RESUMPTION-BASED CATEGORICAL GEOMETRY OF
INTERACTION FOR EFFECTS
OO00000000Resumption OO OO
00O 0O Geometry of Interaction

by

Koko Muroya
O0o0oo

A Senior Thesis
gogg

Submitted to
the Department of Information Science
the Faculty of Science, the University of Tokyo
on February 4, 2014
in Partial Fulfillment of the Requirements

for the Degree of Bachelor of Science

Thesis Supervisor: Ichiro Hasuo [0 0O O [

Lecturer of Information Science

ABSTRACT

Girard’s Geometry of Interaction (Gol) gives a model of linear logic and is applied to
give semantics of programming languages. In this paper the base steps of an approach to
obtain resumption-based Gol interpretation of effects, namely resumption-based categor-
ical Gol, are described. In our approach, categorical Gol — a categorical axiomatization
of Gol introduced by Abramsky, Haghverdi and Scott — are used. The usage of resump-
tions for categorical Gol is also pointed out by them. Since resumptions are constructed
by a kind of state machine called transducer, we give the concrete constructions of trans-
ducers that are used in categorical Gol. We also give the construction that represent
algebraic operations. The ability of algebraic operations to represent effects is studied
by Power and Plotkin. Linear combinatory algebras are also studied in this paper. It is
described by Simpson that linear combinatory algebras can represent a kind of A-calculus
named linear A-calculus. We defined a model of linear A-calculus and proved the linear
version of the Meyer-Scott theorem: it was found that linear combinatory algebras need
extra combinators to form a model of linear A-calculus.

oood

Girard 0 0 O Geometry of Interaction(Gol) 00 000000000000 O00OOOO
0000000000000 00000000O00000O000DODD00000000 Gol
0000ooooodOresumption0 000000000 0OOOOOODODOO0OOOOOO
000000000000 DO00O0 categorical Gol O 0 0O 0O O O Abramsky, Haghverdi,
Scott 00 DODOODOODO GolOOODOOODOUODODOOOOOUODDO GolOODO
Resumption 00 000000000000 OResumption O transducer 0000000
OO0000O0OOoO0ooOOoDDOoODODDDOOOO categorical Gol OO OO OO transducer O
00000000oOoOogon algebraicoperation 0 000000000 OO OO OAlgebraic
operation 0 0000000000 OOO Plotkin,Power 10000000 O0O0DOODOOO
0000000000000 0000Db0000o00Smpson 0000000 OOOOO
goo0obOoobOO0bOoooOdbOoooO0obOoobOobOoooOOobOooogbooooo
0000000000000 0000O0Meyer-Scott 000000000 0OOOOOOO
0000000000000 oDooooooooooDooooooooooooogon
goooooooooooo

Acknowledgements

I am deeply grateful to my supervisor Ichiro Hasuo for helpful advice. I thank
Naohiko Hoshino for motivating this study. I appreciate useful discussions with
the members of Hasuo Laboratory.

Contents

1 Introduction

2 Resumption-Based Categorical Gol

2.1 Categorical Gol
2.2 MonadsonSet e
2.3 Algebraic Operations
2.4 Transducers e

2.5 Behavioral Equivalence and Resumptions

2.6 Resumption-Based Categorical Gol for Effects

3 Model of Linear A-Calculus

3.1 Linear A-Model
3.2 Linear Combinatory Algebra and Linear A-Calculus

4 Conclusions and Future Work

References

iv

13
15
18
21

25
25
32

36

37

Chapter 1

Introduction

Girard introduced Geometry of Interaction (Gol) in [3] that gives semantics of
proofs of linear logic. Gol is applied to give semantics of programming languages
in various ways. Mackie gave semantics of PCF as token machines in [11]. In
[2] followed by several papers, Ghica gave game-theoretic semantics of functional
languages by translating programs into logical circuits. These results led to im-
plementations such that compilers. This is one of the advantages of using Gol:
semantics given by using Gol inherits the feature of Gol and enables us to observe
dynamics of computations. Hasuo and Hoshino adopted another approach in [5]:
they used a categorical axiomatization of Gol called categorical Gol together
with the realizability technique.

Categorical Gol is given by Abramsky, Haghverdi and Scott [1]. From a
category equipped with certain structures, called Gol situation, it extracts a
linear combinatory algebra that is a combinatory algebra equipped with the !
modality. The realizability technique is introduced by Kleene in [9]. By the
realizability technique, a category that gives a model of typed A-calculus can be
obtained from a linear combinatory algebra. This category gives game-theoretic
interpretation of A-calculus called Gol interpretation: the application of a term
over another is interpreted as interactions of these terms.

The Gol interpretation of a term is represented by an arrow in the source
category C of categorical Gol: in particular it is represented by a function if a
category of sets and functions is used as C. This leads to an idea that models
of A-calculus with effects — for example nondeterminism and probability — can
be obtained by embedding the effect into arrows in C. This idea indeed works:
Hasuo and Hoshino [5] showed that some Kleisli categories can be the source
of categorical Gol and extracted a model of quantum computation. Following
Moggi [12], they modeled effects by monads and embedded effects into Kleisli
arrows.

However, it is found that the construction is not so straightforward as ex-
pected. Consider the call-by-value evaluation of the following A-term

Ar.z+2x)(1U2)

where the subterm 10U 2 returns 1 or 2 nondeterministically. Though we expect
that this term returns 2 or 4, the Gol interpretation of this term can return 3 as
the result of the following sequence of queries and answers.

1. The term Az.z + x asks the value of z that occurs in left.
2. The term 1 U 2 returns a value 1.

3. The term Az.x + x asks the value of x that occurs in right.

4. The term 1 LI 2 returns a value 2.
5. The term Ax.x + x adds 2 to 1 and returns a value 3.

In the call-by-value evaluation we expect that after the term 1 LI 2 chooses its
value it follows its choice permanently. In fact this problem is not due to the
evaluation strategy: consider the following term

(hUk)y .

The term A LI k is also needed to follow its choice, otherwise the answer of y to
the request from h can be received by k. Indeed there is a case that the expected
equation

(hUk)y =hyUky
does not hold: the Gol interpretation of the term

(AL F O LA (f 1)+ 1)) (A z)

can return an unexpected value 1 as well as expected values 0 and 2. The problem
here is that the term M LI N cannot remember its choice. To interpret effects, it
seems that Gol interpretations need to be equipped with “memories”.

In [5], the lack of “memories” was dealt with by using the continuation monad
on the category that is obtained by the realizability technique. There is another
approach to deal with this problem: to embed “memories” as well as effects into
arrows in the source category C. One way to embed “memories” and effects into
arrows is to use resumptions. Roughly speaking a resumption is a state machine:
given an input, it decides outputs and also the next state according to its cur-
rent internal state. This decision is affected by the embedded effect. Precisely a
resumption is an equivalence class of transducers modulo an appropriate equiva-
lence relation. “Memories” are embedded into resumptions as internal states and
an effect is embedded into resumptions by a monad following Moggi [12].

Our motivation is to obtain a Gol interpretation of effects. The expected
workflow based on resumptions is as below.

\

a Gol situation based on resumptions an algebraic operation o

a monad T'

categorical Gol

a linear combinatory algebra with an operation o
realizability

a cartesian closed categozy with certain properties

denotational semantics

Gol interpretation of effects

In Chapter 2 we study the first two step of this workflow: we use a monad 7" and
an algebraic operation « to extract a linear combinatory algebra with operator @.
We call this procedure resumption-based categorical Gol. In fact it is described
in [1] that a category of resumptions can be the source category of categorical

Gol. We give a Gol situation based on resumptions by constructing concrete
transducers.

The idea to use an algebraic operation follows Plotkin and Power [14, 13].
They showed in [14] that algebraic operations give adequate semantics for alge-
braic effects. We expect that this result will help us to obtain Gol interpretation
of effects. In resumption-based categorical Gol we use an algebraic operation
« and define an operator @ that constructs concrete transducer. We find that
this operator enables a linear combinatory algebra to represent some interfaces
to effects.

Additionally in Chapter 3 we study linear combinatory algebras. It is de-
scribed by Simpson [16] that linear combinatory algebras can represent a kind
of A-calculus by its property called linear combinatory completeness. This A-
calculus is called linear A-calculus. It inherits the ! modality of linear logic and
explicitly tracks copying of data in computation. We define a model of untyped
linear A-calculus named linear A-model and prove that linear combinatory al-
gebras need extra power to form a linear A-model. This result is the linear
counterpart of the Meyer-Scott theorem.

The results in Chapter 2 forms part of the paper [7].

Chapter 2

Resumption-Based Categorical (ol

2.1 Categorical Gol

In this section we describe the source and outcome of categorical Gol. What play
an important role in categorical Gol are the symmetric monoidal structure of a
category and a trace. The description of the symmetric monoidal structure is in
[10]. The following axiomatization of a trace is from [4].

Definition 2.1.1 (trace). A trace on a symmetric monoidal category (C, I, ®) is
a family of functions {trfiB: C(A® X,B® X) — C(A, B)} x,4,Bcc that satisfies
the following conditions:

e tightening (naturality): tr§,7B,((k ®idx)o fo(h®idx)) =k otriB(f) oh
forall f: A X - B®X,h: A~ Aand k: B— B’

e sliding (dinaturality): trX’B(f o(ida ®g)) = trfiB((idB ® g) o f) for all
fiA®X > B®Y andg: Y - X

e vanishing: trI{LB(f) = f and tr5% (g) = tri‘(,B(trXQ@X?B@X(g)) for all
fiA=>Bandg: A X®Y - BXQY

® superposing: trég@A,C@B(idC@f) = idc®tr§7B(f) forall f: AQX - BX

e yanking: tr?x (ex,x) =1idx where cy z: Y ® Z — Z ® Y is the symmetry
in C.

The trace tri{ (f) can be seen as the “iteration” of f: given an input in A, f is
applied repeatedly until an output in B is obtained. A traced symmetric monoidal
category is a symmetric monoidal category that has a trace. When a category
(C,1,®) is a traced symmetric monoidal category, a symmetric monoidal functor
F: C — C is traced if it satisfies the following equation

trgfél(,FB(mE’,lX oFfomax)= F(trif’B(f))

forall f: A® X - B® X where my p: FA® FB — F(A® B) is the coherence
isomorphism of F.

