

Lecture 5

Two topics in IFP:

Algebraization and Nonsingularity principle

Hiraku Kawanoue and Kenji Matsuki

December 01, 2008

Contents

1	Plan of today's talk	(1)
2	Algebraization problem revisited	(2)
3	Construction of Φ_l when $\#\mathbb{H}=1$	(6)
4	Nonsingularity principle revisited	(12)
5	Sketch of proof: the former part	(14)
6	Sketch of proof: the latter part	(17)

1 Plan of today's talk

Today I want to talk on 2 small topics:

• One Prop. concerning algebraization problem

• Outline of the proof of nonsingularity principle

We consider again in the case

with NO exceptional divisors

2 Algebraization problem revisited

Setting for today

M: nonsing. var./k, $P \in M$: closed point,

 $R\!=\!(R,\mathfrak{m})\!=\!\mathcal{O}_{M,P}\!\!:$ local ring at $P\!\in\!M$,

 \mathbb{I} : \mathfrak{D} -sat. I.F. on R, $\mu(\mathbb{I}) \geq 1$, \mathbb{H} : LGS of \mathbb{I} .

Review

- We use enlargement to define invariant $\mathbb{I}^0 \subset \mathbb{I}^1 \cdots \subset \mathbb{I}^t \subset \mathbb{I}^{t+1}$ $(\sigma_0, \mu_0^{\sim}) \cdots \cdots (\sigma_t, \mu_t^{\sim}) (\sigma_{t+1}, \infty)$
- \bullet Idea to define enlargement \mathbb{I}' of \mathbb{I}

$$\mathbb{I} = "\mathbb{H} + (\text{Remainder})"$$

$$\mathbb{I}' = "\mathbb{H} + \begin{pmatrix} \text{Remainder} \\ \text{with } \alpha \times (\text{level}) \end{pmatrix} "$$
where $\alpha := \mu^{\sim}(\mathbb{I}) \geq 1$.

• In completion level, enlargement exists

$$egin{aligned} \widehat{\mathbb{I}} &= \mathrm{G}(\mathbb{H} \cup \{(c_{\mathbf{0}}(f), a) \mid (f, a) \in \mathbb{I}\}) \ \widehat{\mathbb{I}}' &= \mathfrak{D}(\mathrm{G}(\mathbb{H} \cup \{(c_{\mathbf{0}}(f), lpha a) \mid (f, a) \in \mathbb{I}\})) \end{aligned}$$

•
$$c_{\mathbf{0}}(f)$$
: "the remainder of f w.r.t. \mathbb{H} ".

$$\begin{cases}
\widehat{R} = k[[\mathbf{x}, \mathbf{y}]] \\
\mathbb{H} = \{(h_i, p^{e_i}) \mid 1 \leq i \leq l\}: \text{ LGS of } \mathbb{I} \\
h_i \in x_i^{p^{e_i}} + (\text{higher}) \quad (1 \leq i \leq l)
\end{cases}$$

$$\Downarrow$$

$$c_{\mathbf{0}}(f)$$
 is element of $k[[y]][x] \subset R$ with
 $\begin{cases} f - c_{\mathbf{0}}(f) \in \sum_{i=1}^{r} h_{i} \widehat{R} \\ \deg_{x_{i}}(c_{\mathbf{0}}(f)) < p^{e_{i}} \quad (1 \leq i \leq l) \end{cases}$

How to construct enlargement I'in Zariski local level?

Problem Let $f \in R$. Find

suitable approximation of $c_0(f)$ in R!

(algebraization problem)

Abstract approach

- By Artin's approximation theorem, construct $c_0(f)$ in henselization R^* .
- Then, apply descent theory.

Seems to work nicely, but today we skip it) by our ignorance of "well-known method" **Constructive** approach

What is the "suitable" approximation? Fix t > 0. By definition of $\widehat{\mathbb{I}}'$, we require $\mathbb{I}_{\alpha t} \subset \mathbb{I}'_t$.

Therefore, we can define \mathbb{I}'_t if there exists

 $\phi \colon R \to R$ (approximation of c_0) s.t. $(c_0 - \phi)(\mathbb{I}_t) \in \mathbb{I}_{\alpha t} \widehat{R}$

We show the following:

Lemma 1

Let $l \in \mathbb{Z}_{\geq 0}$. If $\#\mathbb{H} = 1$, we can construct $\Phi_l \colon R \to R$ s.t. $(c_0 - \Phi_l)(R) \in \mathbb{I}_l \widehat{R}$.

