
Memoryful Geometry of Interaction
From Coalgebraic Components to Algebraic Effects

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

Koko Muroya Ichiro Hasuo
Dept. Computer Science, University of Tokyo

muroykk@is.s.u-tokyo.ac.jp ichiro@is.s.u-tokyo.ac.jp

Abstract
Girard’s Geometry of Interaction (GoI) is interaction based seman-
tics of linear logic proofs and, via suitable translations, of func-
tional programs in general. Its mathematical cleanness identifies
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Ghica and
others. In this paper, we develop Abramsky’s idea of resumption
based GoI systematically into a generic framework that accounts
for computational effects (nondeterminism, probability, exception,
global states, interactive I/O, etc.). The framework is categorical:
Plotkin & Power’s algebraic operations provide an interface to
computational effects; the framework is built on the categorical ax-
iomatization of GoI by Abramsky, Haghverdi and Scott; and, by
use of the coalgebraic formalization of component calculus, we de-
scribe explicit construction of state machines as interpretations of
functional programs. The resulting interpretation is shown to be
sound with respect to equations between algebraic operations, as
well as to Moggi’s equations for the computational lambda calcu-
lus. We illustrate the construction by concrete examples.

Categories and Subject Descriptors D.3 [Formal Definitions and
Theory]: Semantics; F.3 [Semantics of Programming Languages]:
Algebraic approaches to semantics

General Terms Theory

Keywords Geometry of interaction, monad, algebraic effect

1. Introduction
Geometry of Interaction (GoI) is introduced by Girard [10] as
semantics of proofs—i.e. programs, under the Curry-Howard
correspondence—for the study of dynamics and invariants of the
cut elimination process (i.e. program execution). Girard’s original
presentation of GoI is in the language of C∗-algebras; Mackie’s
alternative presentation [25] as token machines initiated another
important application of GoI, namely as a compilation technique.
There GoI provides translation of programs into state machines;
and the machines’ execution results are invariant under cut elimi-
nation. Dynamics in such machines can be understood as a math-
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ematical counterpart of control flow in program execution, and in
this way, GoI connects mathematics (denotational semantics), pro-
gram evaluation (operational semantics) and state based computa-
tion (low-level languages/implementations). Applications of GoI
are widespread: implementation of (imperative) functional pro-
gramming languages [8, 9, 25]; relationship to Krivine abstract
machines [7] and to defunctionalization [30]; optimal graph reduc-
tion for the lambda calculus [11]; and the design of a functional
programming language for sublinear space [6].

Categorical GoI
This remarkable level of integration in GoI—of operational and
denotational/structural semantics—is further exemplified by its
categorical axiomatics (categorical GoI) developed by Abramsky,
Haghverdi and Scott [2]. There a general construction is given from
a traced monoidal category—together with additional constructs,
altogether called a GoI situation—to a combinatory algebra. One
can then apply the realizability construction (see e.g. [24]) that
turns a combinatory algebra (an “untyped” model) into a categori-
cal model of a typed calculus, from which one extracts realizers as
concrete interpretations. The latter are sound by construction.

In a big picture, the current work is one of the attempts to instan-
tiate this general methodology of categorical GoI to concrete situ-
ations. Our starting point is the previous work [14] where we ex-
tend the above workflow by a step prior to it. The extension comes
from the following observation (a folklore result, see Lemma 4.3;
see also [18]): many traced monoidal categories arise as a Kleisli
category of a monad with a suitable order structure. The resulting
extended workflow is as follows.
(a Set-monad T whose Kleisli category is Cppo-enriched)

Kleisli construction7−→ (a traced monoidal category)
categorical GoI [2]7−→ (a combinatory algebra)

realizability &
realizer extraction
7−→ (a GoI interpretation of a typed calculus)

(1)

In [14] we pursued use of this extended general workflow that is
parametrized by T : in order to interpret a calculus with a certain
additional feature, we start with a monad T equipped with the same
feature, and the generic constructions would yield a suitable GoI
interpretation. In [14], specifically, we considered a calculus for
quantum computation.

Effects and Resumption Based GoI
However, following this naive scenario turned out to be far from
straightforward: in [14] we ended up using a complicated continu-
ation monad that keeps track of all the measurement outcomes. In
fact the same kind of difficulty is already with nondeterminism—
one of the most basic computational effects—as we exhibit now.
Here we shall speak on the intuitive level, using the game-theoretic



terms of queries and answers instead of the categorical language
for GoI.

Consider the call-by-value evaluation of the program

(λx : nat. x + x) (0 t 1) (2)

where the subterm 0 t 1 returns 0 or 1 nondeterministically. Then
the whole program is expected to return 0 or 2. However, the usual
GoI interpretation of (2) may return an unexpected value 1, as the
result of the following interaction.

1. We ask the value of the left occurrence of x in x + x.

2. The subterm 0 t 1 answers 0 or 1 nondeterministically.

3. We ask the value of the right occurrence of x in x + x.

4. The subterm 0 t 1 answers 0 or 1 nondeterministically.

5. We add the values of the left x and the right x.

The difficulty is as follows. After the first query 2), the nondeter-
minism in the subterm 0 t 1 is resolved, with the subterm reduced
to 0 or 1. The second query 4) must stick to this choice; however,
most instances of GoI—presented in terms of C∗-algebra, token
machines or categories—lack such an explicit “memory” mecha-
nism. The lack of memories in GoI causes similar difficulties with
other computational effects. Even more, it seems to be also the
reason why additive connectives are far less trivial to interpret in
GoI: additive slices—a common tool for additive connectives in
GoI [23, 33]—indeed have a strong flavor of memories. In the pre-
vious example (2) one may wonder if the call-by-value evaluation
strategy is to blame. This is unlikely; see Remark 1.1.

The memory mechanism needed in the above example can be
provided in the form of a Mealy machine, or a (nondeterministic)
transducer. The term 0 t 1 is now interpreted as

x0q/0 :: x0t1
q/0
oo

�� q/1
// x1 q/1dd

(3)

where the machine can initially respond to a query q with 0 or
1; however, after that the machine sticks to the same choice by
remembering the state by means of its internal state. For more
examples of Mealy-like machines, see Section 7.

The idea of using such memories (or states) in GoI is not new.
In [1, 2], an instance of categorical GoI is given by the category
of resumptions—roughly speaking, a resumption from a set A to
B is a “stateful computation” from A to B; more precisely it is a
suitable equivalence class (e.g. modulo bisimilarity) of transducers
from A to B. In [2] it is also characterized as an element of a final
coalgebra.

Remark 1.1. Lack of memories in effectful situations causes dif-
ficulties in GoI regardless of evaluation strategies. Consider the
equation (t t s) u = t u t s u; we expect it to hold regardless
of evaluation strategies. In the GoI interpretation of (tts) u, when
u receives a query from the t part in tt s, we must make sure that
the response goes back to t, not to s. It is not clear how to enforce
this without using memories, as one would see trying to interpret
the program in (any presentation of) GoI.

