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Abstract

Comparison is common practice in programming, even regarding a single program-

ming language. One would ask if two programs behave the same, if one program

runs faster than another, or if one run-time system produces the outcome of a pro-

gram faster than another system. To answer these questions, it is essential to have a

formal specification of program execution, with measures such as result and resource

usage.

This thesis proposes a semantical framework based on abstract machines that

enables analysis of program execution cost and direct proof of program equiva-

lence. These abstract machines are inspired by Girard’s Geometry of Interaction,

and model program execution as dynamic rewriting of graph representation of a pro-

gram, guided and controlled by a dedicated object (token) of the graph. The graph

representation yields fine control over resource usage, and moreover, the concept of

locality in analysing program execution. As a result, this framework enjoys novel

flexibility, with which various evaluation strategies and language features, whether

they are effects or not, can be modelled and analysed in a uniform way.
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Chapter 1

Introduction

1.1 Context and motivation

1.1.1 Abstract machines for programming languages

Programming languages are for humans to communicate with computers. In this

one-way communication, humans write programs, and computers execute programs.

While the execution of programs is implemented by compilers and interpreters, it is

specified by semantic models. The specification can be in many terms, such as the

outcome, process, and properties, of program execution.

Given a computer program, executing it using one implementation is typically

not the only concern. Comparison between programs, or between implementations,

comes in various forms. One could ask if two programs have the same output, or

if one program has better execution cost than the other. It is desirable to have

the same output of a single program regardless of the choice of implementation, so

that the program is portable. The choice would depend on other measures, such as

execution cost, that can vary between implementations.

The comparison can only be possible if measures like output and execution cost

are formalised, independently of implementation details. What we need is a formal

specification of program execution that works across programs and implementations.
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2 CHAPTER 1. INTRODUCTION

Abstract machines are the oldest of such formal specification [Landin, 1964].

They model program execution by changing a configuration step-by-step. Each con-

figuration typically consists of a program fragment (code) under evaluation, and some

data structures, such as stacks and lookup tables, that record necessary information

to determine a possible change of the configuration. In loc. cit., the first abstract

machine for the lambda-calculus, called the SECD machine, was introduced. The

machine is named after the four components of the configurations it uses: Stack,

Environment, Control and Dump. While the control represents the code under eval-

uation, the other three components serve as the auxiliary data structures. The stack

records intermediate results, the environment serves as a lookup table for variables,

and the dump records computations that are to be resumed once the current code

is evaluated.

Using an abstract machine, the whole process of program execution can be ob-

tained as a sequence of configurations, or a history of configuration changes. This

sequence enables us to analyse both the result and the cost of execution. The exe-

cution result is represented by the final configuration of the sequence, and the space

cost can be measured using the size of each configuration. The time cost can be

estimated by adding up time usage of configuration changes. If all changes finish

in constant time, the time cost can simply be measured in terms of the number of

changes. If not, which is often the case, time usage of each configuration change

needs to be estimated. This is possible by examining how much each component,

namely data structure, of the configuration is modified each time.

Abstract machines are deemed “abstract”, and do not immediately yield im-

plementations of program execution such as compilers, because they abstract away

details of computer architectures. At the same time, they are not as abstract as

other formal specifications, such as denotational semantics and operational seman-

tics, because they do not abstract away data structures and maintain them explicitly.

This balance lets abstract machines serve as a basis of implementations of program
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execution, such as compilers, and provide a cost measure of program execution that

is independent of implementation details.

Abstract machines may be abstract enough to specify execution steps and analyse

execution cost, but they are considered to be too concrete to reason about programs,

as recognised by Plotkin [1981, 2004] in his development of structural operational

semantics. Programs are structured according to a formal grammar (syntax ), and

the syntactical, structural, information about programs is vital in reasoning. For

example, even the simple notion of program fragment, or sub-program, is syntacti-

cal. Comparison between two programs would therefore start with recognising their

syntactical difference, which is given in terms of sub-programs. Nevertheless, the

structural information is obscured by the use of concrete data structures in abstract

machines. Each data structure captures an aspect of the structural information, if

any, and each modification of a configuration typically concerns only a part of the

configuration. It is hard to recover the structural information from a sequence of

configuration changes, which represents the process of program execution.