We use string diagrams to represent arrows in a traced symmetric monoidal
category (C,I,®). An arrow f: X — Y in C is represented by a box with inputs
and outputs. The box, inputs and outputs are labeled by f, X and Y respectively.
The symmetric monoidal structure is expressed by parallel alignment and traces
are expressed by “feedback”. Figure 2.1 shows examples of string diagrams: the
first oneisof f: X®Z - Y ® Z, thesecond oneisof g h: X®Z - Y QW
and the third one is of tr)ZQY(f): X =Y.

A
A
R
A naturality dinaturality 24 *
f A =) f
B Y
X
By
A
A I A+ A* X
. | vanishing Y vanishing
f A = f 9 =
|
B+) B
+ B* BY
X

Q

b

| =
~

=T
o

[

~

superposing yanking
= Y = XY

/

Q
@
©
_ %
b
e

Figure 2.2: trace axioms in C

The axioms of trace in Definition 2.1.1 are expressed by string diagrams in
Figure 2.2.
On a traced symmetric monoidal category, we can construct a Gol situation.

Definition 2.1.2 (retraction). A retraction f: X <Y : g in a category C is a
pair of arrows f: X — Y and ¢g: Y — X in C that satisfies

gof=1idx .
If f o g =idy also holds then we write f: X 2 Y : g.

Definition 2.1.3 (Gol situation). A Gol situation is a triple (C,U, F') that
satisfies the following properties.

e The triple consists of a traced symmetric monoidal category (C,I,®), an
object U in C and a traced symmetric monoidal functor F': C — C.

e There exist retractions:
p:UU<U: vy u: FU<U:v n:I<aU:n
ea: A< FA: €y dy: FFA<QFA:dy
cA: FAQFA<FA: ¢y wa:I<FA:w)
such that e, d, ¢ and w are monoidal natural transformations.

From a Gol situation, a linear combinatory algebra is extracted via categorical

Gol.

Definition 2.1.4 (linear combinatory algebra). A linear combinatory algebra is
a triple (D,-,!) that satisfies the following properties.

e The triple consists of a set D, a binary operation -: D x D — D (called
application) and a unary operation !: D — D.

e The set D has elements |, B, C, K, W, D, §, F (called combinators) that satisfy
the following equations for all a,b, ¢ in D:

la =a Babc = a(bc)
Cabc = ach Kely==x
Wzly=2xlyly Dlz==x
dlae=1lx Flaly =!(zy) .

The application - in linear combinatory algebras is regarded as left-associative.

Proposition 2.1.5 (categorical Gol [1]). Let (C,U, F) be a Gol situation. A
triple (C(U,U),-,!) forms a linear combinatory algebra where a binary operation
- and a unary operation ! are defined as

f-g::trgU((idU@g)oﬁjofoqﬁ)
'fi=uoF(f)owv .

Figure 2.3 shows string diagrams of arrows f - g and ! f. The application - is
represented by an interaction of the diagrams of f and g. The functor F' is used
to represent the ! modality.

2.2 Monads on Set

Let Set be a category of sets and functions. It is known that Set has finite
coproducts (0, +) and is a cartesian closed category i.e. a category with finite
products (1, x) and exponents =. Here 1 represents an singleton {x}. We de-
note the injections, codiagonal maps, swappings of products and distributions as
follows:

inlx y inrx y

X —5X+Y+———Y X+x 5 Xx
4
Xxy ZL vy xXx XxY+Xx2Z2228 X x(Y+2) .

=23

Let T: Set — Set to be a monad. Since monads on Set are strong, T has
the tensorial strengths. We denote the unit, multiplication and strengths of T" as
follows:

X X rx X 217X
s st’,
TX x Y 2% 7(X x Y) XxTY X T(X xY) .

Following [12], we use a monad 7" to model effects in computation.

PR S |

— e —— 1

Figure 2.3: operators of a linear combinatory algebra

Example 2.2.1. We give examples of T": Set — Set that models an effect.

e The list monad £LX = 1+ X that models choices between termination or
continuation of computation.

e The powerset monad PX = 2% that models nondeterministic choices of
computation.

o The subdistribution monad DX = {d: X — [0,1] | > cx d(z) < 1} that
models probabilistic choices of computation.

We write Setr for the Kleisli category of T'. Kleisli compositions are defined
as

gor f=uzoT(g)of: X -0 Z

for all f: X =7 Y and g: Y —7 Z in Setp. Kleisli compositions and Kleisli
arrows are denoted as or and —7 respectively, while compositions and arrows in
the base category Set are denoted as o and — respectively.

The constructor (—)* is defined as

ffi=nyof: X —>1rY

for all f: X — Y in Set. It lifts arrows in Set to those in Setr, preserving
identities and compositions. It also lifts coproducts by lifting coprojections. The
operation ® on Setr is defined as

gD :=stxpo(gxidp): X xD —=7pY xD
D®g:=stpyo(idpxg): DxX sy DxY

for all sets D and g: X —7 Y in Setp. It gives an premonoidal structure of Setr
[15]. For f: X —7 Y and g: Z —¢ W in Sety, if the equation

(feW)or (X©g) = @g)or (f© Z)

holds, then we write f ® g for (f @ W) op (X ® g). It is easy to show that the
constructor (—)* and the operator ® satisfies the following equations

ffeg =(xg)
[feoA=Feidy
A ff=id} @ f*

forall f: X - X" and g: Y — Y’ in Set and for all sets A.

Arrows in Sety can be seen as arrows in Set (i.e. functions) that are equipped
with effects. Later we use them and form a Gol situation. To ensure that a Gol
situation is formed, we require the following condition.

Requirement 2.2.2. In the whole paper, we require that T': Set — Set is a
monad and it makes the symmetric monoidal category (Setr, (), +) have restricted
uniform trace operator tr [4]: for all f: A+X —r B+X and g: A+Y —r B+Y
in Sety and h: X — Y in Set, if (idy + h*) o f = g or (id} + h*) then
X 5 (f) =) 5(9).

The following lemma shows the useful sufficient condition of Requirement 2.2.2.
All monads in Example 2.2.1 satisfies this condition. We give a detailed proof of
this lemma in the remainder of this section.

Lemma 2.2.3. If Setr is a Cppo-enriched cocartesian category and the bottom
maps {Lap: A =1 B} A Beset, satisfies the following equations

forlap=1lap
laporg =_1lap

for all f: B —7 B’ in Setp and g: A — A in Set, then T satisfies Require-
ment 2.2.2.

Proof. For all arrows h in Set, we write S for the collection of lifted arrows h*
in Setp. We want to show that Set; has a uniform trace operator for S.

The dual category of Sety, namely Set,”, is a Cppo-enriched cartesian cat-
egory since coproducts in one category are products in its dual category. As
the special case of the result in [4], on Sets;?, uniform Conway operators for S
and uniform trace operators for S coincide. In addition, it is easy to show that
uniform trace operators for S on Setr and those for S on Set,’ correspond.
Therefore the existence of a uniform trace operator for S on Setr is equivalent
to the existence of a uniform Conway operator for S on Set;’.

a uniform Conway operator for S on Set”

a uniform trace operator for S on Set7”

a uniform trace operator for S on Setr

Here we define an operator (—)' on Sety and show that the corresponding
operator of (—)' on Set}” is a uniform Conway operator for S.

First, we explain that (=)' can be defined by using the least fixpoint operator
fix on a cppo i.e. a pointed complete partial order. Details of the least fixpoint

operator on cppo’s and the fixpoint theorem are in [17]. For a map f: X —r
A+ X, a function Fy: Setr(X,A) — Setr(X, A) can be defined as

Fy(g) = [id},glor f: X =1 A

for all g: X —7 A. This function F is continuous for all f, i.e. Fy satisfies the
following properties.

e Foreach g,¢': X =1 A, if g C ¢’ then Fy(g) C Fy(¢') holds because of the
continuity of the composition oy and cotupling [—, —].

e For all w-chains gy E g1 E ... C g, C ..., its least upper bound is preserved
by Ff:

|| F(9n) = | |(lids, gu] o7 /)

n

= |_|[idf4, gn) or f (continuity of composition)

n

= [id%, U gn] or f (continuity of cotupling)

:Ff(|_|gn) :

Therefore we can take the least fixpoint of Iy by the fixpoint theorem and define
fT as

Second, we show that the operator (—)' on Setr gives rise to a uniform
Conway operator for S on Set;”. We overload the operator (—)' as below:

f: Ax X — X in Set}”
f: X = A+ X in Setr
ff: X = A in Sety
ffi A— X in Set?

for each map f: Ax X — X in Set ’. Obviously, the operator (=)' on Set " is a
uniform Conway operator for S if and only if the operator (—) on Setr satisfies
the following five conditions:

1. ((g—kid})on)T:gonT forall f: X -7 A+ X and g: A —p A’
2. fl=[id, fllor f forall f: X 5p A+ X

3. ([inly x,g] or f)T = [id}, ([inlyy, flor)T or f forall f: X —r A+Y
andg: Y - A+ X

4. ((id%4 + Vx)or)t = (fDHT forall f: X -7 A+ X + X, where Vx :=
[idy,id%]: X + X —7 X is the codiagonal map

5. forh*=(idy+h*)org forall f: X 57 A+ X andg:Y -7 A+Y in
Setr and h: Y — X in Set.

These conditions are the dual version of the definition of a uniform Conway
operator explained in [4]. We show how these five conditions hold in the following.

1. Forall f: X -7 A+ X and g: A —1 A’ the equation
F(?]—i—id})on(J—XA’) = gor Fy(Lx,a)
holds for all n € w. This can be proved by the induction on n:
e If n =0 then LX,A’ = goTr J—X,A-

e [f the equation holds for n then

+1
Flgtiagyors(-x.4)

= [id%, Fgpias yor s (Lx,a))] o (g +idX) or f
= [id}, g or Ff(Lxa)]or (9 +idx)or f (induction hypothesis)
=[g,90r Ff(Lxa)lor f
= gor [id}y, Ff(Lx.a)lor f
=gor F{*'(Lx.a) -
Therefore it holds that

((g + ldX) or f |_| Fg—l—ld*)on(—LX A')
= |_| gor Ff(Lx.))