Contributions—from Coalgebraic Components to Algebraic
Effects
Building on Abramsky’s idea of resumption based GoI, the current
paper aims at a generic framework that yields GoI interpretations—
or rather GoI implementations, since they are given concretely as
state based transducers like in (3)—of calculi with various compu-
tational effects.

More specifically: we model an effect by a monad T fol-
lowing Moggi [26]; and as an syntactic interface we use alge-
braic operations like t for the powerset monad P , following

Plotkin & Power [28]. Concrete interpretations are given by (state
based) transducers with the same effect T , much like the non-
deterministic one in (3). Assuming that T comes with a suitable
Cppo structure—many effects qualify by the slight modification
of adding partiality—we show that the category Res(T ) of T -
resumptions is traced monoidal. Then the general workflow in (1),
starting from its second step, yields a GoI interpretation of a cal-
culus, with transducers as realizers. The resulting interpretation
is sound with respect to the algebraic axioms (e.g. associativity
of t) as well as Moggi’s equations for the computational lambda
calculus.

This overall procedure—from a monad T and algebraic opera-
tions to a GoI interpretation in the form of T -transducers—we wish
to call memoryful GoI, emphasizing the role of memories (“mem-
ories” here are the same as “internal states”; the choice is to dis-
tinguish from the global “state” monad). A novelty is the use of
memories (in the form of internal states of transducers) that allows
us to describe interpretations of algebraic effects in a generic yet
concrete manner.

We describe the construction of transducers concretely in terms
of coalgebraic component calculus. Component calculi are heavily
studied in software engineering (see e.g. [4]) as means of compos-
ing software components. A major concern there is compositional-
ity, much like in the study of process calculi (see e.g. [3]); and suc-
cessful (co)algebraic techniques have been developed for the lat-
ter [21, 32] as well as for the former [5]. We rely on the categorical
formalization of component calculi in [5, 15] where components
are coalgebras; categorical genericity is needed since our transduc-
ers are parametrized by a monad T . In this way, the current work
pursues “some convergence and unification”—suggested in the pa-
per [1], from which we draw inspirations—of GoI and coalgebra,
in program semantics.

Organization of This Paper In Section 2 we recall categorical
GoI, and in Section 3 we summarize notations used in this paper.
In Section 4 we introduce component calculus on transducers; in
Section 5 we quotient components by behavioral equivalence and
define a traced symmetric monoidal category of sets and resump-
tions. In Section 6, we sketch construction of categorical models of
the computational lambda calculus based on categorical GoI with
transducers; the resulting GoI interpretation is described in Sec-
tion 7 with concrete examples. Due to space limitation, some proofs
and argument in this paper are deferred to an extended version.

2. Categorical Geometry of Interaction
We recall a categorical formulation of GoI called GoI situation in-
troduced by Abramsky, Haghverdi and Scott and pin down the ob-
stacle explained in the introduction in mathematical terms. A cru-
cial notion in their categorical axiomatics is that of traced symmet-
ric monoidal category.

Definition 2.1. A traced symmetric monoidal category is a sym-
metric monoidal category (C,⊗, I) with a family of maps

trCA,B : C(A⊗ C,B ⊗ C)→ C(A,B)

subject to certain conditions (see [13, 20]).

Definition 2.2. Let C be a traced symmetric monoidal category.
A traced symmetric monoidal functor F : C → C is a strong
symmetric monoidal functor such that

trFCFA,FB(m−1
B,C ◦ Ff ◦mA,C) = F (trCA,B(f))

for all C-morphisms f : A ⊗ C → B ⊗ C where mA,B : FA ⊗
FB → F (A⊗B) is the coherence isomorphism of F .

For example, the category (Rel,+, ∅) of sets and relations
forms a traced symmetric monoidal category: for a Rel-morphism



f : A+C → B+C, we define the trace operator trCA,B(f) : A→
B by the execution formula

trCA,B(f) = fAB ∪
⋃
n≥0

fCB ◦ fnCC ◦ fAC

where fXY : X → Y is the restriction of f to a relation between
X and Y .

Definition 2.3. A GoI situation is a list (C, U, F, φ, ψ, u, v) con-
sisting of a traced symmetric monoidal category (C,⊗, I), a C-
object U and a traced symmetric monoidal functor F : C → C with
retractions φ : U⊗U CU : ψ and u : FU CU : v together with the
following retractions

n : IC U : n′ eA : AC FA : e′A dA : FFAC FA : d′A

cA : FA⊗ FAC FA : c′A wA : IC FA : w′A

such that eA, dA, cA and wA are natural in A.

The retraction (φ, ψ) and (n, n′) provides GoI interpretation of the
multiplicative fragment of linear logic, and the traced symmetric
monoidal functor F with the remaining retractions provide GoI
interpretation of the exponential fragment of linear logic. In [2],
a GoI situation is shown to yield a linear combinatory algebra; via
the Girard translation, we obtain an SK-algebra that is a model of
intuitionistic logic.

Proposition 2.4. Let (C, U, F, φ, ψ, u, v) be a GoI situation. The
set C(U,U) with the binary application a • b on C(U,U) given by

a • b = trUU,U ((U ⊗ (u ◦ Fb ◦ v)) ◦ ψ ◦ a ◦ φ)

forms an SK-algebra: there exist S,K ∈ C(U,U) such that

S • a • b • c = a • c • (b • c), K • a • b = a

where we assume that the binary application is left associative.

On the categorical level, the obstacle in the introduction stems
from the fact that the trace operator tr on Rel does not preserve
the union of relations:

trCA,B(f ∪ g) = trCA,B(f) ∪ trCA,B(g) ∪ gCB ◦ fAC ∪ · · · (4)

Failure of preservation of the trace results in failure of the equation:

(a ∪ b) • c 6= (a • c) ∪ (b • c) (5)

in the SK-algebra (Rel(U,U), •) constructed from a GoI situation
(Rel, U, F, φ, ψ, u, v). The unexpected value returned by the pro-
gram (2) appears in the extra summands in (4).

Remark 2.5. In the original definition of GoI situation in [2], the
retractions (e, e′), (d, d′), (c, c′) and (w,w′) are required to be
monoidal natural transformations. In this paper, we only require
the injection side of retractions to be natural since this is enough
to prove Proposition 2.4. This relaxation is needed in our concrete
examples. We also note that since we do not require e, d, c andw to
be monoidal, the retraction pairs (e, e′), (d, d′), (c, c′) and (w,w′)
do not give rise to pointwise natural transformations. Pointwise
naturality is required in [2] to construct weak linear category.

3. Notations
We summarize several notations used in this paper. Let Set be the
category of sets and maps (i.e. functions). We write

A
inlA,B−−−−→ A+B

inrA,B←−−−− B, A+A
γA−−→ A

for the injections and the codiagonal map. We write

A×B
σA,B−−−→ B×A, A×B+A×C

δA,B,C−−−−−→ A× (B+C)

for the canonical bijections. We write >A : A → 1 and ⊥A : ∅ →
A for the unique maps. For sets I andA, we writeAI for the I-fold
product of A.