1.1.2 Comparison between implementations

There are two main measures of program execution: result and cost. The execution

result is commonly given by a single value that a program returns, but it can be

enriched in the presence of certain language features. Interactive I/O equips the

return value with an entire history of interaction between the program and users,

non-determinism yields multiple possible return values, and probabilistic features

yield a probability distribution of return values. In any case, the result of a sin-

gle program is supposed to be the same across implementations, which makes the

program portable.

On the other hand, execution cost can vary between implementations, leaving a

certain freedom in managing efficiency. One may prefer better space efficiency, or

better time efficiency, and it is well known that one can be traded off for the other.
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For example, time efficiency can be improved by caching more intermediate results,

which increases space cost, whereas bounding space requires repeating computations,

which adds to the time cost.

The execution cost is a key factor in comparison between implementations of

a programming language. Each implementation should have its own specification

of execution cost. Yet we need a way to compare various specifications. To make

this possible, a language should come with a cost measure that is applicable to

all implementations. The measure should be concrete enough to be realistic, but

at the same time abstract enough to be independent of implementation details.

Implementations can then be specified and compared uniformly by means of the

cost measure.

Although an abstract machine can serve as a basis of implementations and pro-

vide a cost measure, its measure cannot necessarily be used for all possible imple-

mentations of the language. The main reason is that there is no generic abstract

machine that models all possible implementations. There is no canonical way to

design an abstract machine for a given programming language, and each abstract

machine has its own design choices, and accordingly, its own scope of implementa-

tions. Comparison between implementations can be alternatively done by comparing

abstract machines, but these machines come with their own cost measures.

Recent studies by Accattoli and Dal Lago [2016], Accattoli et al. [2014], Accattoli

[2017] establish a methodology with which one can compare and classify abstract

machines in terms of their execution cost. They propose a cost measure that is

with respect to evaluation strategies, not to programming languages. Evaluation

strategies can be used to characterise programming languages, but different strate-

gies could yield the same execution result, which means that the characterisation

may not be unique.

In the setting of functional programming, evaluation strategies determine how

an argument of a function is evaluated, and often imply how intermediate results
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are copied, discarded, cached or reused, which affects execution cost. Examples

include call-by-name, call-by-need (or, lazy), and call-by-value evaluation strategies.

In the call-by-name evaluation strategy, evaluation of a function body proceeds until

its arguments are actually required. Each argument gets evaluated as many times

as it is requested. In the call-by-need, or lazy, strategy, computation proceeds in

the same way, but each argument is evaluated at most once. Once an argument is

requested, its evaluation result is cached for later use, preventing re-evaluation of the

same argument. The call-by-value strategy evaluates all arguments first and caches

the results, before evaluating the function body. This means that each argument is

evaluated exactly once. The call-by-value strategy can be further classified in terms

of the ordering of argument evaluations.

If evaluation of some of the arguments does not terminate, the call-by-value strat-

egy does not terminate, whereas the other two strategies might terminate. These

two strategies could terminate namely when these non-terminating arguments are

not used. If some of the arguments do not have a unique evaluation result, the call-

by-name and call-by-need strategies could have different overall results. However,

in programming languages where evaluation always terminates with a unique result,

the choice of strategy should only affect the overall cost, but not the overall result.

1.1.3 Comparison between programs

Orthogonal to the comparison between implementations is comparison between pro-

grams. It also requires specification of program execution and formalisation of a

measure of execution, such as measures of result and cost. Programs, or more

generally program fragments, can be compared with respect to one measure or com-

bination of multiple measures.

One classical question is comparison with respect to execution result, asking

whether two program fragments have the same behaviour. The standard formali-

sation of this question is given as observational equivalence [Morris Jr, 1969]. Two
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whole programs are observationally equivalent if their execution yields the same out-

put. Program fragments are observationally equivalent if any two whole programs

whose only difference is these fragments are observationally equivalent.