Remark $\mu(\mathbb{I}) \geq 1 \Rightarrow \mathbb{I}_l \subset \mathfrak{m}^l$. Thus $\Phi_l(f)$ is a special \mathfrak{m} -adic approxim. of $c_0(f)$.

3 Construction of Φ_l when $\#\mathbb{H} = 1$

Assume: $\mathbb{H} = \{(h,q)\}$ $(q = p^e, e \in \mathbb{Z}_{\geq 0})$

How to construct Φ_l : approxim. of c_0 ?

Idea for construction of Φ_l

1. Construct ψ_l : approxim. of " ∂_h "!

i.e.,
$$\psi_l \colon R \to R$$
 with $\left\{ egin{array}{ll} \psi_l(x^u) &= 0 & (0 \leq u < q) \ \psi_l(heta) \in eta + \mathbb{I}_l \widehat{R} & (eta \in \widehat{R}) \end{array}
ight.$

2. Put $\Phi_l = 1 - h \psi_l$

3. Done! since

$$(1-h\psi_l)\colon egin{cases} R & o & R \ heta & o & \mathbb{I}_l \ c_{m 0}(f) \mapsto c_{m 0}(f) \end{cases}$$

•
$$X$$
: RSP of R

- $\left\{ \partial_{X^{I}} \colon R \to R \mid I : \mathsf{multi-index} \right\}$
 - : partial diff. operators w.r.t. X

i.e.
$$\partial_{X^I} X^J = \binom{J}{I} X^{J-I}$$

• Since $h = (\text{linear})^q + (\text{higher})$,

 $\exists x \in X ext{ such that } \partial_{x^q} h \in R^{ imes}.$

$$\partial_t := \left\{egin{array}{l} \partial_{x^t} \, : t \in \mathbb{Z}_{\geq 0} \ 0 \ \ : t \in \mathbb{Z}_{< 0} \end{array}
ight.$$

Introduction to IFP

 $\bullet \quad h_t:=\partial_t h\in R$

Since
$$\partial_{x^{q-t}}h\in\partial_{x^{q-t}}\mathbb{I}_q\subset\mathbb{I}_t$$
, $h_{q-t}\in\mathbb{I}_t$

•
$$M_l := (h_{q-i+j})_{0 \le i,j \le l} \in \operatorname{Mat}(l+1,R)$$

i.e.

$$M_l = egin{bmatrix} h_q & h_{q+1} & \cdots & h_{q+l} \ h_{q-1} & h_q & \cdots & h_{q+l-1} \ dots & & \ddots & dots \ h_{q-l} & h_{q-l+1} & \cdots & h_q \ \end{pmatrix}$$

Since $h_q \in R^ imes$ and $h_i \in \mathfrak{m}$ (i < q),

$$M_l \in \operatorname{GL}(R)$$

Introduction to IFP

•
$$c_t := \left(M_l^{-1}
ight)_{t,0} \in R$$

By definition,

$$c_t = (-1)^t \, (\det M_l)^{-1} imes$$
 (minor)

where (minor) is calculated as follows:

$$M_l = egin{array}{cccc} h_q & \ldots & h_{q+t} & \ldots & h_{q+l} \ h_{q-1} & \ldots & h_{q+t-1} & \ldots & h_{q+l-1} \ dots & dots &$$

Ignore colored entries and take determinant.

Monomials in (minor) are of the shape

$$egin{aligned} & \pm h_{s_1}h_{s_2}\cdots h_{s_l} & ext{with} \ & \sum_{u=1}^l s_u = (l+1)q - (q+t) = lq - t \ & \Rightarrow h_{s_1}h_{s_2}\cdots h_{s_l} \in \mathbb{I}_t & ext{i.e.} & c_t \in \mathbb{I}_t \end{aligned}$$

Construction of ψ_l

Define

$$\psi_l := \sum_{t=0}^l c_t \partial_{q+t} \colon R o R$$

Clearly,
$$\psi_l(x^u) = 0$$
 ($0 \le u < q$)

Calculation of $\psi_l(heta)$:

$$egin{aligned} \psi_l(heta) &= \sum\limits_{t=0}^l c_t \partial_{q+t}(heta) \ &= \sum\limits_{t=0}^l c_t \sum\limits_{s\geq 0} \partial_{q+t-s}h \cdot \partial_s eta \ &= \sum\limits_{s\geq 0} \partial_s eta \sum\limits_{t=0}^l h_{q-s+t} c_t \end{aligned}$$