Let (T, η, µ) be a monad on Set. In order to distinguish maps
from morphisms in the Kleisli category SetT , we write f : A→T

B when f is a SetT -morphism from A to B. Since T is a monad
on Set, we have tensorial strengths

TA×B
stA,B−−−−→ T (A×B), A× TB

st′A,B−−−−→ T (A×B).

For SetT -morphisms f : A →T B and g : B →T C, a map
h : A→ B and a setD, we define SetT -morphisms g◦T f , f⊗D,
D ⊗ f and h∗ by

g ◦T f = µC ◦ Tg ◦ f : A→T C,

f ⊗D = stB,D ◦ (f ×D) : A×D →T B ×D,
D ⊗ f = st′D,B ◦ (D × f) : D ×A→T D ×B,

h∗ = ηB ◦ h : A→T B.

The first construction is the composition of Kleisli morphisms. The
second and the third constructions are the premonoidal products in
SetT . See [29] for premonoidal category, although further famil-
iarity will not be needed. For SetT -morphisms f : A →T B and
g : C →T D such that

(f ⊗D) ◦T (A⊗ g) = (B ⊗ g) ◦T (f ⊗ C),

we write f ⊗ g for (f ⊗ D) ◦T (A ⊗ g); this happens when T
is a commutative monad. The last construction (−)∗ is the Kleisli
inclusion from Set to SetT , which lifts the (finite) coproducts
(∅,+, inl, inr) of Set to (finite) coproducts (∅,+, inl∗, inr∗) of
SetT .

For legibility, we omit some obvious isomorphisms in the re-
mainder of this paper. For example, we write ηA for a map from
1 × A to T (1 × A) obtained by composing ηA with obvious iso-
morphisms.

4. Transducers and a Component Calculus
4.1 Transducer
Transducers are “functions with internal states.”

Definition 4.1. Let T be a monad on Set. For sets A and B,
a T -transducer from A to B is a pair (X, c) consisting of a set
X together with a SetT -morphism c : X × A →T X × B.
A pointed T -transducer is a triple (X, c, x) consisting of a T -
transducer (X, c) and a map x : 1 → X . We often drop the
word ‘pointed’ in ‘pointed T -transducer.’ When (X, c, x) is a T -
transducer from A to B, we write (X, c, x) : A _ B.

A T -transducer (X, c, x) is a machine consisting of a set of
(internal) states X , an initial state x and a transition rule c. For
example, when T is the identity functor, an equation c(y, a) =
(y′, a′) means that if an input is a and the current internal state of
the machine is y, then the machine outputs a′ and the next internal
state is y′. The monad T enables us to consider various effects of
transition rules: when T is the powerset monad, transition rules are
nondeterministic.

Requirement 4.2. Throughout the paper we require that the sym-
metric monoidal category (SetT ,+, ∅) has a trace operator tr that
satisfies the following restricted uniformity [12]: for all h : C →
D, f : A + C →T B + C and g : A + D →T B + D, if
(B + h∗) ◦T f = g ◦T (A+ h∗), then trCA,B(f) = trDA,B(g).

It is typical in particle style GoI [2] that the underlying traced
symmetric monoidal category of a GoI situation is a Kleisli cate-
gory with a trace operator that is uniform in the above restricted
sense. The next lemma is useful for checking Requirement 4.2. We



write Cppo for the category of pointed complete posets (cpo) and
continuous maps. We consider Cppo-enrichment with respect to
the symmetric monoidal structure given by the finite products. A
Cppo-enriched cocartesian category C is a Cppo-enriched cate-
gory whose underlying category has finite coproducts such that the
coproduct f + g : A+B → C +D is continuous on f and g.

Lemma 4.3. If the Kleisli category SetT is a Cppo-enriched co-
cartesian category such that the bottom morphisms ⊥A,B : A →T

B satisfy the following conditions:

• f ◦T ⊥A,B = ⊥A,B′ for all f : B →T B
′

• ⊥A,B ◦T g∗ = ⊥A′,B for all g : A′ → A

then (SetT ,+, ∅) satisfies Requirement 4.2.

In the following examples, we can use Lemma 4.3 to check Re-
quirement 4.2: we combine partiality with the standard definitions
of monads so that the Kleisli categories are enriched over Cppo.

Example 4.4. We give leading examples of monads that satisfy
Requirement 4.2.

• The lift monad LA = 1 +A.
• The (full) powerset monad PA = 2A and the countable pow-

erset monad PωA = {a ⊆ A | a is countable}.
• The probabilistic subdistribution monad

DA =
{
d : A→ [0, 1] |

∑
a∈A da ≤ 1

}
where [0, 1] is the unit interval.

• A global state monad SA = (1 +A× V L)V
L

where V and L
are (countable) sets.

• A writer monad TA = 1 +M ×A where M is a monoid.
• An exception monad EA = 1 + E +A where E is a set.
• A continuation monad TA = RA ⇒ R where R is a pointed

cpo andRA ⇒ R is the set of continuous maps from theA-fold
product of R to R.

• An I/O monad TA = νD. (O ×D +DI +A)⊥ where O and
I are (countable) sets.

In the last example, we regard a set as a cpo with the discrete order,
and D⊥ is the pointed cpo obtained by adding a bottom element to
a cpoD. For an endo-functor F on Cppo, the fixed point νD. FD
denotes a final F -coalgebra in Cppo.

4.2 A Component Calculus
We shall extend some constructions on SetT to constructions on
T -transducers, namely the sequential composition f◦T g, the traced
symmetric monoidal structure (SetT ,+, ∅, tr) and algebraic oper-
ations on T . These extensions will organize T -transducers into a
“traced symmetric monoidal category,” on which we will define a
“GoI situation.” Here the quotation marks (“so to speak”) are be-
cause the equational axioms of traced symmetric monoidal cate-
gory and GoI situation hold only up-to suitable equivalences be-
tween T -transducers. In Section 5, we will (properly) introduce a
traced symmetric monoidal category and a GoI situation as quo-
tients of the “traced symmetric monoidal category” and the “GoI
situation” in this section.

4.2.1 Identity and Composition
For a setA, we define an “identity” onA to be the obvious one-state
T -transducer

(1, ηA, id1) : A _ A.
Generalizing the above “identity,” we have a construction J from
a SetT -morphism f : A →T B to a T -transducer Jf : A _ B
defined by (1, f, id1). For a map g : A → B, we define a T -
transducer J0g : A _ B as the composition of J and the Kleisli
inclusion, namely (1, g∗, id1).

For T -transducers (X, c, x) : A _ B and (Y, d, y) : B _ C,
we define a “composition”

(Y, d, y) ◦ (X, c, x) : A _ C

to be (X × Y, e, x × y) where e is a SetT -morphism from X ×
Y ×A to X × Y × C given by

(X ⊗ d) ◦T (X ⊗ σ∗B,Y ) ◦T (c⊗ Y ) ◦T (X ⊗ σ∗Y,A).