=gor| |Ff(Lx.a)

—gor f .
2. Because fix is the least fixpoint operator, it holds that
f1 = fix(Fy)
= Fy(fix(FYy))
= [id}, fix(Fy)] or f
= [id%, fMor f .
forall f: X -7 A+ X.

3. Forall f: X - A+Y and g: Y =7 A+ X, we need to confirm the
following equation

ﬁX(F[inlf&X,g]on) = [idzv ﬁX(F[inlzyy,f]ng)] or f .

This equation can be confirmed by proving that [id%, fix(F] linl*, 4, florg)lor f
is the least fixpoint of Fjjn, | glogs- First, [idz,ﬁx(F[inlz Y,f]ng)] or fisa

fixpoint of Fliny, glor s

F[inl*A’X ,9lor f ([ldjb ﬁX(F[inlj‘L"Y,f ng)] or f)

- [idAv [ldA7 ﬁX([inl Y,f]OTg)] or f] or [lnlz,Xv g] or f

ldAa [ldAa [ldA7 ﬁX([mlz’y,f]ng)] oT f] °r g] or f
dAv [

1 1dA7 ﬁX 1n1f4 v f]ng)] or [inlz,Yv f] or g] or f

id%, F[mlA Y,f]ng(ﬁX([inl%y Y,f]ng))} or f

[
[i
[
[id%, fix(Flinr, |, florg)l o7 f -

10

Second, [id%, ﬁX(F[inl*Ayyjf]ng)]
if h: X =7 Ais a fixpoint of Flinys . glogs, then [id}, hl or g is a fixpoint of

as shown below

or [is less than any fixpoint of Fliny, . glop s

Flinr, florgs

,[id%, k] or gl or [inl}y v, flor g
id’y, [id’y, [id%, k] or gl or floT g
d’

Flint, florg([i[d, h] o7 g) = [idj
[
[id%, [id%y, h] or [lnlﬁx,x’ glor flor g
[
[

ldAa [inl} x, g]on(h)] °rg

idy,hlor g ,

therefore it holds that

(14, ix(Flinrs, o, florg)] o7 f E [idk, id}, k] o g] op f
= [id}, h] or [inly x, 9] or f
- [lnlA X,g]on(h)
=h .

- Forall f: X —p A+ X + X, by showing that F{iqs +vy)ops I8 & fixpoint of

Fix(ry) and vise versa, we can prove the equation

orf

x(Flia% 4V)orf) = BxX(Fhx(ry)) -

First, if h: X —7 A is a fixpoint of Flix(ry) then h is also a fixpoint of
F(id2+VX)OTf:

[id’y, h] o (idy + Vx) or f

[id%, hor Vx]or f

idy, [h, k)] o f

[id%, h], h] or f (associative law of +)
[1dAv hl, [id%, b] o7 fix(Fy)] or f

id%, h] op [idz,ﬁX(Ff)] or f

, h) or fix(Fy)

F(ldA+VX OTf()

[
[
[

[
h.

Second, if h: X —p A is a fixpoint of Fiqx 1vy)ops then h satisfies the
inequation

fix(F(ry)) |_| Fl L (ixarx (Lx04)
C h .
This can be confirmed by proving that the inequation
Y rp(ixan(txa) ER

holds for all n € w. This inequation is proved by induction on n:

o If n =0 then Lx 4 C h.

11

e Here we use g to represent F, I_I Pl A+X)<J_X A). Assume that the

inequation holds for n, namely g C II h. We want to confirm the follow-
ing inequation

n+1
F|_|j_n F(Lx, A+X)(J_X’A) = Iy, F}"(J-X,AJrX)(Q)

= [id%, gl or | |FF(Lx.a1x)

m

= | |(lid%, g o7 FP"(Lx.4+x))

m

= |_| FF}"(J_X,A+X)(9)

Ch.
This inequation can be proved by confirming that the inequation
[id%, gl or Ff'(Lx.atx) = Fpm(1y 4x)(9) E D

holds for all m € w. We prove this by induction on m:
— If m = 0 then [idz,g] or J—X,AJrX = J—X,A C h.
— If the target inequation holds for m, then it holds that

[id%, g or F"H (Lx ayx) = [idl, g] or [idiy, x, Ff*(Lxasx)] o7 f
[id%, gl, [id%, g o7 Ff"(Lx atx)] or f

[
[
[id4, g1, Frp (L aex) (@] o1 f
[id%
[
[

id%, (9, Frm Ly aix) (@) o f
id%, [k, h]] or f (induction hypotheses)
id%, hl op (idy + Vx) op f

= Flia*,+Vx)ors(P)

=h.
5. Forall f: X 57 A+ X and g: Y =27 A+ Y in Setyr and h: Y —7 X in

Set, we want to prove the equation

fix(F,) = fix(Fy) op b

M

with the assumption forh* = (id}j+h*)org. Here we show that fix(Fy)orh*
is the least fixpoint of Fy. First, fix(F¢) o h* is a fixpoint of Fy:
Fg(ﬁX(Ff) or h*) [ldA, ﬁX(Ff) or h] o g
= [id}y, fix(Fy)] op (idy + A7) or g
[id%, fix(Ff)] or f or h*
= Fy(fix(Fy)) or b*
= ﬁX(Ff) or h*

Second, fix(Fy) op h* is less than any fixpoint of Fy: if k: Y —p Ais a
fixpoint of F}, it holds that

fix(Fy) or h* =| | FF(Lx.) or h*
- |_|(FJ?(LX,A) or h*)

Ck.

12

This is the consequence of the inequation F;}(J_ x,4) o h* T k that holds
for all n € w. This can be proved by induction on n:

o If n=0then Lx g0orh* = LyaCk.
e If the inequation holds for n, it holds that

FP(Lxa) or h* = [idy, Ff(Lx)] o for h*

[ldA,Ff (J.XA)] or (ldA +h)OTg

[ldA,Ff (_LXA) o h]OTg
C [id%, k] or ¢ (induction hypothesis)
= Fy(k)
=k .

2.3 Algebraic Operations

In [14] Plotkin and Power gives adequate denotational semantics for algebraic
effects by using algebraic operations. Following this result, we utilize algebraic
operations in this paper with the hope that these enable resumptions to represent
algebraic effects. In this section we study algebraic operations.

First we recall the definition of algebraic operations in [13].

Definition 2.3.1 (algebraic operation [13]). Let (C,1,x,=-) be a cartesian
closed category with countable products [| and M: C — C be a strong monad.
For a countable set I, an I-ary algebraic operation on M is a family of arrows in

C
{aap: (A= MB) — (A= MB)}apecc

that is natural: for each A, A’, B and B’ in C, the following diagram commutes

(B= MB') x (A= MB)! x (A’;»A)\

(B= MB')x (A= MB) x (A" = A))!
(B=>MB')xas px(A'=A) lcpj
(A= MB")!

laA/‘B/

A= MB’

(B= MB')x (A= MB) x (A= A)

where the arrow A is diagonal for the first and third arguments and cp is de-
fined as the bijective correspondent of the arrow cp in the following commutative
diagram.

(B= MB') x (A= MB) x (A’ = A) x A’ L MB’
idXevl TM
(B= MB')x (A= MB) x A M2B’

id Xevl TM(eV)

(B= MB')x MB M((B = MB') x B)

13

The arrow cp can be seen as the Kleisli compositions. Since there is an isomor-
phism between an exponent object A = M B in Set and a homset Set (A, B), if
C is Set then the naturality of algebraic operations can be also written as below:

aa p{kon fiom b Vier = konr aa g{fi}icr om h*

for all h: A’ — A in Set, k: B —); B’ in Sety; and {f;: A = B}icsr in Set)yy.
We denote the projections in C by

j
H X]' — Xj
jeJ
for a countable set J. Obviously these projections 7; are J-ary algebraic opera-

tions on all strong monads M on C. We give an example of algebraic operations
on T', namely that on P in Example 2.2.1.

Example 2.3.2. For all arrows f and ¢ in Setp, we define a family of maps
{@A,33 SetT(A, B)Q — SetT(A, B)}A,BGSet as

(f@g)(x) = f(z)Ug(z) .

This is a 2-ary algebraic operation on P. Its naturality can be confirmed as below:
for all ' in A, h: A" — A in Set, k: B —p B’ in Setp and {f;: A —p B}ics in
Setp, it holds that

((kop fiop ") @ p (kop foop h¥))(d)

= (kop fiop h*)(a") U (k op faop h*)(d)

= (kop f1)(h(d")) U (k op f2)(h(d"))

{k(b) | be fi(h(@)}U{k(d) | be fao(h(d))}
{k(b) | b€ (fi(h(a) U fa(h(a')))}

{k(d) | be (f1Dap f2)(h(a))}

= (kop (f1 ®ap f2))(h(a"))

= (kop (f1 Da,p f2) op h*)(d') .

A category of algebraic operations on M can be defined as below.
e Objects are countable sets.

e An arrow from I to J is a family of arrows {aa p: (A = MB)! — (A =
MB)”} 4 ec in C such that 7, o « is an algebraic operation on M for all
jin J.

The identity arrow of I is {id(a=p): (A= MB)! — (A= MB)'} 4 pec.

The composition of arrows {aap: (A = MB) — (A = MB)I,}ABG(C
from I to I’ and {Bap: (A = MB)' — (A= MB)’} 4 pec from I' to J
is {Bapoaap: (A= MB) — (A= MB)’}4 pec from I to J.

It is straightforward to confirm that the compositions indeed give algebraic op-
erations because the projections 7; are algebraic operations on M. We write
AlgOp,, for this category.

14

The category AlgOp;, has countable products given by the countable disjoint
union Lﬂje ;1 of countable sets. This can be shown by the following bijective
correspondences.

{(A= MB) - (A= MB)li}c,;

fi,
{(A= MB)I 2% (A= MB)}jesker,

13,
{(A= MB)I RN (A= MB)}(j»k)GL*JjeJIJ’

(A= MB)! - (A= MB)Yics i

Due to this property, new algebraic operations can be constructed of existing
ones: for example, (z @ y) @ z constructed of & in Example 2.3.2 is a 3-ary
algebraic operation on P. The category AlgOp,, is indeed a Lawvere theory
of algebraic operations (see e.g. [8]): it represents algebraic operations as arrows
and the equational theory of algebraic operations as commutative diagrams.

