
Preorder-Constrained Simulation1

Koko Muroya £2

RIMS, Kyoto University, Japan3

Takahiro Sanada £4

RIMS, Kyoto University, Japan5

Natsuki Urabe £6

National Institute of Informatics, Japan7

Abstract8

We describe our ongoing work on generalizing some quantitatively constrained notions of weak9

simulation up-to that are recently introduced for deterministic systems modeling program execution.10

We present and discuss a new notion dubbed preorder-constrained simulation that allows comparison11

between words using a preorder, instead of equality.12

2012 ACM Subject Classification Theory of computation → Verification by model checking13

Keywords and phrases simulation, weak simulation, up-to technique, language inclusion, preorder14

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2315

Category Early ideas abstract16

Funding The first and second authors are supported by JST, ACT-X Grant No. JPMJAX190U,17

Japan. The third author is supported by JST ERATO HASUO Metamathematics for Systems18

Design Project (No. JPMJER1603).19

Simulation Notions with Bounded Number of Steps In the literature of program semantics,20

coinductive techniques have often been used to establish equivalence between program21

behaviors. A recent approach utilizes weak simulations with quantitative constraints on22

the length of terminating runs. These constraints enable comparison of execution cost for23

programs, in terms of the number of execution steps it takes for a program to terminate.24

One example is Accattoli et al.’s notion called improvement [1]. It was used to show that25

certain rewriting of a program before execution not only preserves the execution result, but26

also improves the execution cost by requiring less execution steps. Another example was used27

in the first author’s previous work [8]. It is dubbed (Q, Q1, Q2)-simulation, parameterized28

by a triple (Q, Q1, Q2) of preorders on natural numbers. This notion incorporates the so-29

called up-to technique, and the triple plays a crucial role to make the combination of weak30

simulations and the up-to technique work. The first preorder Q is used to compare lengths31

of accepted runs, generalizing the “greater-than-or-equal” preorder ≥ used by improvements.32

These two notions are both designed for unlabeled deterministic transition systems,33

which can model execution of deterministic programs only. We aim to pursue the idea of34

constraining terminating, or accepted, runs, in a more general setting. This abstract describes35

our ongoing work on generalizing (Q, Q1, Q2)-simulations to nondeterministic automata. We36

present a novel notion of preorder-constrained simulation that is a weak simulation up-to37

constrained by preorders on words, not on natural numbers. It entails a generalized notion38

of language inclusion that compares words using a preorder instead of equality.39

Preorder-Constrained Simulation Let Ak = (Xk, Σ,⇝k⊆ Xk × Σ × Xk, Fk ⊆ Xk) (k ∈40

{1, 2}) be nondeterministic automata, x ∈ X1 and y ∈ X2, and L∗
A1

(x), L∗
A2

(y) ⊆ Σ∗ be the41

set of words accepted from x and y respectively. The ordinary simulation notion [7] proves42

language inclusion L∗
A1

(x) ⊆ L∗
A2

(y). Instead, for a preorder Q ⊆ Σ∗ × Σ∗, we write x ⪯Q y43

when ∀w ∈ L∗
A1

(x). ∃w′ ∈ L∗
A2

(y). wQw′. Our simulation notion proves this.44

© Koko Muroya, Takahiro Sanada and Natsuki Urabe;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kmuroya@kurims.kyoto-u.ac.jp
mailto:tsanada@kurims.kyoto-u.ac.jp
mailto:urabenatsuki@nii.ac.jp
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Preorder-Constrained Simulation

Here are examples: when Q is the equality, x ⪯Q y iff L∗
A1

(x) ⊆ L∗
A2

(y). When Σ contains45

a special letter τ , and wQw′ means that w and w′ are the same except for τ , then x ⪯Q y iff46

language inclusion ignoring τ holds. When wQw′ means that w is a subword of w′, x ⪯Q y47

iff for each w ∈ L∗
A1

(x) there exists w′ ∈ L∗
A2

(y) such that w is a subword of w′.48

x

R

w∗// x′′
⪯Q1•
R

•
⪯Q2

y w′∗// y′′

▶ Def. 1. Let Q, Q1, Q2 ⊆ Σ∗ × Σ∗ be preorders. We call R ⊆ X1 × X2 a49

(Q, Q1, Q2)-simulation from A1 to A2 if, for any (x, y) ∈ R, the following holds.50

Final: x ∈ F1 implies y
w
⇝∗

2 y′ for some y′ ∈ F2 and w ∈ Σ∗ such that εQw.51

Step: In the following game played on X1 × Σ∗ by Challenger and Simulator,52

Simulator is winning from a state (x, ε). In each round, a pebble on53

(x′, w) ∈ X1 × Σ∗ is moved as follows.54

1. Challenger chooses a ∈ Σ and x′′ ∈ X1 such that x′ a
⇝1 x′′, and let w := wa.55

2. Simulator chooses either of the following: i) choose y′′ ∈ X2 and w′ ∈ Σ∗ such that56

y w′
⇝∗

2 y′′, wQw′ and x′′ ⪯Q1 R ⪯Q2 y′′, and end the game; or ii) skip his turn.57

Simulator wins the game if (i) is chosen on his turn.58

▶ Prop. 2. If the following conditions are satisfied, xRy implies x ⪯Q y: i) w1Qw′
1 and59

w′
2Qw′

2 imply w1w2Qw′
1w′

2; ii) Q1QQ2 ⊆ Q; and iii) wQ1w′ implies |w| ≥ |w′|. ◀60

It is known that a naïve combination of weak simulations and up-to techniques leads to61

unsoundness, and require special cares [9, 10]. In Prop. 2, it is dealt with by Cond.(iii).62