This is the sequential composition of machines:

(Y, d, y) ◦ (X, c, x) =
(Y,d,y)

(X,c,x)

A

B

C

We note that this is an intuitive representation of the composition
and is inept for rigorous reasoning. For example, the composition
of T -transducers fails to be associative in the strict sense.

4.2.2 Monoidal Product
We define a “monoidal product”

(X, c, x)� (Y, d, y) : A+ C _ B +D

of T -transducers (X, c, x) : A _ B and (Y, d, y) : C _ D to be
(X × Y, e, x× y) where

e : X × Y × (A+ C)→T X × Y × (B +D)

is a unique SetT -morphism such that

e ◦T (X ⊗ Y ⊗ inl∗A,C) = (σ∗Y,X ⊗ inl∗B,D)

◦T (Y ⊗ c) ◦T (σ∗X,Y ⊗A),

e ◦T (X ⊗ Y ⊗ inr∗A,C) = (X ⊗ Y ⊗ inr∗B,D) ◦T (X ⊗ d).

The “monoidal product”� is the parallel composition of machines:

(X, c, x)� (Y, d, y) =

(
(X,c,x) (Y,d,y)

)
.

The T -transducers (X, c, x) and (Y, d, y) behave independently
following their own internal states.

4.2.3 Trace
For a T -transducer (X, c, x) : A + C _ B + C, we define a T -
transducer TrCA,B(X, c, x) : A _ B to be(

X, trX×CX×A,X×B((δ∗X,B,C)−1 ◦T c ◦T δ∗X,A,C), x
)
.

Here δ is the bijection in Section 3 and tr is the trace operator
of SetT . The operator Tr is a “trace operator” with respect to
the “symmetric monoidal structure” (�, ∅). Checking that trace
axioms are indeed “satisfied” is laborious but doable; see [15]. The
“trace operator” introduces feedback:

(X,c,x)

B C

CA CA

B

TrCA,B7−→
(X,c,x)

The internal states enable us to memorize history of feedbacking.
Let L be the lifting monad given in Example 4.4. Then the internal
states of an L-transducer

({0, 1, · · · , n}, c, 0) : {0}+ {0}_ {0}+ {0}
given by

c(i, inl{0}+{0}(0)) =

{
(0, inr{0}+{0}(0)) (i < n)

(0, inl{0}+{0}(0)) (i = n)

c(i, inr{0}+{0}(0)) =

{
(i+ 1, inr{0}+{0}(0)) (i < n)

(0, inl{0}+{0}(0)) (i = n)



memorizes number of feedback loops.

4.2.4 GoI Situation
Let N be the set of natural numbers. We define maps

κn : 1→ N, $n,X : XN → XN ×X, fN : AN → BN

to be the constant map κn(∗) = n, the permutation that picks the
n-th element, and the N-fold product of a map f : A→ B.

For a set A, we define a set FA to be N × A, and for a T -
transducer (X, c, x) : A _ B, we define a T -transducer

F (X, c, x) : FA _ FB

to be (XN, c′, xN) whose transition map

c′ : XN × N×A→T X
N × N×B

is a unique SetT -morphism such that

c′(−, n,−) : XN ×A→T X
N × N×B =

(($∗n,X)−1 ⊗ κ∗n ⊗B) ◦T (XN ⊗ c) ◦T ($∗n,X ⊗A)

for all natural numbers n. The construction F , which corresponds
to the linear exponential comonad of linear logic, introduces a
parallel composition of countably infinite copies:

F (X, c, x) =

(
(X,c,x)

A

B

(X,c,x)

A

B

(X,c,x)

A

B

···

)
.

Each (X, c, x) in F (X, c, x) behaves independently.
We choose bijections φ : N+N ∼= N : ψ and u : FN ∼= N : v in

Set, which induce the following “retractions”

J0φ : N + N ∼= N : J0ψ, J0u : FN ∼= N : J0v.

The list (N, F, J0φ, J0ψ, J0u, J0v) forms a “GoI situation.” In
fact, we have the following “retractions”

J0⊥N : ∅C N : J(trNN,∅(γ
∗
N))

J0(κ1 ×A) : AC FA : J0(>N ×A) (dereliction)

J0(u×A) : FFA ∼= FA : J0(v ×A) (digging)

J0⊥FA : ∅C FA : J(trFAFA,∅(γ
∗
FA)) (weakening)

J0(φ×A) : FA+ FA ∼= FA : J0(ψ ×A) (contraction)

where we omit several obvious “isomorphisms.”
We illustrate how these “retractions” act on T -transducers. We

note that a pair of T -transducers

(Y, d, y) : A′_̂A : (Y ′, d′, y′)

induces a translation of T -transducers:

(X, c, x) : A _ A 7−→
(Y ′, d′, y′) ◦ (X, c, x) ◦ (Y, d, y) : A′ _ A′.

For a T -transducer (X, c, x) : A _ A, dereliction pulls out the first
(X, c, x) in F (X, c, x), and digging sorts F (X, c, x) into a bunch
of bunches of (X, c, x)’s:

· · ·digging7−→dereliction7−→
,

. . .
. . .

. . .

.

Weakening discards F (X, c, x) completely, and contraction sorts
F (X, c, x) into a pair of F (X, c, x)’s:

. . .
. . .

. . .
. . .

contraction7−→weakening7−→ ∅
, .

The construction of GoI situation is essentially equivalent to those
in [2]. For operational description of GoI situation, see [16].

For T -transducers (X, c, x), (Y, d, y) : N _ N, we define a T -
transducer (X, c, x) • (Y, d, y) : N _ N to be

TrNN,N((N� (J0u ◦ F (Y, d, y) ◦ J0v)) ◦ J0ψ ◦ (X, c, x) ◦ J0φ).

Since (N, F, J0φ, J0ψ, J0u, J0v) is a “GoI situation,” the set of
T -transducers with the binary application (−)•(−) forms an “SK-
algebra” by Proposition 2.4. The binary application consists of
parallel composition plus hiding:

(X, c, x) • (Y, d, y) = (X,c,x)

J0ψ

J0φ

F (Y,d,y)

J0u

J0v

.

Hiding means that we can not observe interaction between J0u ◦
F (Y, d, y) ◦ J0v and J0ψ ◦ (X, c, x) ◦ J0φ from outside.

Remark 4.5. Since we work in untyped setting (at the transducer
level), it is straightforward to extend our results to model polymor-
phic calculi. For modeling computational lambda calculi without
polymorphism, you can choose typed approach, which will sim-
plify our framework.

4.2.5 Algebraic Operation
We extend algebraic operations on the monad T to operations on
T -transducers. We first recall the definition of algebraic operation,
which is a mathematical interface to computational effects.