2.4 Transducers

We embed “memories” as well as effects into arrows in Set (i.e. functions) and
obtain T'-transducers.

Definition 2.4.1 (T-transducer). For sets A and B, a T'-transducer from A to
B is a triple (X, ¢, x) consisting of a set X, an arrow ¢: X x A —p T'(X x B) in
Setr and an arrow x: 1 — X in Set.

T-transducers (X, c¢,z) from A to B are machines that have inputs A, outputs
B and internal states X. The arrow x indicates the initial state and the arrow
¢ is the transition function: given an input and the current state it decides the
output(s) and the next state(s). This decision is affected by the effect that is
represented by T'. We write (X, ¢,z): A — B for T-transducers from A to B.

T-transducers (1,¢,id;): A — B with one internal state behave as functions
from A to B and can be seen as “memoryless” transducers. Two constructors J
and Jy that lifts functions to T-transducers can be defined as

Jf:=(1,f,id1): A— B for all f: A —¢ B in Setr
Jog:=Jg* = (1,¢%,id1): A— B for all g: A — B in Set.

In the remainder of this section, we introduce some notions on 7-transducers.
Here we use quotation marks (“”) to represent each notion because in fact these
notions do not always satisfy corresponding axiomatizations. The main reason
for this problem is that T-transducers of the same behavior, i.e. T-transducers
that return the same output(s) to the same input, are sometimes distinguished
due to their unequal state spaces. To fix this problem and form a Gol situation
based on T-transducers, we introduce an appropriate equivalence relation called
behavioral equivalence in the next section.

The “composition” of two T-transducers (X,c,z): A — B and (Y,d,y): B —
C is defined as

(Y,d,y)o (X,c,z) :=(X xY,e,z xy): A—C
where e: X XY x A =7 X xY x C is defined as

e:=(X®d)or (X®opy)or (c®Y)or (X ®oy,) -

15

One transition of this “composition” is internally two sequential transitions: the
first transition is according to ¢ and the second one is according to d.
For each set A we define the “identity” of A as

Jna = (1,m4,id1): A - A .

This “identity” is an example of the notion that does not satisfy the corresponding
axiomatizations: the “identity” is not actually neutral for “composition” because
T-transducers with unequal state spaces are distinguished. The “composition”
of a T-transducer with state space X and the “identity” of A has the state space
X x1or1lx X that is isomorphic but unequal to the original state space X.

For two T-transducers (X, ¢, x): A — B and (Y,d,y): C — D, the “monoidal
product” is defined as

(X,c,x)B(Y,d,y) = (X xY,e,x xy): A+ C —- B+ D

where e: X XY x (A+C) =7 X XY x (B+ D) is defined as the unique arrow
such that

eor (X ®@Y ®@inl}y o) = (oy x ®inlp p) or (Y ®@c) or (o y ® A)
eor (X @Y ®inry o) = (X @Y ®@inrg p) or (X ®@d) .

The “unit” of the “monoidal product” is defined as the unique T-transducer
JT/@ = (1,77(Z)aid1): 0—0.

The “monoidal product” of T-transducers has two parallel T-transducers inter-
nally. Each time when an input comes, it chooses which T-transducer to run
according to the input.

The “trace” of a T-transducer (X,c,x): A+ C — B+ C is defined as below
by using the trace operator tr on Setp:

TT%,B(X, c,x):=(X,e,x): A— B

where e: X x A -7 X x B is defined as

XxC -1
e:=trya xxp((0xpc)” orcordyac) -

We expect this “trace” to be a trace in Definition 2.1.1 with respect to the
“symmetric monoidal structure” (H, Q).

Let N be the set of natural numbers. For each n in N, set X and f: A - B
in Set, we define the following three arrows in Set:

Kn:1l—N
* = n
wnx: XN = XN x
(0, 1,y Ty o) = (X0, X1y ooy T, Ty - - -)5 Tny)
N AN 5 BN
(ag,a1,...) = (f(ao), f(ar),...) .

The first arrow is the constant function that returns n. The second one extracts
the n-th object from a list. The last one applies f to each object in a list.

16

We define an operator F' on both sets and T-transducers. For each set A, the
set F'A is defined as

FA:=NxA .

For each T-transducer (X, c,z): A — B, the T-transducer F'(X,c,z): FA — FB
is defined as

F(X,c,z) = (XN e, 2N
where e: XN x FA —7 XN x FB is defined as the unique arrow such that
e o (XN Rk Q@A) = ((w:;X)*l ® Ky @ B) op (XN ®c)or (wp x ® A)

holds for all n in N. The operator F' on T-transducers makes the countable infinite
copies of the given T-transducer (X, ¢, x). These copies runs independently: each
input to the T-transducer F'(X, ¢, x) is read by one corresponding T-transducer
(X, c,z) and an output is made by this T-transducer (X, ¢, x).

Let ¢ : N+ N=N:% and u: FN 2 N : v be bijections in Set. We choose
pairs of T-transducers that expected to be “retractions”:

Jop : N+ N=N: Jy
Jou: FN 2N : Jyv
Joln : 0 AN J(tN4(35))

Jo(k1 x A): AQFA: Jo(Tn x A) (dereliction)
Jo(ux A): FFA= FA: Jy(v x A) (digging)
JoLlrpa:0<FA: J(trgﬁ’@ (VFa)) (weakening)
Jo(px A): FA+ FA=FA: Jy(¢p x A) (contraction)

where L x: () — X is the unique arrow from the initial object) and Tx: X — 1
is the unique arrow to the final object 1 in Set. We expect that the operator
F and these “retraction” forms a “Gol situation”. These “retractions” are used
to construct T-transducers of existing ones: for a T-transducer (X,c,z): A — A
and a retraction (Y,d,y) : A’<A: (Y, d',y), a T-transducer (X', ¢/, 2’): A" — A’
is constructed as

(X,7 CI’ '1:/) = (Y,’ dl’ y/) © (X7 c? m) ° (Y7 d? y) °

Figure 2.4 illustrates the constructions induced by “retractions”. Given a branch
of T-transducers, dereliction merges all T-transducers in the branch into one, dig-
ging sorts T-transducers and makes countably infinite branches, weakening dis-
cards the branch completely and contraction divides the branch into two branches.

We define a constructor (—) that makes an operator on T-transducers from an
algebraic operation on 7T'. For an I-ary algebraic operation o on T and a family

of T-transducers {(Xj;,¢;,z;): A — B}icr, an operator @ is defined as

aap{(Xi,ci,v) Yier = (1+ [[X, d, inlyp)
iel

where d: (1 + [[;c; Xi) x A =1 (14 [];c; Xi) x B is the unique arrow such that
dorintiy) _ x, = aaslEher

dop ((inriuiel x, or inj;) ® A) = ((inriuia x, or inj;) ® B) or ¢; .

17

derehctlon W cakcmng

ﬁ dig glng ﬁ ﬁ contractlon

Figure 2.4: constructions induced by “retractions”

0

We denote the countable coproducts in Set by Hie 1 X & X;. For each arrow
ci: Xi x A= X; x B, an arrow ¢;: A =7 (14 [[,c; Xi) x B is defined as

6;' = ((inriuielxi or ll’ll];k) ® B) o C; o ([L‘: ® A) .

The arrow ¢; executes the initial transition of the T-transducer (X;,¢;, ;). The
T-transducer @a {(Xj, ¢, i) }icr has a flesh initial state. When it receives an in-
put for the first time it chooses which T-transducer to run by using the algebraic
operation a. After an i-th T-transducer (Xj,¢;, x;) is chosen the T-transducer
@4,B{(Xi, ¢, ;) bier remembers its choice by using internal states and keeps be-
having as (X, ¢;, ;).

2.5 Behavioral Equivalence and Resumptions

As pointed out in Section 2.4, we need an appropriate equivalence relation to form
a Gol situation based on T-transducers. Here we use the behavioral equivalence.

Definition 2.5.1 (homomorphism). For T-transducers (X, c,z),(Y,d,y): A —
B, an arrow h: X — Y in Set is a homomorphism from (X, c,x) to (Y, d,y) if it
holds that

(W*®@ B)opc=dop (h*® A) .

Definition 2.5.2 (behavioral equivalence). Two T-transducers (X, c,z): A — B
and (Y,d,y): A — B are behavioral equivalent if there exists a T-transducer
(Z,e,z): A — B such that there are homomorphisms from (X, c,z) to (Z,e, z)
and from (Y,d,y) to (Z,e, 2).

This relation ~7 is indeed an equivalence relation on T-transducers: reflexivity

and symmetry are obvious and transitivity can be confirmed by using pushouts
in Set.

We write (X c,T) — LN (Z, e, z) if h is a homomorphism from (X, ¢, z) to (Z, e, 2)
and (X, ¢,) —AB (Y,d,y) if (X,c,z) and (Y,d,y) are behavioral equivalent.
Since an identlty arrow idx: X — X is a homomorphism from (X,c¢,z) to
(X, ¢, x), the existence of a homomorphism from (X, ¢, z) to (Y,d,y) implies the
behavioral equivalence (X, ¢, z) ~% 5 (Y.d y)

We write [(X,¢,z)]: A — B for the ~T_equivalence class of a T-transducer
(X,c,z): A — B and call this resumption. A category of resumptions can be
defined as below.

18

Objects are sets.

An arrow from A to B is a resumption [(X, ¢, z)]: A — B.
e The identity arrow of A is Jns: A — A.
e The composition is given by o.

We write Res(T") for this category. In the remainder of this section it is proved
that all notions on T-transducers introduced in Section 2.4 can be extended to
resumptions and that a Gol situation can be obtained.

Proposition 2.5.3. Let o be an I-ary algebraic operation on T. The operator
a defined in Section 2.4 is well-defined modulo the behavioral equivalence.