Another established question, formalised as improvement [Moran and Sands,

1999], is whether one program simulates another program with less resource usage.

This comparison concerns both execution result and cost, and it can be generalised

to program fragments in the same way as observational equivalence.

These questions of observational equivalence and improvement are of interest to

programmers as well as language developers. When programmers update a software,

they can make sure there is no regression, i.e. bugs introduced by the update, by

proving that the old and new versions of the software are observationally equivalent.

Observational equivalence can also be used to verify distributed algorithms with re-

spect to their sequential specification. Compilers typically employ series of program

transformations, to turn a source code into an assembly code. Correctness of these

transformations can be verified using observational equivalence. Moreover, some

transformations are intended to optimise a given program, which can be validated

using improvement.

To prove observational equivalence between program fragments, one needs to

inspect all possible contexts, i.e. whole programs without the fragments, and their

interaction with the fragments throughout execution. As proof methods of obser-

vational equivalence, logical relations [Plotkin, 1973, Statman, 1985] enable us to

analyse the interaction in terms of types, and applicative bisimulations [Abramsky,

1990] identify function application as the fundamental interaction between contexts

and fragments.

Alternatively, a specification of program execution itself can be designed by for-

malising interaction between program components. Game semantics [Abramsky

et al., 2000, Hyland and Ong, 2000] is one example, where programs are interpreted

in terms of possible interactions they can have. It solved the full abstraction prob-
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lem, which is of giving an equivalent interpretation to program fragments if and only

if these fragments are observationally equivalent, firstly for the functional program-

ming language PCF [Plotkin, 1977].

The more features a programming language has, the more problematic it becomes

to inspect all possible interactions between contexts and fragments. Extra language

features could enable contexts to distinguish more program fragments, and hence to

break some existing observational equivalences.

For example, mutable state enables contexts to distinguish some syntactically

identical program fragments. This leads to violation of certain standard observa-

tional equivalence, such as the identity law M =M ' true of the equality operation

(‘=’), where M is an arbitrary program fragment. In the following two programs,

written in the style of OCaml, a context exploits mutable state and indeed violates

an instance of the identity law: (f ()) = (f ()) ' true, where f is a function defined

elsewhere and is applied to the unit value (). The context distinguishes the two

syntactically identical arguments f () of the equality operation.

1 ; ; a program t h a t r e t u r n s false

2 let b = ref true in

3 let f _ =

4 b := not !b ;
5 !b
6 in

7 ( f ()) = ( f ())

1 ; ; a program t h a t r e t u r n s true

2 let b = ref true in

3 let f _ =

4 b := not !b ;
5 !b
6 in

7 true

The distinguishing context appears in lines 2–6 of each program. It creates a mutable

boolean state b, and provides a definition of the function f . The mutable state can

be accessed through an operation ‘:=’ for updating a stored value, and an operation

‘!’ for reading a stored value. Upon each call, whatever the argument is, the function
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f internally flips the value of the mutable state b (line 4), and returns the flipped

value (line 5). The context distinguishes the two function calls (f ()), of which the

first results in false and the second results in true, and therefore, violates the

identity law.

Introduction of new language features could bring extra distinguishing power to

contexts, and therefore, it often requires a reformulation of a formal specification to

model the distinguishing power as well as the features themselves. The reformulation

of a specification further invalidates a proof technique of observational equivalence.

This can be observed in the literature about functional programs in the presence of

effects, such as state and control.

Since game semantics [Abramsky et al., 2000, Hyland and Ong, 2000] solved

the full abstraction problem for the functional programming language PCF, it was

adapted to accommodate ground state [Abramsky and McCusker, 1998], control [Laird,

1997], and general references [Abramsky et al., 1998]. While ground state only al-

lows data, such as natural numbers, to be stored, general references (also called

higher-order state) has no restriction as to what can be stored.

