
The Basel Problem and the Riemann Hypothesis

Exercise 1 (easy). In his paper [E020], Euler proved the remarkable identitiy
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He knew that the square of the natural logarithm of 2 is approximately 0.480453. The
sum on the right hand side of his identity converges much faster than the left had side
and he tells us that this sum is approximately 1.164481, so that the left hand side is
approximately 1.644934. But he doesn’t tell us how exactly he computed this sum.
Calculate the first few terms of this sum,
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until you reach to the approximate value 1.164481 (you may use a calculator or a
computer for this). How many terms Euler computed at least (by hand!)?

Exercise 2 (not so easy). When Euler wrote his paper [E041], the Taylor series of
the sine was already well-known,
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He somehow derived in a mysteries way another formula for the sine, its product
expansion
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which turns out to be correct. Now, by comparing the coefficients of the term x3 in
those two expansions, Euler obtained the solution to the Basel Problem as
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In fact, he derived many more interesting formulas in this paper. One of them is
obtained by comparing the coefficients of the term x5 in the two expansions of the
sine, which gives the precise value of the sum
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Following Euler’s path, can you compute this sum too?
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