
On Cramer’s Paradox

Exercise 1.

Show that r ≤ 8 points in the plane fail to implose independent condi-
tions on cubics, if and only if one of the following conditions is fulfilled

(i) r ≥ 5 and 5 of the r points lie on a line.
(ii) r = 8 and all of the 8 points lie on a conic.

Hint. First show directly that r ≤ 4 points always impose independent
conditions on cubics. Then consider the cases r = 5, 6, 7, 8 one after
another. At each step, one has to construct a cubic passing through
exactly r− 1 of the r points. As long as r ≤ 7 only unions of lines have
to be considered, but for r = 8 one has to use the fact that for any 5
points one can find a conic passing through them.

Exercise 2.

Prove Pascal’s Theorem (see the picture below): Let P1, . . . , P6 be six
points on a conic. Then, the three intersection points P7 = P1P2∩P4P5,
P8 = P2P3 ∩ P5P6 and P9 = P3P4 ∩ P6P1 lie on a line.

Hint. Let C1 = P1P2 ∪ P5P6 ∪ P3P4 and C2 = P4P5 ∪ P2P3 ∪ P6P1.
Note that C1 ∩ C2 = {P1, . . . , P9} and use Exercise 1 to show that the
8 points P1, . . . , P8 impose independent conditions on cubics. Now, the
union of the conic with the line P7P8 is another cubic passing through
those 8 points P1, . . . , P8. Finally conclude that P9 must lie on P7P8.
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Remark. Pascal’s Theorem was discovered by Blaise Pascal (1623–1662)
at the age of 16. His proof is unfortunately unknown. The proof from
Exercise 2 is due to Michel Chasles (1793–1880) published in his book
in 1837.


