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1 Plan of today’s talk

Today | want to talk on 2 small topics:

o concerning

algebraization problem

e Outline of the of

nonsingularity principle

We consider again in the case

with NO exceptional divisors
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2 Algebraization problem revisited

Setting for today

M: nonsing. var./k, P € M: closed point,

R=(R,m)=0)s p: local ring at P€ M,

[: ®-sat. I.F. on R, u(I) > 1, H: LGS of 1.

Review

e We use enlargement to define invariant
O ... c c [ttt
(G0, 1y) -+ «+ (Ot, 17”) (Oty1,00)
o Idea to define enlargement I’ of I
I = “H+ (Remainder)”
M

Remainder
]:[, — b H —I— 144
with a X (level)

where o := p~ (1) > 1.
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e In completion level, enlargement exists

T =G(HU {(co(f),a) | (f,a) € T})
T =®(G(HU{(co(f), aa)| (f,a) € I}))

e co(f): “the remainder of f w.r.t. H”.

AN

R = k[[Xa Y]]
H = {(h;,p%) | 1 < i <1}: LGS of I
h; € ¥ '+(higher) (1<i<1)

'\

\

U

co(f) is element of k[[y]][x] C R with

f—co(f) € Yi—q hiR
degg,(co(f)) <p% (1<i<1)
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How to construct enlargement I’

in Zariski local level?

Problem Let f € R. Find

suitable approximation of cg(f) in R!

(algebraization problem)

Abstract approach

e By Artin’s approximation theorem,

construct cg(f) in henselization R*.

e Then, apply descent theory.

( Seems to work nicely, but today we skip it )

by our ignorance of “well-known method”
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Constructive approach
What is the “suitable” approximation?

Fix ¢ > 0. By definition of T/,

we require |I,; C IJ.

Therefore, we can define ]IZ if there exists

¢: R — R (approximation of cg)
s.t. (co— ¢)(Iy) € IR

We show the following:

Lemma 1

Let | € Z>¢. If #H = 1, we can construct

®;: R — R st. (co— ®)(R) € R.

Remark | p(l) > 1 = I; C m!. Thus

®;( f) is a special m-adic approxim. of cg(f).
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3 Construction of ®; when #H =1

Assume: H = {(h,q)} (g = p® e € Z>)

How to construct ®;: approxim. of cg ?

Idea for construction of ¥,

1. Construct  ;: approxim. of “0p"!
l.e.,, Y;: R — R with

pa) =0 (0<u<aq)

| ¥i(hB) € B+ R (B € R)

2. Put ®; =1 — hyj

3. Done! since
)

R — R
(1—hyy): ¢ h3 — T

_co(f) — co(f)
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Notation

e X: RSPof R

e {Ox1: R — R | I: multi-index}

: partial diff. operators w.r.t. X
ie. yrX’' = (‘DXJ—I
e Since h =(linear)?+(higher),
Jx € X such that 8,.¢h € R*.

8wt tEZZO
0 2tEZ<O

Ot :=
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e hy:=0th € R

Since 8wq—th E awq—t]:[q C Ht,

o M; := (hq—i—l—j)OSi,jSl c Mat(l—l—l,R)

l.e.

=
||

hg—t hg—i+1 -+ hq

Since hg € R* and h; € m (i < q),

M; € GL(R)
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e Cp:= ML €ER
L) t,0

)

By definition,
¢t = (—1)t (det M;)™1 x (minor)

where (minor) is calculated as follows:

g+t
hq_]_ o o o o o o hq_l_l_]_

=
||

hq_l... e o o hq

Ignore colored entries and take determinant.

Monomials in (minor) are of the shape

::h31h32 o hsl With
l
S ou=(+1)q— (q4+1t) = lqg —t

u=1

:> h31h82 ¢ hsl E I[t i.e. Ct E :[[t
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Construction of

Define

[

'Lbl = Z Ctaq_Hg: R— R
t=0

Clearly, ;(z%) =0 (0<wu <q)

Calculation of ;(h03) :

l
Pi(hB) = Z ct0q1-¢(h3)

_thzath sh - 050

t=0 3>0

Z s Z hq s+t Ct

s>0
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For 0 < s <,
l

> hq_sitcs = Z(Ml)s,t(Ml_l)t,O

s>0 t=0
— (MlMl_l)s,O — 50,3
For | < s,

hg—st+tct € ls—¢ly Cls C 1

Therefore

l
Yi(hB) = Y 0B Y hg—stic
t=0

s>0

l
€ > 60,s08+ 1 R=p8+R.
s=0

i.e. [¢p;(hB) € B + 4.

