf{n/(peβ − t);

cO(f) is divisible by fn
λ ,

(f, peβ − t) ∈ Dt

E
j−1
i,young

(Jp
eβ),

t ∈ Z>0, peβ − t > 0, f =
∑

cB(f)HB}
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Lemma

νH,E
j−1
i,young

(J) is independent of the choice of H

(or HV ). Therefore, ν̃j
i is well-defined.
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7 Observe how invariant ν̃ overcomes

trouble

Example 1

Center (x,f,z)

(σ, µ̃, s)-permissible NOT(σ, µ̃, ν̃, s)-permissible

µ̃j
i = 2 < µ̃j

i+1 = 3

Compute

ν̃j
i = 4 f ∂

∂f
(x2 + f11y4, 2)

= (f11y4, 1)

νF = 11

divisible mod H by f11per level

/f11 (y4, 1)

New Center (x,f,y,z)

(σ, µ̃, ν̃, s)-permissible

µ̃j
i = 2 ≥ µ̃j

i+1 = 2
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Example 2 (Say Ej−1
i,aged)

(σ, µ̃, s)-method

(σj
i , µ̃j

i , sj
i)

= =

0 0

−→ End of weaving. Try to determine the center

as in the classical monomial case.

Center (x, f)

µ̃j
i = 0 < µ̃j

i+1 = 1.

(σ, µ̃, ν, s)-method

(σj
i , µ̃j

i , νj
i , sj

i)

= = =

0 1 0

−→ Weaving continues. Center determined by the

later units.

Center ((x, f, y, z): (σ, µ̃, ν̃, s)-permissible

µ̃j
i = 0 = µ̃j

i+1 = 0.
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Computation of ν̃j
i = 1.

∂
∂y

(x2 + f10yz, 2) = (f10z, 1) /f10 (z, 1)

∂
∂z

(x2 + f10yz, 2) = (f10y, 1) /f10 (y, 1)

νF = 10

We have to add y and z to make the center

(σ, µ̃, ν̃, s)-permissible

Center (x, y): NOT (σ, µ̃, ν̃, s)-permissible

Center (x, f, y, z): (σ, µ̃, ν̃, s)-permissible
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Example 3 (Say Ej−1
i,aged)

(σ, µ̃, s)-method

(σj
i , µ̃j

i , sj
i)

= =

0 0

−→ End of weaving. Try to determine the center

as in the classical monomial case.

We have TROUBLE choosing a good center.

(σ, µ̃, ν, s)-method

(σj
i , µ̃j

i , νj
i , sj

i)

= = =

0 1/4 0

−→ Weaving continues. Center determined by the

later units.

Center (x, f, y, z): nonsingular, (σ, µ̃, ν̃, s)-permissible