For $0 \leq s \leq l$,

$$egin{aligned} &\sum_{s\geq 0}h_{q-s+t}\,c_t = \sum_{t=0}^l (M_l)_{s,t}(M_l^{-1})_{t,0} \ &= (M_l M_l^{-1})_{s,0} = \delta_{0,s} \end{aligned}$$

For l < s,

$$h_{q-s+t} \, c_t \in \mathbb{I}_{s-t} \mathbb{I}_t \subset \mathbb{I}_s \subset \mathbb{I}_l$$

Therefore

$$egin{aligned} \psi_l(heta) &= \sum\limits_{s\geq 0} \partial_seta \sum\limits_{t=0}^l h_{q-s+t} c_t \ &\in \sum\limits_{s=0}^l \delta_{0,s}\partialeta + \mathbb{I}_l\widehat{R} = eta + \mathbb{I}_l\widehat{R}. \end{aligned}$$

i.e.
$$\phi_l(heta)\ineta+\mathbb{I}_lpha.$$

Thus this ψ_l is what we need.

4 Nonsingularity principle revisited

Theorem 2 (Nonsingularity principle) Assume $\mu^{\sim}(\mathbb{I}) = \infty$. Then,

1. I is generated by any LGS H of I.

 $\begin{array}{l} \mathsf{2}. \left\{ \begin{array}{l} \exists \{x_i \mid i\} \subset R & : \text{a part of RSP of } R \\ \exists \{e_i \mid i\} \subset \mathbb{Z}_{\geq 0} & : \text{non-neg. integers} \end{array} \right. \\ \text{such that} \left\{ (x_i^{p^{e_i}}, p^{e_i}) \mid i \right\} \text{ is an LGS of } \mathbb{I}. \end{array}$

This theorem guarantees the nonsingularity of max. locus of inv_P ,

which coincides $\mathrm{Supp}(\mathbb{I})$ in the last stage of defining inv_P (when $\mu^{\sim} = \infty$).

$$egin{aligned} \mathbb{H} &= \{(h_i,q_i) \mid 1 \leq i \leq \ell\}: \ \mathsf{LGS} \ \mathsf{of} \ \mathbb{I} \ X: \ \mathsf{RSP} \ \mathsf{of} \ R \ \{x_i,\ldots,x_\ell\} \subset X \ ext{ s.t. } h_i &= x_i^{q_i} + (\mathsf{higher}) \ (1 \leq i \leq \ell) \ B &= (b_1,b_2,\ldots,b_\ell): \ \mathsf{multi-index} \ H^B &= \prod_{i=1}^\ell h_i^{b_i}, \quad |B| = \sum_{i=1}^\ell b_i \ [B] &= (q_1b_1,q_2b_2,\ldots,q_\ell b_\ell) \end{aligned}$$

5 Sketch of proof: the former part

 $\mu^{\sim}(\mathbb{I}) = \infty$ is equivalent to $\mathbb{I}_t \subset \sum_{i=0}^{\ell} Rh_i \quad (\forall t > 0).$ (1) $\mathbb{I} = G(\mathbb{H})$ is equivalent to $\mathbb{I}_t \subset \sum_{|[B]| \ge t} RH^B \quad (\forall t > 0).$ (2)

Regarding RHS as "expansion w.r.t. \mathbb{H} ",

(1): constant part = 0. (2): coeff. of $H^B = 0$ for |[B]| < (level).

We want to derive (2) from (1).

key point: I is \mathfrak{D} -saturated.

Example

$$\begin{split} R &= k[x,y]_{(x,y)}, \ \mathbb{H} = \{(x,1)\}.\\ \mathbb{I}_{2.5} \ni f &= \sum_{i=0}^{4} c_i(y) x^i\\ \mu^{\sim}(\mathbb{I}) &= \infty \Rightarrow \mathbb{I}_t \subset xR \text{ for } t > 0.\\ \mathbb{I}_{2.5} \ni f &= \sum_{i=0}^{4} c_i x^i \qquad \Rightarrow c_0 = 0.\\ \mathbb{I}_{1.5} \ni \partial_x f &= \sum_{i=1}^{4} i c_i x^{i-1} \qquad \Rightarrow c_1 = 0.\\ \mathbb{I}_{0.5} \ni \partial_{x^2} f &= \sum_{i=2}^{5} {i \choose 2} c_i x^{i-1} \Rightarrow c_2 = 0.\\ \mathbb{I}_{-0.5} \ni \partial_{x^3} f \qquad \text{(level } < 0) \qquad \Rightarrow \text{STOP!} \end{split}$$

Thus

$$f=\sum_{i=3}^4 c_i x^i \in \sum_{i>2.5} Rx^i$$

Strategy

By differentiation, bring coeff's of H^B into constant part and kill it! General case: more complicated, i.e.