Definition 4.6 ([28]). Let T be a strong monad on a cartesian
closed category (C, 1,×,⇒) with countable products, and let I be
a countable set. An I-ary algebraic operation on T is a family of
C-morphisms

{αA,B : (A⇒ TB)I → (A⇒ TB)}A,B∈C
such that

αA′,B′ ◦ cpI ◦∆ = cp ◦ ((B ⇒ TB′)× αA,B × (A′ ⇒ A))

where

cp: (B ⇒ TB′)× (A⇒ TB)× (A′ ⇒ A)→ (A′ ⇒ TB′)

is the (Kleisli) composition, and

∆: (B ⇒ TB′)× (A⇒ TB)I × (A′ ⇒ A)→
((B ⇒ TB′)× (A⇒ TB)× (A′ ⇒ A))I

is the C-morphism that is diagonal in the first argument and the
third argument. We write ary(α) for I .

We define AlgOpT to be the category of algebraic operations
on T : an object is a countable set, and a morphism from I to I ′ is a
family of C-morphisms

{αA,B : (A⇒ TB)I → (A⇒ TB)I
′
}A,B∈C

such that the family {πjA,B ◦ αA,B}A,B∈C is an I-ary algebraic
operation for all j ∈ I ′ where πjA,B is the j-th projection from
(A ⇒ TB)I

′
to A ⇒ TB. The category AlgOpT has countable

products given by the disjoint sum.

Example 4.7. We give examples of algebraic operations.

• A binary algebraic operation ⊕ on P given by

(f ⊕A,B g)(a) = f(a) ∪ g(a)

where we use an infix notation. We will use the operation ⊕ to
interpret the t construct in the introduction.



• A binary algebraic operation ⊕p on D given by

(f ⊕pA,B g)(a) = p · f(a) + (1− p) · g(a)

where p is a real number in the unit interval [0, 1].
• A state monad SX = (1 +X × V L)V

L

for a countable set of
locations L and a countable set of values V has the following
algebraic operations

lookup`,A,B : SetS(A,B)V → SetS(A,B),

updatev,`,A,B : SetS(A,B)→ SetS(A,B)

for each ` ∈ L and v ∈ V given by

((lookup`,A,B(f))(a))(s) = (fs(`)(a))(s),

((updatev,`,A,B(f))(a))(s) = (fa)(s[v/`])

where the state s[v/`] ∈ V L is given by s[v/`](`′) = s(`′) for
` 6= `′ and s[v/`](`) = v.

For other examples of algebraic operations, see [28].

For a monad T on Set, an I-ary algebraic operation α on T and
a family of T -transducers {(Xi, ci, xi) : A _ B}i∈I , we define

αA,B{(Xi, ci, xi)}i∈I : A _ B

to be a T -transducer (1 + Y, d, inl1,Y ) consisting of a coproduct

Y =
∐
i∈I Xi

inji←−− Xi and a unique SetT -morphism d from
(1 + Y )×A to (1 + Y )×B satisfying

d ◦T (inl∗1,Y ⊗A) = αA,(1+Y )×B{c′i}i∈I
d ◦T ((inr∗1,Y ◦T inj∗i )⊗A) = ((inr∗1,Y ◦T inj∗i )⊗B) ◦T ci

where c′i is a SetT -morphism from A to (1 + Y ) × B given by
(inr∗1,Y ⊗B) ◦T (inj∗i ⊗B) ◦T ci ◦T (x∗i ⊗A).

Intuitively, the construction αA,B introduces branching at the
(fresh) initial state. A T -transducer αA,B{(Xi, ci, xi)}i∈I memo-
rizes the first branching information using its internal states, and af-
ter the first branching, the behavior of αA,B{(Xi, ci, xi)}i∈I in the
i-th branching follows the i-th T -transducer (Xi, ci, xi) for each
i ∈ I . For example, the nondeterministic Mealy machine in (3) is
the same as the following P-transducer

({x0}, c0, x0)⊕{q},{0,1}({x1}, c1, x1) : {q} → {0, 1}
where ({xi}, ci, xi) : {q} _ {0, 1} are P-transducers given by
ci(xi, q) = (xi, i) for i = 0, 1.

5. Behavioral Equivalence
We have presented “GoI situation” on the “traced symmetric
monoidal category” of sets and T -transducers. Precisely speak-
ing, they are not so in a strict sense: in order to satisfy the equa-
tional axioms of traced symmetric monoidal category and GoI
situation, T -transducers must be suitably quotiented. For exam-
ple, (X, c, x) ◦ (1, ηA, id1) is not equal to (X, c, x), and we need
to identify them. In this paper, we use behavioral equivalence, a
notion common in coalgebra [19]. Intuitively, two (pointed) T -
transducers are behaviorally equivalent if the initial states are con-
nected by a zigzag of homomorphisms.

Definition 5.1. Let (X, c, x) and (Y, d, y) be T -transducers from
A to B. A homomorphism from (X, c, x) to (Y, d, y) is a map
h : X → Y such that (h∗⊗B)◦T c = d◦T (h∗⊗A) and h◦x = y.

Definition 5.2. For T -transducers (X, c, x) and (Y, d, y) from A
to B, we say that (X, c, x) is behaviorally equivalent to (Y, d, y)
if there is a T -transducer (Z, e, z) : A _ B and homomor-
phisms from (X, c, x) to (Z, e, z) and from (Y, d, y) to (Z, e, z).
When (X, c, x) is behaviorally equivalent to (Y, d, y), we write
(X, c, x) 'TA,B (Y, d, y).

A zigzag of homomorphisms can be reduced to a cospan used in the
previous definition, since the category of T -transducers (identified
as coalgebras) has pushouts. See [19].

Up to the behavioral equivalence, we can drop the quota-
tion marks in Section 4.2. It is easy to check that constructions
◦,�,Tr, F, • and α are compatible with the behavioral equiva-
lence. Below we abuse notations: we use �,Tr, F and • for oper-
ators on T -transducers as well as those on equivalence classes of
T -transducers.

We define a category Res(T ) by

• Objects are sets.
• Morphisms from A to B are 'TA,B-equivalence classes of T -

transducers from A to B.

For a T -transducer (X, c, x) : A _ B, we write [(X, c, x)] for
the Res(T )-morphism from A to B represented by (X, c, x). The
identity on A is [(1, ηA, id1)], and the composition of a Res(T )-
morphism [(X, c, x)] from A to B and a Res(T )-morphism
[(Y, d, y)] from B to C is [(Y, d, y) ◦ (X, c, x)].

The category Res(T ) with (�, ∅,Tr) is a traced symmetric
monoidal category. The coherence isomorphisms of the symmetric
monoidal category (Set,+, ∅) induce coherence isomorphisms of
(Res(T ),�, ∅). The following list

(Res(T ),N, F, [J0φ], [J0ψ], [J0u], [J0v])

is a GoI situation, and (Res(T )(N,N), •) is an SK-algebra.