For logical relations [Plotkin, 1973, Statman, 1985], which is a type-based in-

ductive proof method for observational equivalence, higher-order state poses a chal-

lenge by introducing types that are not inductive. To deal with non-inductive types,

namely recursive and quantified types, Ahmed [2006] equipped logical relations with

step indices [Appel and McAllester, 2001]. Step-indexed logical relations were then

used to model higher-order state together with abstract types [Ahmed et al., 2009],

and to model higher-order state as well as control [Dreyer et al., 2012].

Deviating from applicative bisimulations [Abramsky, 1990], environmental bisim-

ulations have been developed to deal with more distinguishing power of contexts,

for instance caused by abstract types and recursive types [Sumii and Pierce, 2007],

and higher-order state [Sangiorgi et al., 2007, Koutavas and Wand, 2006]. While the

deviation is analysed and justified in the presence of effects including state and poly-
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morphism [Koutavas et al., 2011], yet another variant of environmental bisimulation

was proposed to model control [Yachi and Sumii, 2016].

The aforementioned work [Abramsky and McCusker, 1998, Laird, 1997, Abram-

sky et al., 1998] on game semantics resulted in so-called Abramsky’s cube, a seman-

tical characterisation of combinations of state and control. Abramsky’s cube is also

studied in terms of logical relations by Dreyer et al. [2012].

Since some common language features, such as mutable state, can indeed violate

as basic observational equivalences as the identity law M =M ' true, it is a natural

and important question to ask which observational equivalences are respected or

violated by which language features. To answer this question, it would not be enough

to analyse the impact that language features have on semantical specifications and

their proof methodology of observational equivalence, as in the literature. Language

features should rather be analysed in terms of their effect directly on observational

equivalences, and this analysis would require a uniform framework that can model all

language features. The desirable framework should provide not only a specification

of program execution, but also a non-fragile reasoning principle that works in the

presence and absence of various language features in a uniform way.

Recall that the notion of improvement formalises comparison between program

fragments with respect to both execution result and cost. Dealing with improve-

ment instead of observational equivalence in the presence of rich language features

would be yet another complication. The uniform semantical framework, which ac-

commodates all the language features of interest, is still desirable, but the framework

should additionally be equipped with a measure of execution cost. Furthermore, the

framework should accommodate language features as first-class inhabitants. It is

not enough for the framework to provide a set of primitives with which language

features can be encoded, because encoding does not necessarily reflect efficiency of

the language features.

The common motivation of research regarding improvement seems to be vali-
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dation of program transformations used for a lazy programming language such as

Haskell. Recent studies with this motivation by Hackett and Hutton [2014], Schmidt-

Schauß and Sabel [2017] consider a core lazy language where effects such as state

are not first-class inhabitants but could be encoded. For richer languages, known

semantical frameworks for observational equivalence have been adapted. Hackett

and Hutton [2018] adapt a logical relation for parametric polymorphism to prove

improvement. Ghica [2005] proposes game semantics for a concurrent language that

can take a given cost measure into account, solving the full abstraction problem with

respect to improvement.

1.2 Contribution and methodology

1.2.1 Two graph-rewriting abstract machines for reasoning

This thesis develops two abstract machines: the Dynamic Geometry of Interac-

tion Machine (DGoIM), and the Universal Abstract Machine (UAM). Both abstract

machines perform strategical graph rewriting, with the latter revising the former.

Unlike conventional abstract machines, whose configurations are code accompanied

by data structures, these abstract machines work on graph representation of whole

programs. Translating inductively-structured programs into graphs, as low-level rep-

resentation, enables fine control over resources and introduces the novel concept of

locality in program execution.

The DGoIM is a first step towards an abstract machine, as a semantical frame-

work, with which different specifications of time and space cost can be given in a

uniform way. Strategical graph rewriting has flexibility in terms of rewrite rules and

strategies of triggering the rewrite rules. This flexibility would enable the DGoIM

to explore the design space of abstract machines, and hence make a cost measure of

the DGoIM a generic measure of a given programming language.