- many variables
- \bullet levels of LGS >1
- \rightarrow Use of higher diff. operators:
- \rightarrow Leibneiz rule is not usual.

$$\partial_{X^K}(fg) = \sum_{I+J=K} \partial_{X^I} f \cdot \partial_{X^J} g$$

But, we can still find out the

leading part of coeff. of specified H^B :

$$ightarrow$$
 If $i
eq j$ or $u
eq 0, q_i$, key point: then $\operatorname{ord} \partial_{x_j^u} h_i > q_i - u$

We have only to repeat this procedure and use Krull's intersection theorem!

6 Sketch of proof: the latter part

As LGS \mathbb{H} is representative of $L(\mathbb{I})$, usually we have "tail" i.e.

$$h_i = x_i^{q_i} + (ext{higher, not } q_i ext{-th power})$$
 with $q_i = p^{e_i} > 1.$

The latter part of NSP asserts that LGS without tails exists provided $\mu^{\sim}(\mathbb{I}) = \infty$.

Let $F^q \colon R \ni r \mapsto r^q \in R$ (Frobenius).

Strategy of whole proof Fix LGS \mathbb{H} .

- Change \mathbb{H} into tail-free from lower level.
- \bullet induction on r, where

 $r:=r(\mathbb{H})=\min\{q\in\mathbb{Z}_{>0}\mid\mathbb{H}_q
ot\subset \mathrm{F}^q(\mathfrak{m})\}$

Setup

As $\mathbb{I} = \mathrm{G}(\mathbb{H})$, we can express

$$\mathbb{I}_r = \sum_{|[B]| \ge r} RH^B = \sum_{q_i \ge r} Rh_i + J,$$

where J is factors from lower level, i.e.

$$egin{aligned} &J=(H^B\mid|[B]|\geq r,\;b_i=0\; ext{if}\;q_i\geq r). \end{aligned}$$
 Since $h_i\in\delta_{r,q_i}x^{q_i}+\mathfrak{m}^{r+1}$ for $q_i\geq r$, $&\mathbb{I}_r\subset \mathrm{F}^r(\mathfrak{m})+\mathfrak{m}^{r+1}+J \end{aligned}$

 $\begin{array}{c|c} \hline \textbf{Goal} & \textbf{Our goal is to prove} \\ \hline \mathbb{I}_r = \mathbb{F}^r(\mathfrak{m}) \cap \mathbb{I}_r + \mathbb{I}_r \cap \mathfrak{m}^{r+1} + J. \\ \hline \textbf{lives elt's of LGS} & \uparrow & \uparrow \\ \hline \textbf{(big order)} & (from lower) \\ \hline \textbf{To prove above equation, we show} \\ \hline \mathbb{I}_r \subset K_n & (\forall n \ge 0) & \textbf{where} \end{array}$

 $K_n := \operatorname{F}^r(\mathfrak{m}) + \mathbb{I}_r \cap \mathfrak{m}^{r+1} + J + \mathfrak{m}^n.$

Step: $n \rightarrow (n+1)$

For f ∈ I_n, we show f ∈ K_{n+1} as follows:
1. ∃φ ∈ mⁿ s.t. f − φ ∈ K_{n+1}
2. Find suitable partial diff. operator
∂ of degree < r to extract the information of in(φ) (leading term)
3. By ∂ F^r(m) = 0, show

that $in(\partial \phi) \in in(\mathbb{I}_{r-\deg \partial}).$

4. By
$$\mathbb{I}_{r-\deg\partial} \subset \mathbb{I}_1 = \sum_i Rh_i$$
,
show $\operatorname{in}(\partial\phi) \in (\operatorname{in}(h_i) \mid i)$, and

deduce $\phi \in K^{n+1}$.

Conclusion Regard K_n as R-mod. by F^r , and use Krull's intersection theorem to get the equation in "Goal".