Theorem 5.3. Let α be an I-ary algebraic operation on T . The
operator α is natural, and Tr is distributive over α modulo the
behavioral equivalence:

• For each T -transducer (X, c, x) : B _ B′, for each family
of T -transducers {(Yi, di, yi) : A _ B}i∈I and for each map
h : A′ → A, it holds that

(X, c, x) ◦ αA,B{(Yi, di, yi)}i∈I ◦ J0h

'TA′,B′ αA′,B′{(X, c, x) ◦ (Yi, di, yi) ◦ J0h}i∈I .

• For each family of T -transducers {(Xi, ci, xi)}i∈I fromA+C
to B + C, it holds that

TrCA,B(αA+C,B+C{(Xi, ci, xi)}i∈I)
'TA,B αA,B{TrCA,B(Xi, ci, xi)}i∈I . (6)

Let α be an I-ary algebraic operation on T . The following
behavioral equivalence is a consequence of Theorem 5.3:

αN,N{(Xi, ci, xi)}i∈I • (Y, d, y)

'TN,N αN,N{(Xi, ci, xi) • (Y, d, y)}i∈I (7)

where {(Xi, ci, xi)}i∈I and (Y, d, y) are T -transducers from N to
N. In fact, we have

αN,N{(Xi, ci, xi)}i∈I • (Y, d, y)

= TrNN,N((Z, e, z) ◦ J0ψ ◦ αN,N{(Xi, ci, xi)}i∈I ◦ J0φ)

'TN,N TrNN,N(αN,N{(Z, e, z) ◦ J0ψ ◦ (Xi, ci, xi) ◦ J0φ}i∈I)
'TN,N αN,N{TrNN,N((Z, e, z) ◦ J0ψ ◦ (Xi, ci, xi) ◦ J0φ)}i∈I
= αN,N{(Xi, ci, xi) • (Y, d, y)}i∈I

where we write (Z, e, z) for N� (J0u◦F (Y, d, y)◦J0v). The first
equivalence follows from naturality of α, and the second equiv-
alence follows from distributivity of Tr over α. The behavioral
equivalences (6) and (7) are the equivalences that we wish to hold
as we observed at the end of Section 2.



6. Realizability and Categorical Models
In the next section, we exemplify GoI interpretation of algebraic
effects. The purpose of this section is to sketch how to derive them:
we use realizability technique. For details of arguments and proofs
in this section are deferred to an extended version.

From the SK-algebra (Res(T )(N,N), •), we can utilize the
realizability construction and constructs a cartesian closed category
Per(T ) consisting of partial equivalence relations on the SK-
algebra Res(T )(N,N) and realizable maps. See [17] for a precise
definition of the category of partial equivalence relations. Since
the category Per(T ) has countable products, we can consider
algebraic operations with countable arities on monads on Per(T ).

The next theorem is our main theorem, from which soundness
of GoI interpretation that we are going to give follows.

Theorem 6.1. The cartesian closed category Per(T ) has a strong
monad Φ and an identity-on-object countable-product-preserving
faithful functor (−)† : AlgOpT → AlgOpΦ.

We only give a definition of ΦR for R in Per(T ). Let h be a map
from N to N given by

φ◦(φ+N)◦(N+ ς)◦(ψ+N)◦ ς ◦(φ+N)◦(N+ ς)◦(ψ+N)◦ψ
where ς : N + N → N + N is the swapping. We derived h using
combinatory completeness: the map h represents a term λx. λk. k x
of the untyped linear lambda calculus [31]. We say that an objectR
in Per(T ) is closed when (αN,N{ai}i∈ary(α), αN,N{a′i}i∈ary(α))
is in R for each {(ai, a′i) ∈ R}i∈ary(α) and for each algebraic
operation α on T . We define ΦR by

ΦR =
⋂
{S ∈ Per(T ) | R′ ⊆ S and S is closed}

where R′ = {([J0h] • a, [J0h] • a′) | (a, a′) ∈ R}.
By Theorem 6.1, the Kleisli category Per(T )Φ is a categor-

ical model of the computational lambda calculus, i.e., there is a
canonical interpretation of the computational lambda calculus in
Per(T )Φ. The interpretation, which we call categorical interpre-
tation, is sound with respect to the standard equational theory of
the computational lambda calculus [26]. We can interpret algebraic
effects using algebraic operations on Φ induced by algebraic opera-
tions on T via (−)†. For example, when we need nondeterminism,
we can start from the powerset monad; when we need global states,
we can start from a global state monad.

We sketch extraction of GoI interpretation—i.e. extraction of
concrete T -transducers as realizers—from the categorical interpre-
tation of the computational lambda calculus extended with alge-
braic effects and a base type nat. For simplicity, we only consider
closed terms.

1. We choose a monad T on Set that satisfies Requirement 4.2.

2. We interpret the computational lambda calculus in the Kleisli
category Per(T )Φ as in [26, 28] where we interpret algebraic
effects by algebraic operations on Φ derived from algebraic
operations on T via (−)†, and we interpret nat by a natural
number object of Per(T ).

3. The categorical interpretation of a closed term t of a type τ bi-
jectively corresponds to an equivalence class of a partial equiv-
alence relation ΦJτK where JτK is the categorical interpretation
of the type τ . We choose a Res(T )-morphism on N that repre-
sents the equivalence class, and then, we extract a T -transducer
LtM : N _ N that represents the Res(T )-morphism on N.

We call the T -transducer LtM GoI interpretation of a term t.
We extracted GoI interpretation so that the next theorem holds.

Theorem 6.2 (Soundness). For closed terms t and s of type τ ,

• If t ≈ s, then ([LtM], [LsM]) ∈ ΦJτK.

• If t ≈ s and τ is the base type nat, then LtM 'TN,N LsM.

where [LtM] is the Res(T )-morphism represented by LtM, and we
write t ≈ s when the equation holds in the extension of the
computational lambda calculus. For example, we have

v (3 t 5) ≈ v 3 t v 5, 3 t 5 t 3 ≈ 3 t 5 ≈ 5 t 3

for any value v when the extension of the computational lambda
calculus has nondeterminism.

7. GoI Interpretation of Algebraic Effects
7.1 Memoryless GoI Interpretation
For comparison, we first present (memoryless) GoI interpretation
of the following programs:

(λxy : nat. x + y) 5 3 (λx : nat. x + x) 3.

We write g for φ ◦ inlN,N, d for φ ◦ inrN,N like [23] and 〈n,m〉 for
u(n,m). For i ∈ N, we define a map ki : N→ N by

ki〈m,n〉 = 〈m, i〉,

and we define maps sum, cpy : N + N + N→ N + N + N by

sum(inj1(n)) = inj2(n)

sum(inj2(n)) = inj3〈n, 0〉
sum(inj3〈〈n,m〉, l〉) = inj1〈n,m+ l〉

cpy(inj1〈n,m〉) = inj3〈gn,m〉
cpy(inj2〈n,m〉) = inj3〈dn,m〉

cpy(inj3〈gn,m〉) = inj1〈n,m〉
cpy(inj3〈dn,m〉) = inj2〈n,m〉

where inji : N→ N + N + N is the i-th injection. The map cpy is
from contraction in the GoI situation.