Proof. Let {(X;,ci,x;): A — B}ier and {(X/,c,,z}): A — B}icr be families

[R ¥ T
h;

of T-transducers. We show that if there exist homomorphisms {(Xj, ¢;, z;) —
(X/, ¢}, @) }ier then an arrow 1+ [[,c; hi: 1+]_LGIX — 14 [[;e; X| is a ho-

R SRt}

momorphism from @4 g{(X;, ¢i, zi) }ier to @a p{(X],c;, z}) bier 1.e. the follovvlng
diagram in Set; commutes.

(1+1Le Xi) x A —— (1+ L, Xi) x B
(1+Hzel) ®Ai i(H‘HieIhi)*@B
(1+H261X,)XA4>(1+HZEI 1) x B

We write e for the transition function of @4 p{(Xj, ¢, x;)}ier and ¢’ for that of

aAvB{(X’L/’ Cz’ xz)}’LEI
Since (1 + [[;c; Xi) x A is isomorphic to 1 x A+]];;(X; x A), it suffices to

show that the following two diagrams in Setr commutes for all 4 in 1.

1 Aﬁefffﬁiel Xi) % A—> (14, Xi) x B
(A+1Ter hﬂ*@Al l(lﬂ_{ie, hi)*®B
(14 [Mies X)XAH(l‘FH er Xi) x B
X, x A

inj?@Ai
inr 1 H’LEI

[T, Xi x A2 ’21+H26] Xi) x A—%> (14 1,e; Xi) x B
<1+ui€1hi>*®Al lmuiezh-)*@B

I+ [Tier X)XA*)(l‘f'HzeIX/)XB
The first diagram commutes because the following equation holds

—|—Hh ® B) oTcZ—c op id%
i€l
for all 7 in I and leads to the equation
(L+] h)* @ B) or anqs1,, xoxpl@ticr = an i, x)xs{d ier
el

by naturality of the algebraic operation a. It is straightforward to confirm that
the second diagram commutes. O

19

Proposition 2.5.4. The category (Res(T), 0,8, Tr) forms a traced symmetric
monoidal category.

Proof. First, Res(T') indeed forms a category. The composition o is well-defined
modulo the behavioral equivalence since it holds that

(X.ca) & (X', @) A (Vidyy) 5 (Y, d)
= (Vid.y)o (X ca) 25 (V' dy) o (X', ¢2)
The identity is neutral for the composition because there are homomorphisms

(X,c,z)o (1, 77A,1d1) % (X, ¢,)
(1,mp,id1) o (X, ¢ x) (X ¢, x)

for each T-transducer (X, c,z): A — B.
Second, (Res(T), (), H) gives a symmetric monoidal structure. The monoidal
product H is well-defined modulo the behavioral equivalence since it holds that

(X,c,x) & (X,) A (Yodyy) 5 (V! d)

— (X,c,2) B (Y, d,y) 25 (X', ¢,) B (Y, d,y) .

The T-transducer (1,7y,id;): @ — 0 is indeed the unit of the monoidal product
because there are homomorphisms

(X,c,z)H (1, ﬁ@,ldl) % (X, e,)
(1,my,id1) B (X, ¢ :U) % (X, ¢)

for each T-transducer (X,c,z): A — B. The symmetric monoidal structure of
(Res(T),0,8) is lifted from that of (Set,), +) by the constructor Jy.

Finally, Tr is a trace on the symmetric monoidal category (Res(T), 0, H). For
all T-transducers (X, c,z): A+C — B+C and (Y,d,y): A+C — B+, assume
that h: X — Y is a homomorphism from (X, ¢, x) to (Y,d,y). We define arrows
¢ and d' in Sett as

r_ -1
¢ = (53(,3,0) or cor 5?(,,4,0

d/ = (6;;,B,C)_1 o d o (5{/71470 .
Since the following diagram in Setr commutes,

C/

XxA+XxC——»XxM+C%—»Xxw+C4—»XxB+XxC

X,A,C 5X B, C’
lld*Jrh*@C J{h*@BJﬂd*
XxA+Y xC h*Q(A+C) reB+C) Y xB+X xC
lh*@A-‘rid* J/ld +h*®C
6{/,A, (5YB c)
YXA+Y xC—= (A+044%wa+cy4»y xB+Y xC

w

the following equation holds by the restricted uniformity of tr.

354y p (A" @ B+idy, o) or) = trl (G vy p(d or (B* @ A+idy,)

20

By naturality of tr, it holds that
(h* ® B) o tryfG xx5(¢) = try 55 v p(d) o1 (B © A)

and h is a homomorphism from Tri g(X,c,z) to Tri p(Y,d,y). It is proved in
[6] that Tr satisfies the axioms in Definition 2.1.1 and is indeed a trace. O

Proposition 2.5.5. The triple (Res(T"), F,N) forms a Gol situation.

Proof. First, F' is a symmetric monoidal functor on Res(7). The composition
o is preserved by F because an isomorphism (X x Y)N = XN x YN in Set is
an homomorphism from F((Y,d,y) o (X,d,z)) to F(Y,d,y) o F(X,c,x) for all
T-transducers (X,d,z): A — B and (Y,d,y): B — C. The key is the following
commutative diagram in Set:

IR

(X x Y)N XN yN

\L“’n,XxY lwn,x XWn Y

(XxY)NxXxY —=XVNx X xYNxY

where 7 is an arbitrary element of N. The coherence isomorphism FA + FB
F(A + B) is lifted from an isomorphism FA+ FB — F(A + B) in Set by the
constructor Jg.

Second, F' is traced i.e. F' satisfies the following equation

Trp& pp(Jom ™ o F(X,c,x) 0 Jom) = F(Tr§ p(X, ¢, 7)) (2.1)

for all T-transducers (X,c,z): A+ C — B+ C. We write tr§§g7XXB(c’) and
d' respectively for the transition function of T-transducers Tri g(X,c,z) and

Trllj:g,FB(Jom_l o F(X,ec,x) o Jym). By the restricted uniformity and naturality
of tr, it holds that

XNxFC N
i paxixep(@) or (X7 @ k) ® A)

* — * XNx X xC * —
= ((wn,X) ! ® Kp ® B) °or trXNiXiA,XNXXXB((XN,XXB,XXC) !
or (X" @ ') or 83 xyn xx0) OT (Wi x ® A)
= ((wp,x) " ® 5, @ B) or (XN @ try (G y, (<) o1 (wy, x @ A)
for each n in N. This equation indicates that (2.1) holds: the two T-transducers
Trﬁ:g,FB(Jom_l o F(X,c,z)o Jym) and F(TrgyB(X, ¢, x)) are exactly equal.
Finally, the pairs of resumptions given in Section 2.4 are retractions and satisfy

the properties described in Definition 2.1.3. It is straightforward to confirm
this. =

2.6 Resumption-Based Categorical Gol for Effects

In this section we briefly observe how can resumptions benefit us via categori-
cal Gol. From the Gol situation (Res(T),N, F') based on resumptions, a linear
combinatory algebra (Res(T)(N,N),-,!) can be extracted via categorical Gol
(Proposition 2.1.5). The operators - and ! are given by

frg:=Trnn((Jonn B g) o Joy o f o Joo)
Lf:=Jouo F(f)o Jyv

21

for all f and ¢ in Res(T)(N,N). By Proposition 2.5.3 this linear combinatory
algebra (Res(T")(N,N), -, !) has an I-ary operator @ for each I-ary algebraic op-
eration « on T'. This operator @ satisfies certain properties described in the
following theorem.

Theorem 2.6.1. Let o be an I-ary algebraic operation on T. The operator & is
natural and the trace Tr distributes over & modulo the behavioral equivalence:

e For each arrowh: A’ — A in Set, family of T-transducers {(Y;, d;, y;): A —
B} and T-transducer (X, c,z): B — B', it holds that

(X, ¢,x) o @a p{(Yi, di, yi) Yier 0 Joh = g @ar p{(X, ;) o (Vi di, yi) o Johbier -
e For each family of T-transducers (X;,c;,x;): A+ C — B+ C it holds that
TG p(@aro,sro{(Xi ci,v) Yier) ~h p @aB{TeG p(Xi, i wi) bier -

Proof. The first behavioral equivalence can be confirmed by showing that the
arrow

Ix (14 [T Yo) x X 1+ [T (1 x Y x X)

Ei lg

X A+ [Lies (Vi % XQ:W; + [Lies (Y x X)

is an homomorphism between the two T-transducers in the left-hand side and
the right-hand side of the first equation. This can be proved by using naturality
of the algebraic operation a.

We confirm the second behavioral equivalence by using string diagrams in
Res(T). The proof is shown in Figure 2.5. The unit where two strings are
merged represents the codiagonal map. Strings with black circles as the initial
points represent arrows from the initial object ().

O

As a consequence of this theorem, the operator @ satisfies the following be-
havioral equivalence

ann{ (Xi, ci, wi) Yier - (Y, dyy) ~f oy anw{ (Xi, i, mi) - (Y, dyy) ier (2.2)

for all T-transducers {(X;,c;, ;) }ier: N = N and (Y,d,y): N — N. In detail it
holds that

an,N{ (X, ¢i, i) fier - (Y, d,y)

= Ty n((Jow B (Y, d, y)) © Jop o ann{ (Xi, ci, @) bier © Jog)

~nn Triy (@ { (Jom B (Y, d, y)) © Jotp o (Xi, ¢i, @:) © Jod}ier)

~nn ann{ Ty e ((Jonw B (Y, d, y)) 0 Jotp o (X, i, 2) © Jod) Yier

~hn o (X iy @) - (Y, dyy) Yeer -

This behavioral equivalence indicates that the problem described in Section 1

can be solved by resumptions. It is known that a linear combinatory algebra
can represent abstractions and applications of linear A-calculus via a term 7

on it. We recall this later in Chapter 3. On the linear combinatory algebra
(Res(T)(N,N),-,!) we can extend terms with the operator @ and define a term

22

(LHS)

C
QALCY % (BHC) o
A | 4 ——xxa Xix By xB)
\ i ®A
G
i X;ixC X x C !
C W i X i X Y x C B
Y x A Y x B \ Y x B
Y xC [icsci Y xC \

axioms of tr

QALY x(B+C)

A A ‘1‘*§<A‘XiXA X x B Y x B Y x B
[l .
C C WX,,XC XixC|lYy xC B
Y x A \ Y x B

]_[/‘Elcf

Y xC
|| naturality of «
QAYxA
A A w*“ééAX"XA Y x A Y x B Y x B
i © Moye
el “1 Y xC B
Y xC
Y xA Y xB
Y xC
|| axioms of tr
QAYxA
A A :I;,@AXfXA Y x A Y xB Y xB
[
iesci B
[
Y xC Y xC
Y x A Y x B
LLEI Ci
Y xC Y xC
| axioms of tr
QAYxA
A A mX,XA Y x A Y x B Y x B
i Uoye
Y x C =Ty x ¢ B
C=—
YxA Y xB
v xo|ierci|y « ¢
|| naturality of «
QAYxB
A A o ‘XIXA X x B Y xB Y xB
;@A .
X;xc|l "o |xixC B
C—
Y x A Y x B
Y xC ierci|y « C

(=

|| uniformity of tr

(RHS)

Figure 2.5: proof of the second behavioral equivalence in Theorem 2.6.1
23

@{7;}ier. This term @{7; };cr can be seen as an representation of algebraic effects
in linear A-calculus. The behavioral equivalence (2.2) induces the equation

afeiticr - d =afe; - d}ier

of terms {e;}icr and d on (Res(T)(N,N),-,!). This equation can be seen as the
representation of the equation in linear A-calculus, for example

(M1] MQ)N = (MlN) L (MQN)

where L is an effect described in Chapter 1.