As a case study, one setting of the DGoIM is proved to efficiently model the
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lambda-calculus with call-by-need and call-by-value evaluation strategies. The effi-

ciency is proved using a taxonomy of abstract machines given by Accattoli [2017].

Based on the DGoIM, the UAM aims at a uniform semantical framework with

which language features can be analysed in terms of observational equivalences,

and possibly improvements, they respect or violate. The UAM specifies program

execution of a language called Spartan—a core language whose only primitives

are variable binding, name binding and thunking. Everything else, even lambda-

abstraction and function application, are extrinsic in Spartan.

In this way, the UAM enables analysis of not just lambda-abstraction and func-

tion application, as the DGoIM does, but also other language features. The UAM

is dubbed “universal” in the sense of universal algebras; being parametrised by ex-

trinsic operations and their behaviour, the UAM serves as a specification of various

languages without the need to change its intrinsic machinery.

In this framework, language features can be accommodated in two different ways:

as native operations, and as encoding in terms of other native operations. This

makes the UAM potentially suitable for reasoning about improvement, although

observational equivalence is the primary concern here.

The UAM is arguably the first known abstract machine that enables direct proofs

of observational equivalence. A reasoning principle used in these direct proofs ex-

ploits a concept of locality that arises in strategical graph rewriting, and the principle

is formalised as a characterisation theorem (Thm. 4.3.14).

The sequel describes methodological background of these developments, namely

strategical graph rewriting and the concept of locality.

1.2.2 Token-passing GoI

Geometry of Interaction (GoI) [Girard, 1989], a semantics of linear logic proofs, pro-

vides a starting point towards a framework for studying the trade-off between time

and space efficiency. The token-passing style of GoI, in particular, gives abstract ma-
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chines for the lambda-calculus, pioneered by Danos and Regnier [1996] and Mackie

[1995]. These machines evaluate a term of the lambda-calculus by translating the

term to a graph, a network of simple transducers, which executes by passing a

data-carrying token around.

Token-passing GoI decomposes higher-order computation into local token ac-

tions, or low-level interactions of simple components. It can give innovative im-

plementation techniques for functional programs, such as Geometry of Implemen-

tation compiler [Mackie, 1995], Geometry of Synthesis (GoS) high-level synthesis

tool [Ghica, 2007], and resource-aware program transformation to a low-level lan-

guage [Schöpp, 2014a]. The interaction-based approach is also convenient for the

complexity analysis of programs, e.g. IntML type system of logarithmic-space evalu-

ation [Dal Lago and Schöpp, 2016], and linear dependent type system of polynomial-

time evaluation [Dal Lago and Gaboardi, 2011, Dal Lago and Petit, 2012].

Constant-space execution is essential for GoS, since in the case of digital circuits

the memory footprint of the program must be known at compile-time, and fixed.

Using a restricted version of the call-by-name language Idealised Algol [Ghica and

Smith, 2011] not only the graph, but also the token itself can be given a fixed size.

Surprisingly, this technique also allows the compilation of recursive programs [Ghica

et al., 2011]. The GoS compiler shows both the usefulness of the GoI as a guideline

for unconventional compilation and the natural affinity between its space-efficient

abstract machine and call-by-name evaluation. The practical considerations match

the prior theoretical understanding of this connection [Danos and Regnier, 1996].

The token passed around a graph simulates graph rewriting without actual

rewriting, which is in fact an extremal instance of the trade-off mentioned above.

Token-passing GoI keeps the underlying graph fixed and uses the data stored in the

token to route it. It therefore favours space efficiency at the cost of time efficiency.

The same computation is repeated when, instead, intermediate results could have

been cached by saving copies of certain sub-graphs representing values.
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1.2.3 Interleaving GoI token passing with graph rewriting

The original intention is to lift the token-passing GoI to a framework to analyse

the trade-off between time and space efficiency. This can be done by strategically

interleaving the GoI token passing with graph rewriting, resulting in an abstract

machine. The machine, called the Dynamic GoI Machine (DGoIM), is defined as a

state transition system with transitions for token passing as well as transitions for

graph rewriting. The token holds control over graph rewriting, by visiting redexes

and triggering the rewrite transitions.