In (memoryless) GoI interpretation, we interpret a closed term
as a partial map from N to N. The following diagrams present GoI
interpretation of programs:

LnM = kn : N⇀ N,

L(λxy : nat. x + y) 5 3M = sum k3 k5 : N⇀ N,

L(λx : nat. x + x) 3M = sum cpy k3 : N⇀ N.

If we input 〈n,m〉 to L(λxy : nat. x + y) 5 3M, then we get an
output 〈n, 8〉 as a result of the following interactive computation
between sum, k3 and k5.

1. sum receives an input 〈n,m〉 from the leftmost port and out-
puts 〈n,m〉 from the middle port to ask a value of x.

2. k5 answers 〈n, 5〉 to sum.

3. sum receives an input 〈n, 5〉 from the middle port and outputs
〈〈n, 5〉, 0〉 from the rightmost port to ask a value of y.

4. k3 answers 〈〈n, 5〉, 3〉 to sum.

5. sum outputs 〈n, 8〉 from the leftmost port.

As a whole, GoI interpretation is sound with respect to β-equality:
L(λxy : nat. x + y) 5 3M is equal to k8. Similarly, we can check
that the GoI interpretation L(λx : nat. x+x) 3M is equal to k6. The
interactive computation illustrates how sum and cpy work: sum
computes sum, and cpy copies data.



7.2 Memoryful GoI Interpretation of Global State
GoI interpretation of the computational lambda calculus (i.e. call-
by-value calculus) in Section 7.2 and Section 7.3 follows from the
general scheme that we developed in this paper. In this section, we
present GoI interpretation of the computational lambda calculus ex-
tended with global states. We have a countably infinite set Loc of
location names, and each location stores a natural number. Exis-
tence of global states enables us to fetch a natural number stored at
a location ` ∈ Loc and update a value stored at a location `:

! ` : nat, ` := 3 : unit.

We extract GoI interpretation of global states from the categorical
interpretation in Per(S)Φ where Φ is the monad in Theorem 6.1
for T = S given by SA = (1 + A × NLoc)N

Loc

. This is a
global state monad in Example 4.4 where V = N and L =
Loc. In this section and the next section, we often confuse a map
f : N → N with a T -transducer J0f : N _ N and a SetT -
morphism g : N→T N with a T -transducer Jg : N _ N.

GoI Interpretation of core fragment For a type judgment

Γ ` t : τ (Γ = x1 : τ1, · · · , xn : τn),

we inductively define an S-transducer

LΓ ` t : τM : N⊗(n+1) _ N⊗(n+1)

where N⊗(n+1) is the (n+1)-fold tensor product of N, i.e., (n+1)-
fold direct sum of N. First, we give GoI interpretation of constants,
variables, the term application and the lambda abstraction. We
interpret natural numbers, summation and variables as follows:

h kn

w w

w′ w′

···

···

LΓ ` n : natM =

h sum

w

w′

w

w′

···

···

LΓ, x : nat, y : nat ` x + y : natM =

LΓ ` t + s : natM = LΓ ` (λxy : nat. x + y) t s : natM

w

w′

w

w′

w

w′

w

w′
h ···

···

···
i−1

···

···

···

Lx1 : τ1, · · · , xn : τn ` xi : τiM =

where w′ : N→S ∅ and w : ∅ →S N are unique SetS -morphisms,
and h : N+N→ N+N is ψ ◦h ◦φ. Here h is from Section 6, and
w and w′ are from weakening of the GoI situation in Section 4.2.4.
The combinator h corresponds to the unit of the monad Φ.

For Γ ` t : τ ⇒ σ and Γ ` s : τ , we define LΓ ` t s : σM by

φ

ψ

φ

ψ

e

e′

φ

ψ
c

c′

c

c′

LΓ`t:τ⇒σM LΓ`s:τM

···

···

···

···
LΓ ` t s : σM =

where we write e for u ◦ (κ1 × N), e′ for (>N × N) ◦ v, c for
u◦ (φ×N)◦ (v+v) and c′ for (u+u)◦ (ψ×N)◦v. Here we omit
some obvious bijections like N × (N + N) ∼= N × N + N × N.
These S-transducers are from dereliction and contraction of the
GoI situation given in Section 4.2.4. We note that the component
cpy consists of c and c′.

For Γ, x : τ ` t : σ, we define LΓ ` λx : τ. t : τ ⇒ σM by

d

d′

d

d′

h

φ

ψ

···

···

···

···

LΓ,x:τ`t:σMLΓ ` λx : τ. t : τ ⇒ σM =

where d and d′ are S-transducers from N to N given by d =
u ◦ (u×N) ◦Fv ◦ v and d′ = u ◦Fu ◦ (v×N) ◦ v. They are from
digging of the GoI situation in Section 4.2.4. The dashed line box
is an application of the “strong monoidal” F given in Section 4.2.4
followed by composition of the following isomorphism

F (N⊗ · · · ⊗ N)
∼=−→ FN⊗ · · · ⊗ FN u⊗···⊗u−→ N⊗ · · · ⊗ N.

GoI interpretation of algebraic effects Let Per(T )-objects L
and N be countably infinite coproducts of terminal object 1. The
algebraic operations in Example 4.7 induce algebraic operations
on Φ, which induce the following Per(S)Φ-morphisms

drf : L→Φ N asg : L×N →Φ 1

called generic effects in [28]. Interpretation of dereferencing ! ` and
assignment ` := n are derived from drf and asg respectively. For
simplicity, we give GoI interpretation of ! ` and ` := n for a fixed
location ` and a fixed value n.

We interpret − ` ! ` : nat by an S-transducer

drf ` = ({x`, x1, x2, · · · }, c, x`) : N _ N

where the SetS -morphism c on {x`, x1, x2, · · · } × N is given by

(c(x`, n))(s) = (xs(`), Ls(`)M(n), s),

(c(xm, n))(s) = (xm, LmM(n), s).

Initially, the S-transducer drf ` looks up the global state s and be-
haves as an S-transducer Ls(`)M. At the same time, the S-transducer
drf ` stores the value s(`) locally using its internal state. Thereafter,
drf ` looks up its internal state: if an internal state is xn, then drf `
behaves following LnM without referring to global states.

We interpret − ` ` := n : unit by an S-transducer

asg`,n = ({xrun, xdone}, c′, xrun) : N _ N

where the SetS -morphism c′ on {xrun, xdone} × N is given by

(c′(xrun,m))(s) = (xdone, L1M(m), s[n/`])

(c′(xdone,m))(s) = (xdone, L1M(m), s).

Initially, ({xrun, xdone}, c′, xrun) updates a global state, and there-
after, ({xrun, xdone}, c′, xrun) does nothing. We note that L1M in
the right hand side can be any GoI interpretation of a constant.