24

Chapter 3

Model of Linear \-Calculus

3.1 Linear A-Model

Linear A-calculus [16] is an extended A-calculus with the ! modality that tracks
copying of data. It has two abstractions: linear abstractions Az. M and non-
linear abstractions Alz. M. The argument z in linear abstractions Axz. M must
be used once without copying, where it may be copied or discarded in non-linear
abstractions Alz. M. The operator ! represents copying of terms.

Precisely, terms of linear A-calculus is defined by the following rules

=M
Fra TEAG (bang)
T M
% (abs) (if @41 is linear in M)
i EM TEM frN
FTSS Ve Vi SN (aPp)
where ¥ denotes x1,...,x, and each x; is in a set of variables Var. We write

M = N if M and N are syntactically equal. A variable x is linear in a term
M if x is free and occurs exactly once in M except in the scope of the operator
I. We denote sets of free variables and linear variables of a term M by FV (M)
and LV (M) respectively. For a variable x and terms M and N, the substitution
M|[N/z] is defined inductively as

z[N/x] =
y[N/z] = (lfl‘ Zy)
(Ay)[N/l’]—)\y M[N/z] (if z #y and y ¢ FV(N))
(Aly. M)[N/x] = Ny. M[N/x] (if v Zy and y ¢ FV(N))
(M1M2)[N/33] (Ml[N/x])(MﬂN/a?D
(I M)[N/a] = (M[N/z])

The S-reduction rules for linear A-calculus are defined as

(Az. M)N —p5 M[N/x]
(Mz. M)(!N) =3 M[N/z| .

/

The application to the non-linear abstraction (Alz. M)N
applied term N’ is copied by the operator !.

We extend a model of untyped A-calculus, namely a A-model described in
[18] and define the linear A\-model that models untyped linear A-calculus. One
important feature of A-calculus is that abstractions of A-terms Az. M — that

is reduced only if the

25

behave as “functions” — are also treated as A-terms. Models of A-calculus need
to express this feature, in other words they need the correspondence of “functions”
and “elements”. A A-model is a model of untyped A-calculus based on a cartesian
closed category (C, 1, x,=-). It utilizes a retraction m’ : (D = D)< D : ¢ in C
on a object D (called a reflexive object) in C that expresses the correspondence
of functions and elements, and gives sound denotational semantics of untyped
A-calculus [18, Proposition 3.1.1].

We define a linear A-model as the linear version of a A-model. A linear A-
model is also based on a cartesian closed category (C, 1, x,=>). The category Set
of sets and functions is an example of a cartesian closed category.

Definition 3.1.1 (linear A-model). Let (C, 1, x,=") be a cartesian closed cate-
gory. A data (D, e,mi,mo,!,[—]) is a linear A-model if it satisfies the following
properties.

e The data consists of an object D in C and arrows e: D — (D = D),
mi,ma: (D= D) — D,!: D— D and [+ M]: D" — D in C.

e The arrows in the data satisfies following equations

[ZF z] =m (3.1)
[ZF Aepy1. M = my o [Z, 2yt - M]" (if 241 € LV(M)) (3.2)
[ZF Nz M] = mg o [Z, 2,1 - M]" (3.3)
[ZF MiMs] =evo(exidp)o ([F M) x [ZF Ms])oApn (3.4)
[+ !M]="o[ZF M] (3.5)
[Z, xpi1 - M]" = eomy o [Z, 2,01 F M]" (if 2,41 € LV(M)) (3.6)

ev o ([#, xpe1 F M]" x idp)

=evo (e xidp) o (mg x idp) o ([Z, 2ny1 - M]" x idp) o (idpn x !)
(3.7)

where Ay : X — X x X is the diagonal arrow in C, (—)": C(X x D,Y) —
C(X,D =Y) is the bijective correspondence of the adjunction (—) x D
(D= (-))and ev: (D =Y) x D — Y is the counit of that adjunction.

A linear A-model utilizes a retraction m; : (D = D) < D : e that models linear
abstractions, and an arrow mgy: (D = D) — D that models non-linear abstrac-
tions with the arrow e. The pair of arrows mo and e can be seen as a lim-
ited retraction: for any arrows d: 1 — (D = D) and d’: 1 — D it holds that
evo(eomgod,!d) =evo(d,!d). This corresponds to the S-reduction rule that
indicates a term (Alz. M)N is not always reduced.

A linear A-model gives sound denotational semantics of untyped linear \-
calculus: the linear version of [18, Proposition 3.1.1] holds. We give a detailed
proof in the remainder of this section.

Lemma 3.1.2. Let (D,e,my,ma,!,[—]) be a linear \-model. For substitutions
of linear A-terms it holds that

[Z+ M[N/2ni1]] = [£, 2 - M] o (idpn x [£F N]) o Apn

Proof. By induction on M.
If M = xpq1,

[# F @nt [N/wpr]] = [F - N]
= Tp+1 © (ian X [[If H N]]) o ADn
= [[f, Tn+1 H .CCn_H]]] (lan X [[fl— N]]) o ADn .

26

IftM=ux,

[Z F @[N/ani]] = [T F @]

Uy

m; o (idpn X [+ NJ])o Apn

= [Z,zp41 F zi] o (idpn X [£F NJ]) o Apn .

If M = A\xypio. M,

[7 F (Adsz. MY)[N/s1]
= [T+ Azpia. M/[N/xn+1“]
= my o [, &nio - M'[N/zp1]]"
=my o ([Z, Tny2, Tnp1 F M']
o (idpnt1 X [Z, Zna2 - N]) o Apnt1)” (induction hypothesis)
=my o ([Z, Tny1, Tnra b M']
o (idpn x [+ N] x idp) o (Apn x idp))" (since z, 42 ¢ FV(N))
=my o ([Z, Tni1, Tngo F MM
o (idpn x [T+ N])o Apn (by naturality of (—)")
= [Z, 2ns1 F Arpio. M'] o (idpn x [+ NJ]) o Apn .

If M = Ny io. M,

[ZF (Mo M/)[N/anrlH]
= [#F Mzpo. M/[N/xn-i-l]]]
=my o [Z, Tpi2 - M'[N/2ni1]]"
= mg o ([%, Tpyo, Tpi1 - M']
o (idpnt1 X [T, Zps2 - N]) o Apni1)” (induction hypothesis)
= mg o ([Z, Tpy1, Tnio - M']
o (idpn x [T+ N] x idp) o (Apn x idp))" (since x40 ¢ FV(N))
=ms o ([T, Tni1, Tnao F MM
o (idpn x [T+ N])o Apn (by naturality of (—)")
= [Z, ns+1 F NMapyo. M'] o (idpr x [+ N]) o Apn .

If M = MlMQ,

[+ (M M) [N/2ni]]
= [7F (V4[N 1) (MaN /1))
=evo (e xidp)o ([F Mi[N/xps1]] x [&+ M2[N/xps1]]) 0 Apn
=evo (exidp)o ([#, xpt1 b Mi] X [Z, zps2 b Mi])
o((idpn x [ZF NJ]) x (idp» x [Z + NJ))
o Apnyxpn o Apn (induction hypothesis)
=evo(exidp)o ([Z, xpy1 F M) X [Z, xpy2 F M)
o Apn+1 o (iddpn X [£F NJ) o Apn
= [#, xpt1 = M1Ms] o (idpn X [Z+ NJ) o Apn .

27

If M =!M,

[(LM 0]

— [# - MV)]

o [F M'[N/2ns1]]

Vo [#,2py1 = M'] o (idpr x [NJ]) o Apn (induction hypothesis)
— [# 2ns1 F ! M o (idpn x [F N]) o Apn .

O
Proposition 3.1.3. For an arbitrary set D, (I) and (II) below are equivalent.
(I) A data (D,e,my,ma,!,[—]) is a linear A\-model.

(II) A data (D,-,!,[-]) consisting of functions -: D x D — D, ! D — D and
[ZF M]: D™ — D satisfies the following properties for every d in D™:

[+ ;](d) = d; (3.8)
(z € IN(M) AVdpi1 € D.[Z,2p1 F Mi])(d, dyy1) = [@ 2pi1 - Ma](d, dpis))
— [T+ Aznyr. Mi](d) = [T F Azppr. Ma](d) (3.9)
Vdpi1 € D.[& znp1 b Mi(d, dnyr) = [T 2pgr b Ma](d, dpyr)

— [Z+ Mo Mi](d) = [£F Mappr. Ma](d) (3.10)
[# - My My](d) = [& - My](d) - [+ M,](d) (3.11)
[+ M](d) = [z + M](d) (3.12)

for each i such that x; € FV(M),
di=d, = [x1,...,2n & M](d1,...,dn) = [21,...,2m & M](dy,...,d,)

» ' m

(3.13)
My = My = [Z+ My](d) = [Z + My](d) . (3.14)

Proof. (I) = (II) We define -: D x D — D as

-:=evo(exidp) .