Related Work The above notion is similar to buffered simulation [3], which was developed63

to enable more relations to witness language inclusion. Buffered simulations allow Simulator64

to skip his turn, to buffer Challenger’s moves and to simulate them later together, which has65

a similar flavor to our simulation notion. Hence our simulation notion can be also thought of66

as a generalization of buffered simulation.67

Preorder-constrained simulations allow a quantitative reasoning such as comparing lengths68

of accepted runs. There exist quantitative simulation notions for comparing costs of weighted69

automata. Many of them are for probabilistic systems [6, 5, 4]. One simulation notion70

for automata weighted with costs was introduced as a matrix over real numbers [11]. A71

methodology for comparing infinite runs of weighted automata is also known [2]. In contrast72

to weighted automata, which are labeled with both letters and weights, our target is automata73

labeled with letters only. Quantities appear in the set of words, in our approach.74

Research Directions Our simulation notion focuses on finite languages. As is the case for75

the ordinary simulation notion, our notion may fail to prove inclusion of finite languages76

when there is no inclusion of infinite languages. We are looking into possible solutions.77

We suspect that Cond. (iii) of Prop. 2, whose analogues are also in existing notions of78

weak simulation up-to, is too strong. We think Q1 violating Cond. (iii) can be allowed finitely79

many times. However, at the same time, we should note that the relaxation makes the80

definition of simulations a global one, which can result in a more complicated algorithm for81

finding it. We should make sure that it does not ruin efficiency gained by up-to techniques.82

Our simulation notion works well with systems whose alphabet Σ carries an order. Such83

a system arises in the study of linear temporal logic (LTL). An LTL formula induces a Büchi84

automaton labeled with the powerset 2AP of atomic propositions [12]. The alphabet 2AP is85

ordered by the inclusion, which induces a preorder on (2AP)∗.86

We are also interested in a categorical study of our simulation notion. One possible87

strategy would be to use the category PreOrd of preordered sets as the base category. The88

nondeterministic branching would be then captured by the powerset functor (or possibly a89

monad) P lifted to PreOrd. The categorical generalization might allow us to transfer our90

simulation notion to systems with other branching types, e.g. probabilistic one.91

K. Muroya, T. Sanada and N. Urabe 23:3

References92

1 Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. The machinery of interaction. In93

PPDP 2020, pages 4:1–4:15. ACM, 2020.94

2 Suguman Bansal, Swarat Chaudhuri, and Moshe Y. Vardi. Comparator automata in quant-95

itative verification. In FoSSaCS 2018, volume 10803 of Lecture Notes in Computer Science,96

pages 420–437. Springer, 2018.97

3 Milka Hutagalung, Martin Lange, and Étienne Lozes. Buffered simulation games for büchi98

automata. In Zoltán Ésik and Zoltán Fülöp, editors, AFL 2014, volume 151 of EPTCS, pages99

286–300, 2014.100

4 Bart Jacobs and Jesse Hughes. Simulations in coalgebra. Electronic Notes in Theoretical101

Computer Science, 82(1):128–149, 2003.102

5 Bengt Jonsson and Kim Guldstrand Larsen. Specification and refinement of probabilistic103

processes. In LICS 1991, pages 266–277. IEEE Computer Society, 1991.104

6 Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing. Information and105

Computation, 94(1):1–28, 1991.106

7 Nancy A. Lynch and Frits W. Vaandrager. Forward and backward simulations – Part I:107

Untimed systems. Technical report, NLD, 1993.108

8 Koko Muroya. Hypernet Semantics of Programming Languages. PhD thesis, University of109

Birmingham, 2020.110

9 Damien Pous. Up-to techniques for weak bisimulation. In Luís Caires, Giuseppe F. Italiano,111

Luís Monteiro, Catuscia Palamidessi, and Moti Yung, editors, ICALP 2005, volume 3580 of112

Lecture Notes in Computer Science, pages 730–741. Springer, 2005.113

10 Damien Pous. New up-to techniques for weak bisimulation. Theoretical Computer Science,114

380(1):164–180, 2007. Automata, Languages and Programming.115

11 Natsuki Urabe and Ichiro Hasuo. Generic forward and backward simulations III: quantitative116

simulations by matrices. In CONCUR 2014, volume 8704 of Lecture Notes in Computer117

Science, pages 451–466. Springer, 2014.118

12 Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Information and119

Computation, 115(1):1–37, 1994.120

CVIT 2016