For example, the GoI interpretation of the following program

Q = (λx : nat. x + (` := 3); x) (! `) : nat



where t; s is an abbreviation of (λx : unit. s) t is

LQM =

φ

φ

ψψ

ψ ψ

ψ

φ

φ φ

ψφ

φ

hdrf` asg`,3cpyhsum

w′

ψ w

.

Here we simplified the canonically derived GoI interpretation. For
example, since φ is the inverse of ψ, we can apply the following
reduction to GoI interpretation:

φ ψ 7−→ .

These diagrams represent the identity on N + N, and the reduction
does not affect the execution result of GoI interpretation. Correct-
ness of the simplification can be checked by the realizability inter-
pretation. Automatic simplification is future work.

For an input dd〈n,m〉 and a global state s such that s(`) = 2,
the S-transducer behaves as follows:

1. drf ` refers to the global state s and memorizes the value s(`) =
2 by means of its internal state.

2. asg`,3 assigns 3 to ` changing its internal state to xdone.

3. sum asks a value of the right occurrence of x in x + x.

4. cpy passes the query from sum to drf `.

5. drf ` answers 2 to the query following its internal state. In this
step, drf ` does not refer to the global state s[3/`].

6. cpy passes the answer from drf ` to sum.

7. sum asks a value of the left occurrence of x in x + x.

8. cpy passes the query from sum to drf `.

9. drf ` answers 2 to the query following its internal state. In this
step, drf ` does not refer to the global state s[3/`].

10. cpy passes the answer from drf ` to sum.

11. sum outputs 4 = 2 + 2.

We note that without internal states, drf ` can not but refer to a
global state at 5) and 9), which results in a wrong output. We only
sketched computation process for lack of space. For example, we
omit some access to asg`,3.

As a whole, the S-transducer

L(λx : nat. x + (` := 3); x) (! `)M : N _ N

is behaviorally equivalent to an S-transducer

({x`, x1, x2, · · · }, d, x`) : N _ N

where the SetS -morphism

d : {x`, x1, x2, · · · } × N→ {x`, x1, x2, · · · } × N

is given by

(d(x`, n))(s) = (xs(`), Ls(`) + s(`)M(n), s[3/`]),

(d(xm, n))(s) = (xm, Lm+mM(n), s).

We can observe that the GoI interpretation of the following program

(λx : nat. (` := 3); (x + x)) (! `) : nat

is also behaviorally equivalent to ({x`, x1, x2, · · · }, d, x`).

Remark 7.1. Some readers may notice symmetries in diagrams in
this paper: the top half of diagrams are mirror images of the bottom
half of diagrams. This phenomenon stems from Int-construction
in the GoI workflow [2, 20] and is also observed in [22].

7.3 Memoryful GoI Interpretation of Nondeterminism
In this section, we consider nondeterminism. We can extract GoI
interpretation for nondeterminism from the categorical interpreta-
tion in Per(P)Φ where Φ is the monad in Theorem 6.1 for T = P .
We interpret the computational lambda calculus as in Section 7.2.
Interpretation of the nondeterministic choice operator t is derived
from the algebraic operation ⊕† on Φ.

We give two examples of GoI interpretation. The first one is
GoI interpretation of the nondeterministic choice 3 t 5. The GoI
interpretation L− ` 3 t 5 : natM : N _ N is a P-transducer
L3M⊕N,NL5M = ({x3t5, x3, x5}, c, x3t5) given by

c(x3t5, n) = {(x3, L3M(n)), (x5, L5M(n))}
c(x3, n) = {(x3, L3M(n))}
c(x5, n) = {(x5, L5M(n))}.

The P-transducer L3M⊕N,NL5M behaves like the nondeterministic
Mealy machine (3): initially, the P-transducer L3M⊕N,NL5M nonde-
terministically chooses L3M or L5M; thereafter L3M⊕N,NL5M sticks to
the same choice referring to its internal state.

We next consider the following program:

P = (λx : nat. x + x) (3 t 5) : nat.

We have the following equations:

P = ((λx : nat. x + x) 3) t ((λx : nat. x + x) 5)

= (3 + 3) t (5 + 5) = 6 t 10.

GoI interpretation of the program P is

LPM =

ψ

φ

h sum cpy

ψ

φ

L3M⊕N,NL5M

.

Here we also simplified canonically derived GoI interpretation.
The P-transducer LPM behaves as follows:

1. We input dd〈n,m〉.
2. L3M⊕N,NL5M receives an input gdd〈n,m〉, and the internal

state nondeterministically changes to x3 or x5. Here we as-
sume that L3M⊕N,NL5M chooses x3. Then L3M⊕N,NL5M outputs
dgdd〈n,m〉.

3. sum receives 〈n,m〉 from the leftmost input port and outputs
〈n,m〉 from the middle port to ask a value of the right occur-
rence of x in x + x.

4. cpy receives an input 〈n,m〉 from the leftmost port and outputs
〈gn,m〉 from the rightmost port to get x.

5. L3M⊕N,NL5M receives dd〈gn,m〉. Since the internal state is x3,
it answers dd〈gn, 3〉

6. cpy receives 〈gn, 3〉 from the rightmost port and answers
〈n, 3〉 to sum via the leftmost port.

7. sum receives 〈n, 3〉 from the middle port and asks a value of
the left occurrence of x in x + x by outputting 〈〈n, 3〉, 0〉 from
the rightmost port.



8. cpy receives 〈〈n, 3〉, 0〉 from the middle port and outputs
〈d〈n, 3〉, 0〉 from the rightmost port to get x.

9. L3M⊕N,NL5M receives dd〈d〈n, 3〉, 0〉. Since the internal state is
x3, it answers dd〈d〈n, 3〉, 3〉.

10. cpy receives 〈d〈n, 3〉, 3〉 and answers 〈〈n, 3〉, 3〉 to sum via
the middle port.

11. sum receives 〈〈n, 3〉, 3〉 from the rightmost port and outputs
〈n, 6〉 from the leftmost port.

12. We get an output dd〈n, 6〉.
In the computation, the component h controls interaction between
L3M⊕N,NL5M and the sum-cpy fragment.

Similarly, if L3M⊕N,NL5M chooses x5 at the first step, then we
get dd〈n, 10〉 as an output. As a whole, we have the following
behavioral equivalence:

L(λx : nat. x + x) (3 t 5)M 'PN,N L6M⊕N,NL10M = L6 t 10M.

8. Conclusion
We gave a general GoI/realizability workflow that interprets the
computational lambda calculus with algebraic effects as concrete
state machines. In other words, our framework equips token ma-
chines with internal memories and it allows to handle generic alge-
braic effects. Our result provides a systematic approach to categor-
ical GoI for algebraic effects. It would be interesting to apply our
results to compiler construction (initial steps are made in [27]), GoI
for additives and quantum lambda calculi.
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