(3.8), (3.11) and (3.12) are equivalent to (3.1), (3.4) and (3.5) respectively. (3.13)
can be proved by induction on M.
(3.9) and (3.10) hold by (3.2) and (3.3) because it holds that
Vi1 € D.[Z,2n1 F M, dut) = [F 2nes - Mo (d, dns)
e [[.f", Tp+1 = Ml]]/\ = [[f, Tna1 F MQ]]/\ .
We can inductively prove that (3.14) holds if it holds that

M1 —>B M2 = [[fl— Ml]](d) = [[fl— Mgﬂ(d) .

By definition of S-reduction, it suffices to show that the following two equations
hold.

[ZF (Aensr. M)N] = [#F MIN/2pea]] (if 2ngr € IV(M))
[ZF (Mapg1. M) I N] = [#F MN/2p1]]

28

These equations indeed hold as below:

[(\ni1. M)N]
=evo(exidp)o ([ZF Axyy1. M| x [+ NJ]) o Apn
=evo(exidp)o (my xidp) o ([Z, zns1 F M]" x idp)
o(idpn X [#F NJ])o Apn (since x,41 € LV(M))
= evo ([Z,2p41 F M]" xidp) o (idpn x [ZF N]) o Apn (by (3.6))
= [Z, 241+ M] o (idpn x [ZF NJ]) o Apn (by definition of ev)
= [ZF M[N/xn41]] (by Lemma 3.1.2)
[ZF (Mzpgq. M) N]
=evo(exidp)o ([ZF NMapsr. M| x [£+IN]) o Apn
—=evo (e xidp) o (mg x idp) o ([Z, zny1 - M]" xidp) o (idpn x !)
o (idpn x [ZF N])o Apn
=evo ([Z,2n41 - M])" xidp) o (idpn x [ZF N]) o Apn (by (3.7))
= [Z,zp41 F M] o (idpn X [ZF NJ])o Apn (by definition of ev)
=[Z+F M[N/xn41]] - (by Lemma 3.1.2)

(I) <= (II) First, we fix an arbitrary element ag of D and define e, m; and my
as

e(a)(d) :=ad (for all d in D)
mu(f) = {[[u F Az.uz](a) (if 3a € D.Vd € D. f(d) = ad)

ap (otherwise)

malf) = {[[u - Ma.ulzl(a) (if 3a € D.Vd € D.f(d) = ald)
ag (otherwise) .

The well-definedness of m; and ms need to be confirmed. Assume that there
exists two elements a and o’ that satisfy f(d') = ad’ = a’d’ for all d’ in D. For
all d in D, it holds that

[u,z F uzx](a,d) = [u,z F u](a,d) - [u,z F z](a,d)
=ad
=dd
= [u,z Fu](d,d) - [u,z - x](a’, d)
= [u,z - uz](d,d) .
Since x is a linear variable of the term z, the following equation holds by (3.9):

[ut Ax.uz](a) = [u F Ax.uz](a") .

Therefore my is well-defined.
Assume that there exists two elements a and o’ that satisfy f(d') = ald' =
a''d for all d in D. For all d in D, it holds that

[u,z Fu!lz](a,d) = [u,z + u](a,d) - [u,x Fz](a,d)

= [u,z +u](d,d) - [u,x - x](a’,d)
= [u,z Fu'z](d,d) .

29

The following equation holds by (3.10):
[ut Nz.u!z](a) = [ut Nz.u!z](a) .

Therefore ms is well-defined.

Second, we prove that [—] satisfies certain properties in Definition 3.1.1. Ob-
viously, (3.1) is equivalent to (3.8), and (3.5) is equivalent to (3.12).

Assume that x,11 is a linear variable of M. For every d, 11 in D, the equation
below holds.

[# @01 F M]"(d)(dns1)

= [# zps1 - M](d, dpy1)

= [Z, 2pg1 b Opgr. M)zni1](d, dny1) (since 2oy € LV(M))
= [# 2ns1 F Apgr MY(d, duga) - [8 2ngs b 2] (d; dogr)

= [Z, Zpg1 b Angr. M](d, dpyr) - dyi

-

= [ZF Azpy1. M](d) - dpy1 (since xpy1 € FV(Azpq1. M) (3.15)
From this equation it follows that

ma ([Z, zng1 = M (d))
= [ut Mnst1. uzn1 | ([EF Aznyr. M](d)) . (by definition of m;) (3.16)

For every d,+1 in D, it also follows that

[w, Trs1 F uzni1] ([F Apir. M](d), dnst)
= [, Zpgr b u]([Z F Azngr. M](d), dpgr)
’ Hu’xn—i-l F xn-‘rl]]([[f H /\xn-i-l' M]] (J)v dn-i-l)

= [Z+ Azppr. M](d) - dnys
= [@, &ps1 - M](d,dps1) - (by (3.15))

Therefore, by (3.9), (3.2) holds as below:

mi([Z, Zpgr F M]N)) = [u b Azpgr. w1 J([2 F AMngr. M](d)) (by (3.16))
= [+ Azng1. M](d) .

For every d,4+1 in D, the equation below holds.

%, 2yt M]]/\(J}(dwrl)

= [@, 201 - M](d, dps1)

= [Z, 2ns1 F Nans1. M) 21](d, dpsr)

= [& zns1 F Mni1. M)(d, dns1) - [Z, Zngr ' 2ns1](d, dnsr)
= [#, xni1 b Napir. M](d, dnsr) -V dis

—

=[ZF NMzpi1. M](d) - 'dpy1 (since zp11 & FV(AMzpiq. M)) (3.17)
From this equation it follows that

ma([%, 2ni1 = M (d))
= [ut Mapyr. w! 21 ([F F Mangr. M](d)) . (by definition of ms) (3.18)

30

For every d,4+1 in D, it also follows that

[w, 2n1 b ulen J([7F Mapg. M](d) dn+1)
= [, Zpgr b u]([ZF Napir. M](d), dnyr)
sz e | ([F F Mg M(d), dnga)
— [FF Manar. M)(d) - sy
= [#, 201 - M](d,dpy1) - (by (3.17))

Therefore, by (3.10), (3.3) holds as below:

mo([Z, 241 + M]"(d))
= [ut Mgy w 1 J([F F Manyr. M](d) (by (3.18))
= [Z+ Nzper. M](d) .

(3.4) holds as below:
[- MiMs](d) = [7 - Mi](d) - [7 - Ma](d)
= e([Z+ M](d))([Z + Ma](d)) (by definition of e)
= ev(e([7 - M](d)), [7 - Ma](d) -

Assume that x,,41 is a linear variable of M. For every d,; in D, (3.6) holds
as below:

e(mi([#,xn 1 b M]Nd)))(dnr1)

=e(Jut Azpi1. uzp 1 J([Z F Azpg1. M(
= [ut Aens1. una | ([F F Azngr. M](d)
= [ub Azpy1. wzn 1 ([F F Az g1 M](d)

—

) (dnt1) (by (3.16))
) - dp+1 (by definition of e)
) [zns1 F znga](dna)
= [t 2n11 - Ani1. uzn 1)n 1| ([E - Azpg1. M](d), dnya)
= [, 1 F umn 1 J([E - A g1 M](d), dpsa)
= [ZF Awpqa. M](d) dn+1
= [& zpg1 - M]N(d)(dnta) - (by (3.15))

For every d,,+1 in D, (3.7) holds as below:

e(ma([Z, @ni1 b M]"(d)))(di1)

= e([uF Mapgr. w21 ([FF Mangr. M](d)(dngr) (by (3.18))

= [ut Mapyr.w! 1] ([Z F Mapgr. M](d)) - Vdpy1 (by definition of e)
= [ut Nangrul ey [([F F Mapgr MI(d)) - [2n41 H 2] (dogr)

= [u, xpt1 F Nazpg1. w! zpi1) ' i [([F Mgy M (d) dpt1)

= [u, xpt1 F ulz, 1 J([Z F Mot M]](d), dpt1)

= [Z F Mapi1. M](d) - Vot

= [# 201 F M]Nd)(dns1) - (by (3.17))

31

3.2 Linear Combinatory Algebra and Linear \-Calculus

In this section we study the ability of linear combinatory algebras (see Defini-
tion 2.1.4) to model linear A-calculus. As described in [16], linear combinatory
algebras satisfy the property called linear combinatory completeness. We define
a term on a linear combinatory algebra (D, -,!) by BNF as

ruo=u€eVar|deD |7 -7|!7T.

All elements of D can be seen as a term that includes no variables. A variable
u is linear in a term 7 if w occurs exactly once in 7 except in the scope of the
operator !.

Proposition 3.2.1 (linear combinatory completeness [16]). Let (D,-,!) be a lin-
ear combinatory algebra. For every term e on D, (I) and (1I) below holds:

(I) If u is a linear variable of e, then a term e* on D exists and satisfies
following properties:

LV(e*) =LV(e) \ {u}, FV(e*) =FV(e) \ {u}, e=¢e"u .

(IT) If u is a variable, then a term e on D exists and satisfies following prop-
erties:

LV(e™) = LV(e) \ {u}, FV(e™) = FV(e) \ {u}, e=e*luy .

It is known that linear combinatory completeness enables linear combinatory
algebras to represent two abstractions of linear A-calculus and S-reductions of
closed linear \-terms.

However, it is found that a linear combinatory algebra itself cannot form
a linear A-model i.e. give sound denotational semantics of linear A-calculus, as
stated in the following theorem. This theorem is the linear version of the Meyer-
Scott theorem (see [18]) that is for a A-model and SK-algebra. Here we show its
proof in detail.

Theorem 3.2.2 (linear version of the Meyer-Scott theorem). For an arbitrary
set D, (I) and (II) below are equivalent.

(I) A data (D, e,mq1,ma,!,[—]) is a linear A-model.

(IT1) A triple (D,-,!) is a linear combinatory algebra with extra combinators L
and R that satisfy the following properties: for every a,a’,b in D,

Lab = ab, Vd € D.ad = d'd = La = Ld’
Ra!b=alb, Vde D.a!d=d'd = Ra=Rd .

