
Memoryful GoI with Recursion
Koko Muroya

University of Tokyo
Email: muroykk@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

Email: naophiko@kurims.kyoto-u.ac.jp

Ichiro Hasuo
University of Tokyo

Email: ichiro@is.s.u-tokyo.ac.jp

Abstract—In this preliminary report we extend our framework
of memoryful Geometry of Interaction (mGoI) [Hoshino, Muroya &
Hasuo, CSL-LICS 2014] by recursion. The mGoI framework pro-
vides a sound translation from λ-terms to transducers; notably it
accommodates algebraic effects introduced by Plotkin and Power;
and the translation, defined in terms of a coalgebraic component
calculus, is extracted from categorical semantics (hence correct-by-
construction). In our current extension, recursion is additionally
accommodated by introducing a new “fixed point” operator in
the component calculus.

I. GOI INTERPRETATION

Girard’s Geometry of Interaction (GoI) [1] is originally
introduced as semantics of linear logic proofs and, via the
Curry-Howard correspondence (and the Girard transformation),
it has been successfully applied to denotational semantics of
higher-order functional programs. The resulting semantics give
so-called “GoI interpretation” of programs; one of its notable
features is that GoI interpretation of function application is
given by interactions of a function and its arguments.

Many representations of GoI interpretation have been stud-
ied so far: the original one by elements of a C∗-algebra (or
a dynamic algebra) that can be seen as “valid paths” on type
derivation trees [1]; the one by token machines [2]; and the
categorical one by arrows in a traced symmetric monoidal
category [3]. The second one by token machines plays an
important role in bridging the gap between mathematical in-
terpretation and low-level implementation. Namely it provides
techniques of compilation and high-level synthesis, such as a
compilation technique [2] and a high-level synthesis technique
[4] that enables hardware acceleration of programs by FPGA.

We wish to contribute to this sequence of work by enable
GoI interpretation to accommodate computational effects.

II. MEMORYFUL GOI

In the previous work [5] we developed the memoryful GoI
(mGoI) framework that extends GoI interpretation of programs.
Notably it accommodates algebraic effects—computational ef-
fects with algebraic operations as a syntactic interface, intro-
duced by Plotkin and Power [6], [7]. Their examples include:
nondeterminism, with a nondeterministic choice operation t
as an algebraic operation; probability, with a probabilistic
choice operation tp for any p ∈ [0, 1]; and global states, with
operations lookup and update.

A. Component Calculus over Transducers

The mGoI interpretation of a program is given by T -
transducers—an extension of Mealy machines (or sequential

machines) by effects specified by a monad T . Here we follow
[8] and model algebraic effects by a monad T on the category
Set of sets and functions.

Definition II.1 (T -transducers [5, Definition 4.1]). For sets
A and B, a T -transducer (X, c, x) from A to B (written as
(X, c, x) : A _ B) consists of a set X , a function c : X×A→
T (X ×B) and an element x ∈ X .

c

A

B

Fig. 1. a T -
transducer
(X, c, x) :
A _ B

A T -transducer (X, c, x) : A _ B can be seen as
an (T -effectful) transition function c with input A,
output B, a set of internal states X and an initial
state x. It shall be presented, in diagrams, as in
Fig. 1.

In the mGoI framework, T -transducers are com-
bined via a component calculus over them. It con-
sists of primitive T -transducers (as basic building blocks) and
the following operators on T -transducers: a) sequential compo-
sition ◦; b) binary parallel composition �; c) the trace operator
Tr; d) the countable copy operator F ; e) the operator α for
each algebraic operation α on T .1 On top of these operators
an auxiliary operator is defined: f) binary application •.2 The
last is a well-known construction called parallel composition
and hiding and is used here to translate function application.
In Fig. 2 are graphical presentation of these operators; we refer
readers to [5] for their precise definitions.

c

A

B

d

C

(a) sequential
composition ◦

c

A

B

d

C

D

(b) binary parallel
composition �

c

A

B

C

(c) Tr(X, c, x) :
A _ B

c

N× A

N×B

(d) F (X, c, x) :
N×A _ N×B

c1

A

B

c2

A

B

. . .
α

A

B

(e) α{(Xi, ci, xi)}i∈I :
A _ B

c d

A

B
N× C N× C

(f) binary applica-
tion •

Fig. 2. Operators on T -transducers

1We identify algebraic operations with their interpretations, as in [6].
2Binary application • presented here is an adaptation of that in [5].



