Topology from the Differentiable Viewpoint

Exercise 1.
Show that there are smooth maps from the open ball

{(z1,...,2p) ER" |27+ 42 <1}

to itself without any fixed points. Where does Hirsch’s proof of the
Brouwer Fixed Point Theorem fail?

Exercise 2.
Use the Intermediate Value Theorem to prove the Brouwer Fixed Point
Theorem for continuous maps from the closed interval [—1, 1] to itself.

Exercise 3.
Let A be a real n X n matrix with only non-negative entries. Show that

A has a real non-negative eigenvalue A > 0, i.e. there is a non-zero vector
x € R" with Az = A\x.

HiNT. You may assume that O is not an eigenvalue of A, i.e. A is
invertible. Then, consider the standard simplex

JAVE I {xER”‘mZO, |x|::1c1—|—---+:1:n:1}

and the map A,_1 — A, _1, x — Ax/\Ax|. Conclude that A,,_{ is
homeomorphic to the closed ball D"~! and therefore the map has a
fixed point.
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