Topology from the Differentiable Viewpoint

Exercise 1.

Show that there are smooth maps from the open ball

$$\{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1^2 + \dots + x_n^2 < 1 \}$$

to itself without any fixed points. Where does Hirsch's proof of the Brouwer Fixed Point Theorem fail?

Exercise 2.

Use the Intermediate Value Theorem to prove the Brouwer Fixed Point Theorem for continuous maps from the closed interval [-1, 1] to itself.

Exercise 3.

Let A be a real $n \times n$ matrix with only non-negative entries. Show that A has a real non-negative eigenvalue $\lambda \ge 0$, i.e. there is a non-zero vector $x \in \mathbb{R}^n$ with $Ax = \lambda x$.

HINT. You may assume that 0 is not an eigenvalue of A, i.e. A is invertible. Then, consider the standard simplex

$$\Delta_{n-1} = \{ x \in \mathbb{R}^n \mid x_i \ge 0, \ |x| = x_1 + \dots + x_n = 1 \}$$

and the map $\Delta_{n-1} \to \Delta_{n-1}$, $x \mapsto Ax/|Ax|$. Conclude that Δ_{n-1} is homeomorphic to the closed ball D^{n-1} and therefore the map has a fixed point.

Milnor: Topology from the Differentiable Viewpoint §1.§2 用語集

境界.
可換な.
補集合.補空間. orthogonal — 直交補空間
定数 (の)
連続な.
座標.
臨界の. — point 臨界点 — value 臨界値
稠密な.
微分. partial — 偏微分
微分同相.
次元.
ユークリッド空間.
不動点.
斉次の.
同相. 位相同型.
超平面.
像.
内包.
多様体.
写像. 関数. identity — 恒等写像 inclusion — 包含写像
linear — 線形写像
測度. Lebesgue — ルベーグ測度
近傍.
法ベクトル.
開集合
多項式. complex — 複素多項式
正則な. — point 正則点 — value 正則値
特異な.
なめらかな.
接空間.
接ベクトル.
位相幾何.トポロジー. differential — 微分位相幾何