B. Translation from Terms to Transducers

In our mGoI framework, to be precise, the provided interpre-
tation L−M is from a type judgment Γ `M : τ to a T -transducer

LΓ `M : τM :

m∐
i=0

N _
m∐
i=0

N .

Here N is the set of natural numbers. The interpretation is de-
fined inductively on the type derivations, using the component
calculus introduced in the above.

In [9] we presented a prototype implementation—TtT, short
for “Terms to Transducers”—of the translation L−M. Given a
closed term M of type τ , the tool first generates a Haskell pro-
gram that implements a transition function of the T -transducer
L` M : τM; and then it produces a simulation result of the
execution of the transducer. We believe that the tool serves as
a first step towards high-level synthesis (that translates a λ-
term to hardware design like on FPGA)—much like in [4] but
now with algebraic effects.

Some further comments are in order on: 1) a categorical
model behind the translation L−M; and 2) prospects of accom-
modating recursion. In fact the translation L−M is extracted
from a categorical model PerΦ—a Kleisli category of a strong
monad Φ on a cartesian closed category Per—built on T -
transducers and the component calculus. It is an instance of
the class of models, that is provided in [6], of the Moggi’s
computational λ-calculus [8] with algebraic operations and
arithmetic primitives. In [6] a class of models that accommo-
dates recursion is studied as well; the key is a fixed point
operator on a categorical model. However it was not clear,
at the time of writing our previous paper [5], how to obtain a
fixed point operator on the categorical model PerΦ and extend
the translation L−M to recursion.

III. TRANSLATION OF RECURSION

Here we report our ongoing work that introduces recursion
to the mGoI framework in [5].

A. Extension of Component Calculus and Translation

Our approach is to extend the component calculus shown in
Fig. 2: binary parallel composition � is extended to a countable
one �i∈I ; and on top of the calculus, a “fixed point” operator
Fix is introduced. It is presented in Fig. 3.

c

A

A

N×A

N×A

c c c . . .

Fig. 3. Fix(X, c, x) : A _ A. Here one dashed box means countable
duplication of a component.

It indeed gives a fixed point with respect to binary application
•.

Lemma III.1. Let (X, c, x) : A+ N× A _ A+ N× A be a
T -transducer. The T -transducer Fix(X, c, x) : A _ A satisfies
the behavioral equivalence

(X, c, x) • Fix(X, c, x) ' Fix(X, c, x).

Here the behavioral equivalence ' [5, Definition 5.2] is used
for (equational) reasoning on T -transducers; it enables us to
abstract away from internal state spaces of T -transducers.

With this extension of the component calculus the translation
L−M can be extended to recursion: the following definition is
precisely what is given in [5], except recursion that is new.

Definition III.2 (translation L−M). For each type judgment Γ `
M : τ where Γ = x1 : τ1, . . . xm : τm, we inductively define a
T -transducer

LΓ `M : τM = LΓ `M : τM
N

N

N

N

N

N. . .

. . .

m

m

:

m∐
i=0

N _
m∐
i=0

N

as in Fig. 4. In Fig. 4, α is an n-ary algebraic operation on T
that is the interpretation of op; and all the T -transducers other
than those in the form LΓ `M : τM are primitives (see [5] for
their definitions).

The translation L−M is sound with respect to the equational
theory given in [6]. The latter is (an almost full fragment of)
the Moggi’s equational theory of computational λ-calculus,
extended by algebraic operations, arithmetic primitives and
recursion.

Theorem III.3 (soundness of L−M). For closed terms M and N
of the base type nat, `M = N : nat implies L`M : natM '
L` N : natM.

For simplicity we have restricted to algebraic operations with
finite arities; accommodating countable arities is straightfor-
ward (much like in [5], [10]). On top of soundness, we expect
adequacy to hold too, against the operational semantics in [6].
Extension of our implementation tool TtT with recursion is
future work, too.

B. The Categorical Model

The translation L−M extended with recursion (Def. III.2) is
backed up by a categorical model, too—this fact underlies
Thm. III.3. Starting from the model PerΦ used in [5], we
use its modification PerΦ′ (whose details we do not describe
here); then we can show that the construction Fix in Lem. III.1
indeed yields a (categorical) fixed point operator in PerΦ′ . In
showing the latter, the following is a key technical lemma.

Lemma III.4. Let Cppo be the category of pointed ω-cpo’s
(i.e. with the least element ⊥) and continuous maps. Assume
that the Kleisli category SetT satisfies the following:
• it is Cppo-enriched (with a partial order v) and has

Cppo-enriched (countable) cotupling;
• its compositions ◦T is strict, in the restricted sense as

in [5, Lem. 4.3];



• its premonoidal structures X ⊗ −,− ⊗ X are locally
continuous and strict, for any X ∈ Set.