Proof. (I) = (II) It suffices to prove that Proposition 3.1.3(II) = (II), since (I)
and Proposition 3.1.3(II) are equivalent by Proposition 3.1.3. We define combi-
nators as

.= [F Az. x] (%) B:=[F Az. \y. Az. 2(y2)] ()
C:=[F Az. \y. Az. z2zy] (%) K= [F Az Aly. 2] (¥)
W:=[F Az. My. 2y !y](*) D:= [+ Alz.z](*)

§:=[F Nz] (%) Fi=[F Mz My (xy)] (%)
L:=[F Az. \y. zy] () Ri=[FAz. Aly.2ly](x)

32

where DY = {x}. It is easy to show that combinators satisfy certain equations in
Definition 2.1.4. The properties of combinators L and R need to be confirmed.

For all d in D, if two elements a and a’ of D satisfy ad = a’d, then it holds
that

e,y F yl(a,d) = [,y - 2(a,d) - [, - y](a,)
=ad
=dd
= [,y F2'](d,d) - [2",y F y](d’,d)
= [2',y +2'y](d,d) .

From this equation it follows that

La =[F Az. Ay. zy] (%) - a
=[F Az. Ay. zy] (x) - [z F 2](a)
= [z F (Az. \y. zy)z] (a)
= [z F Ay. zy](a)
= [2" F Ay.2"y](a’) (by (3.9))
= [2' + (A2 My. 2'y)2"] (a)
=[F X Ay 2"y] () - [2' - 2"](a))
=[F X' Ny 2'y] () - d
=Ld .
For all d in D, if two elements a and a’ of D satisfy a!d = a’!d, then it holds
that

[z,y & xlyl(a,d) =[x,y F z](a,d) - [z,y - y](a,d)

= [+, y F2')(d,d) - [2",y F 1y](d, d)
= [2',y F 2" 1y](d,d) .

From this equation it follows that

Ra=[FAx.Ny.z!y](x) - a
=[F Xx. My. 2! y](x) - [z - z](a)
=[xz F (Az. My.zy)z](a)
= [z F Ny.z!y](a)
— [e (@) (by (310))
= [2' = (2" Ny. 2" ly)2"] ()
=[F X Ay 2"y (%) - [« F 2] (a)
=[F X" Ny. 2" y](*) - d
=Rd .

(I) <= (IT) First, we fix an arbitrary element ag of D and define e, m; and mg

33

e(a)(d) := ad (for every d in D)
La (if 3a € D.Vd € D. f(d) = ad)
ma(f) = {

ap (otherwise)

Ra (if da € D.Vd € D. f(d) =ald

ma(f) = | 0 (20 € @ =atd
ap (otherwise) .

The well-definedness of m; and ms need to be confirmed. For all d in D,

assume that there exists two elements a and a’ of D that satisfy f(d) = ad = d'd.
This leads to the following equation that means m; is well-defined:

La = La’ .

For all d in D, assume that there exists two elements a and a’ of D that
satisfy f(d) = a!d = a’!d. This leads to the following equation that means my
is well-defined:

Ra = Rad’ .

Second, we define [—] inductively by (3.1), (3.2), (3.3), (3.4) and (3.5).

Assume that ,,+1 is a linear variable of M. When an arbitrary element d,,; of
D is regarded as a variable, it can be inductively proved that d; is a linear variable
of a term [Z,zn41 b M]"(d)(dny1) on D. Therefore, by Proposition 3.2.1, an
element a of D that does not include d,11 exists and it satisfies the following
equation:

[Z, ns1 b M])N(d)(dny1) = adnyy - (3.19)

In other words, for all d,41 in D, an element a of D exists and it satisfies the
equation (3.19). Therefore, for all d,4; in D, (3.6) holds as below:

e(m1([%,zn11 b M]Nd)))(dnr1)
= e(La)(dn+1) (by (3.19) and definition of m;)
= Lad,+1 (by definition of e)
= adn+1
= [# 2ns1 = M](d)(dnt1) - (by (3.19))
For a term [Z, zny1 - M]"(d)(dns1) on D, when an arbitrary element dp 1

of D is regarded as a variable, it holds by Proposition 3.2.1 that an element a of
D that does not include d, 41 exists and it satisfies the following equation:

[Z, #ng1 F M]N(d)(dnsr) = a'dpyy (3.20)

In other words, for all d, 41 in D, an element a of D exists and it satisfies the
equation (3.20). Therefore, for all d, 41 in D, (3.7) holds as below:

e(ma([Z, 2ns1 - M]Nd)))(Hdns1)
=e(Ra)(!dp+1) (by (3.20) and definition of my)
= Ra!d,+1 (by definition of e)

=aldy

= [2n1 F M]"(d)(dns1) - (by (3.20))

34

This theorem claims that a linear combinatory algebra needs extra combinators L
and R to form a linear A-model. These extra combinators are kinds of “classifiers”.
They classify the linear A-terms that have the “same” behavior, i.e. that are g-
equivalent when the same term is applied to them.

In this section we studied the ability of linear combinatory algebras to model
linear A-calculus. It was found that linear combinatory algebras themselves can-
not give sound denotational semantics of linear A-calculus although they can
represent B-reductions. In terms of functional programming, we can say that lin-
ear combinatory algebras cannot classify the same functions although they can
express evaluations of functions and applications.

35

Chapter 4

Conclusions and Future Work

We technically described the base steps of the workflow shown in Chapter 1,
namely resumption-based categorical Gol. We gave a Gol situation based on
resumptions by defining concrete constructions of transducers: compositions,
monoidal products, traces, countable infinite copying and suitable retractions.
We also gave an operator @ on resumptions by using an algebraic operation a.
The operator @ constructs transducers that represents the algebraic operation
a. It was found that the operator @ enables the extracted linear combinatory
algebra to represent some interfaces to effects.

Additionally, we defined a model of untyped linear A-calculus called a linear
A-model. A linear A-model was proved to give sound denotational semantics. We
explained the ability of linear combinatory algebras to represent linear A-calculus
by proving the linear version of the Meyer-Scott theorem. It was found that linear
combinatory algebras need extra combinators that classify functions with respect
to their behavior to form a linear A-model. This is much like in the classical
setting.

Given this technical result, however, it is not trivial that how the extra com-
binators of a linear combinatory algebra are obtained especially in the framework
of categorical Gol. Since the extra combinators are a kind of classifiers, we guess
that they might be produced by resumption-based categorical Gol with an ap-
propriate equivalence relation on transducers.

To give a concrete Gol interpretation in terms of resumptions, we need to
describe the rest of the workflow in Chapter 1. It needs to be explained that how
effects are interpreted by an algebraic operation o and an induced operator @ on
resumptions. Our approach to give a resumption-based Gol interpretation has
several parameters: a monad that models effects, an algebraic operations that
represents effects and an equivalence relation used to define resumptions. This is
due to the generality of categorical framework. These parameters will affect what
kind of effects are interpreted in our framework. For example, following Hasuo
and Hoshino [5] a resumption-based Gol interpretation of quantum computations
might be obtained if quantum effects are represented by algebraic operations. We
are also interested in an equivalence relation. We use the behavioral equivalence
in this paper but the trace equivalence is another example; we might indeed be
able to give an axiomatization of equivalence relations such that resumption-based
categorical Gol works.

As mentioned in Chapter 1, our approach takes advantage of the feature of Gol
and enables us to observe dynamics of computations. That is, our approach will
give concrete transducers as a Gol interpretation of programs. We expect that
this enables us to implement compilers of programming languages that supports
effects, like the results in [11] and [2].

36

References

[1]

Samson Abramsky, Esfandiar Haghverdi, and Philip Scott. Geometry of
interaction and linear combinatory algebras. Mathematical Structures in
Computer Science, 12:625-665, 10 2002.

Dan R. Ghica. Geometry of synthesis: a structured approach to VLSI design.
In Martin Hofmann and Matthias Felleisen, editors, POPL, pages 363—-375.
ACM, 2007.

Jean-Yves Girard. Geometry of interaction 1: Interpretation of system F. In
S. Valentini R. Ferro, C. Bonotto and A. Zanardo, editors, Logic Colloquium
’88 Proceedings of the Colloquium held in Padova, volume 127 of Studies in
Logic and the Foundations of Mathematics, pages 221-260. Elsevier, 1989.

Masahito Hasegawa. The uniformity principle on traced monoidal categories.
ENTCS, 69(0):137-155, 2003. CTCS’02.

Ichiro Hasuo and Naohiko Hoshino. Semantics of higher-order quantum
computation via geometry of interaction. In LICS, pages 237246, 2011.

Ichiro Hasuo and Bart Jacobs. Traces for coalgebraic components. Mathe-
matical Structures in Computer Science, 21:267-320, 4 2011.

Naohiko Hoshino, Koko Muroya, and Ichiro Hasuo. Memoryful geometry of
interaction: From coalgebraic components to algebraic effects. preprint.

Martin Hyland and John Power. The category theoretic understanding of
universal algebra: Lawvere theories and monads. 172:437-458, 2007.

S. C. Kleene. On the interpretation of intuitionistic number theory. 10:109-
124, 1945.

S. Mac Lane. Categories for the Working Mathematician. Springer, Berlin,
2nd edition, 1998.

lan Mackie. The geometry of interaction machine. In Ron K. Cytron and
Peter Lee, editors, POPL, pages 198-208. ACM Press, 1995.

Eugenio Moggi. Computational lambda-calculus and monads. Technical
Report ECS-LFCS-88-66, Laboratory for Foundations of Computer Science,
1988.

Gordon Plotkin and John Power. Algebraic operations and generic effects.
Applied Categorical Structures, 11(1):69-94, 2003.

Gordon D. Plotkin and John Power. Adequacy for algebraic effects. In
FoSSaC'S, pages 1-24, 2001.

37

[15] John Power and Edmund Robinson. Premonoidal categories and notions of
computation. Mathematical Structures in Computer Science, 7:453-468, 10
1997.

[16] Alex Simpson. Reduction in a linear lambda-calculus with applications to
operational semantics. In Giesl Jiirgen, editor, RTA, volume 3467 of LNCS,
pages 219-234. Springer Berlin Heidelberg, 2005.

[17] Glynn Winskel. The Formal Semantics of Programming Languages. 1993.
[18) 00O U0.000—0000000000D0O.000oo, 1991.

38