Thus this 1); is what we need.
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4 Nonsingularity principle revisited

Theorem 2| (Nonsingularity principle)

Assume p~(I) = oco. Then,

1. I is generated by any LGS H of I.

)
2 3{x; | 2} C R : a part of RSP of R

\ 3{e; | i1} C Z>¢ : non-neg. integers

such that {(wfei,pei) | z} is an LGS of .

This theorem guarantees the nonsingularity

of max. locus of inv p,

which coincides Supp(I) in the last stage

of defining invp (when pu™~ = o0).
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Notation
H = {(h,,;,q,,;) | 1 S 1 S E}: LGS of I
X: RSP of R

{x;s...,xp} C X
s.t. h; = x4+ (higher) (1 < i < ¢)

B = (b1,ba,...,bp): multi-index
b; ¢
HB =T[_ by, Bl =31 b;

[B] = (gq1b1, q2b2, . . ., qpby)



Introduction to IFP (14)

5 Sketch of proof: the former part

p~ (I) = oo is equivalent to
14
Iy C Z Rh; (Vt > 0). (1)
1=0
[ = G(H) is equivalent to
I,C Y RHP (vt>0). (2)
|[B]|=>t

Regarding RHS as “expansion w.r.t. H”,

(1): constant part = 0.
(2): coeff. of HB = 0 for |[B]| <(level).

We want to derive (2) from (1).

key point: |[ is ®-saturated,|.
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Example

R = klx,y|(z4) H={(z,1)}.

Io5 3 f =Yg ci(y)a’

p~(I) =00 = [ C xR for t > 0.
]1259f222106ii = ¢co = 0.
Ii5 2 0zf = Z 1zcz.1 = ¢1 = 0.

lo.s 2 9,2 = Z ()zmz_1=>0220.
[_o0.520,Ff (level < 0) = STOP!

Thus

f = Zczm € ZRCB

1>2.5

Strategy

By differentiation, bring coeff’s of HB

into constant part and kill it!
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General case: more complicated, i.e.
e many variables

o levels of LGS > 1

— Use of higher diff. operators:

— Leibneiz rule is not usual.

Oxk(fg) = Z Ox1f - 0xig
I4+J=K

But, we can still find out the

leading part of coeff. of specified HE.

f

If : 47 or u+#0, q;,

k int:
©y pomn then ord 9 ,uvh; > q; — u
J

We have only to repeat this procedure

and use Krull’'s intersection theorem!

(16)
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6 Sketch of proof: the latter part
As LGS H is representative of L(I),
usually we have “tail” i.e.
h, = a:gi + (higher, not g;-th power)

with g; = p% > 1.

The latter part of NSP asserts that LGS
without tails exists provided p™(I) = oc.
let F9: R>r+— r?9c€ R (Frobenius).
Strategy of whole proof| Fix LGS H.

e Change H into tail-free from lower level.

e induction on r, where

ri=r(H) = min{q € Zso | Hy ¢ F9(m)}
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Setup
As I = G(H), we can express

= Y RHP =) Rh;+J,
|[B]|>r q;>Tr
where J is factors from lower level, i.e.

= (HP | |[B]| > r, b;=0if g; > 7).
Since h; € 6y g,z + m” ! for g; > r,

I, CF " (m)+m" ™t 4+ J

Goal| Our goal is to prove

I, = F"(m) NI, + L Nnm" T+ J.
lives elt’s of LGS 7 T
(big order) (from lower)

To prove above equation, we show
I, C Kn (Yn>0) where

Ky, :=F'(m)+1L.N m" T4 T4+ m"
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Step: n — (n+1)

For f € I, we show f € K, as follows:
1. Jopem” st. f—o¢ec Kpiq

2. Find suitable partial diff. operator
O of degree < r to extract the

information of in(¢) (leading term)

3. By dF"(m) = 0, show

that in(9¢) € in(l, _geg a)-

4. Byl _gego CIh = ) ; Rhy,
show in(d¢) € (in(h;) | ), and
deduce ¢ € K" 11,
Conclusion| Regard K,, as R-mod. by F7,

and use Krull’s intersection theorem to get

the equation in “Goal”.