The Cppo-enrichment of SetT induces the following ω-
cpo structure on T -transducers. A partial order E on T -
transducers (X, c, x), (Y, d, y) : A _ B is defined by

(X, c, x) E (Y, d, y)
def.⇐⇒ X = Y ∧ x = y ∧ c v d .

Minimal T -transducers with respect to E are given by
(Z,⊥, z) for any set Z. Now for a T -transducer (X, c, x) : A+
N×A _ A+ N×A, the T -transducer Fix(X, c, x) : A _ A
is a supremum of the following ω-chain.

⊥

A

A

N×A

N×A

⊥ ⊥ . . . E c

A

A

N×A

N×A

⊥ ⊥ . . . E c

A

A

N×A

N×A

c ⊥ . . . E . . .

ACKNOWLEDGMENT

The authors are supported by the JSPS-INRIA Bilateral Joint
Research Project CRECOGI; K.M. and I.H. are supported by
Grants-in-Aid No. 24680001 & 15K11984, JSPS; and N.H. is
supported by Grant-in-Aid No. 26730004, JSPS.

REFERENCES

[1] J.-Y. Girard, “Geometry of Interaction I: interpretation of system F,” in
Logic Colloquium 1988, ser. Studies in Logic & Found. Math., vol. 127.
Elsevier, 1989, pp. 221–260.

[2] I. Mackie, “The Geometry of Interaction machine,” in POPL 1995.
ACM, 1995, pp. 198–208.

[3] S. Abramsky, E. Haghverdi, and P. J. Scott, “Geometry of Interaction
and linear combinatory algebras,” Math. Struct. in Comp. Sci., vol. 12,
no. 5, pp. 625–665, 2002.

[4] D. Ghica, “Geometry of Synthesis: a structured approach to VLSI
design,” in POPL 2007. ACM, 2007, pp. 363–375.

[5] N. Hoshino, K. Muroya, and I. Hasuo, “Memoryful Geometry of Inter-
action: from coalgebraic components to algebraic effects,” in CSL-LICS
2014. ACM, 2014, p. 52.

[6] G. Plotkin and J. Power, “Adequacy for algebraic effects,” in FoSSaCS
2001, ser. Lect. Notes Comp. Sci., vol. 2030. Springer, 2001, pp. 1–24.

[7] ——, “Semantics for algebraic operations,” Elect. Notes in Theor. Comp.
Sci., vol. 45, pp. 332–345, 2001.

[8] E. Moggi, “Computational lambda-calculus and monads,” Tech. Report,
pp. 1–23, 1988.

[9] K. Muroya, T. Kataoka, I. Hasuo, and N. Hoshino, “Compiling effectful
terms to transducers: prototype implementation of memoryful Geometry
of Interaction,” in LOLA 2014, 2014.

[10] G. Plotkin and J. Power, “Algebraic operations and generic effects,” Appl.
Categorical Struct., vol. 11, no. 1, pp. 69–94, 2003.

LΓ ` xi : τiM = h

w′

w

w′

w

w′

w

w′

w

. . .

. . .

. . .

. . .

. . .

. . .

i− 1

i− 1

LΓ `M N : τM = LΓ `M : σ ⇒ τM LΓ ` N : σM

φ

ψ

φ

ψ

ψ

φ

e′

e

c′

c

c′

c

. . .

. . .

. . .

. . .

LΓ ` λx : σ. M : σ ⇒ τM = h LΓ, x : σ `M : τM

ψ

φ

v

u

d′

d

d′

d

. . .

. . .

. . .

. . .

LΓ ` n : natM = h kn
w′

w

w′

w

. . .

. . .

LΓ, x : nat, y : nat ` x+ y : natM = h sum

w′

w

w′

w

. . .

. . .

(if x 6≡ y)

LΓ, x : nat ` x+ x : natM = h sum

c′

c

w′

w

w′

w

. . .

. . .

LΓ ` op(M1, . . . ,Mn) : τM = LΓ `M1 : τM LΓ `Mn : τM. . .
α

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

LΓ ` rec(f : σ ⇒ τ, x : σ. M) : σ ⇒ τM =

h LΓ, f : σ ⇒ τ, x : σ `M : τM

v

u

d′

d

d′

d

ψ

φ

c′

c

c′

c

u

v

d

d′

d

d′

. . .

. . .

. . .

. . .

. . .

. . .

. . .. . .Fix

Fig. 4. inductive definition of the translation L−M