Graph rewriting offers fine control over caching and sharing intermediate results.

Through graph rewriting, the DGoIM can reduce sub-graphs visited by the token,

avoiding repeated token actions and improving time efficiency. However, fetching

cached results can increase the size of the graph. In short, introduction of graph

rewriting sacrifices space while favouring time efficiency. The flexibility given by a

fine-grained control over interleaving would enable a careful balance between space

and time efficiency.

As a first step in exploration of the flexibility of this machine, we consider the two

extremal cases of interleaving. The first extremal case is passes-only, in which the

DGoIM never triggers graph rewriting, yielding an ordinary token-passing abstract

machine. As a typical example, the λ-term (λx.t)u is evaluated like this:

λx.t u

1. A token enters the graph on the left at the bottom open

edge.

2. A token visits and goes through the left sub-graph λx.t.

3. Whenever a token detects an occurrence of the variable

x in t, it traverses the right sub-graph u, then returns

carrying information about the resulting value of u.

4. A token finally exits the graph at the bottom open edge.



14 CHAPTER 1. INTRODUCTION

Step 3 is repeated whenever the argument u needs to be re-evaluated. This passes-

only strategy of interleaving corresponds to call-by-name evaluation.

The other extreme is rewrites-first, in which the DGoIM interleaves token pass-

ing with as much, and as early, graph rewriting as possible, guided by the token.

This corresponds to both call-by-value and call-by-need evaluations, with different

trajectories of the token. In the case of left-to-right call-by-value, the token enters

the graph from the bottom, traverses the left-hand-side sub-graph, which happens

to be already a value, then visits the sub-graph u even before the bound variable x

is used in a call. The token causes rewrites while traversing the sub-graph u, and

when it exits, it leaves behind a graph corresponding to a value v such that u reduces

to v. For right-to-left call-by-value, the token visits the sub-graph u straightaway

after entering the whole graph, reduces the sub-graph u, to the graph of the value

v, and visits the left-hand-side sub-graph. Finally, in call-by-need, the token visits

and reduces the sub-graph u only when the variable x is encountered in λx.t.

In this framework, all these three evaluations involve similar tactics for caching

intermediate results. Their only difference, which is the timing of cache creation, is

realised by different trajectories of the token. Cached values are fetched in the same

way: namely, whenever repeated evaluation is required, the sub-graph corresponding

to the cashed value is copied. One copy can be further rewritten, if needed, while

the original is kept for later reference.

1.2.4 Rewrites-first interleaving and locality

As for a semantical framework to analyse language features in terms of observa-

tional equivalence, the main challenge is to have a reasoning principle of inspecting

possible contexts. Direct inspection of contexts, as well as their interaction with

a particular program fragment throughout execution, is particularly hard with ab-

stract machines.

It turns out, however, that employing the rewrites-first interleaving of the DGoIM
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makes the direct inspection possible. Due to the control the token holds over graph

rewriting, program execution can be described locally in terms of the token and its

neighbourhood. The inspection of contexts boils down to local inspection around

the token that navigates through contexts: namely, inspection of token’s position,

data, and rewrites that are triggered by and around the token.

This local inspection can further be applied to analyse interaction that a context

C has with a fragment t, during execution of the composite program C[t]. At the

beginning of the execution, the token enters the graph that represents C[t]. The

graph can be split into two parts, one corresponding to the context C and the other

corresponding to the fragment t. As the token navigates through the graph C[t], the

token position will therefore be either inside C, inside t or on the border between the

two sub-graphs. By inspecting the token data and rewrites to be triggered, possible

scenarios can be classified into the following three:

Case I: move inside the context.

C

t

The token (•) moves within the sub-graph C, as indicated

by magenta on the left. The sub-graph t is not involved

in, and hence is irrelevant to, the move.

Case II: visit to the fragment.

C

t

The token (•) enters the sub-graph t. It will navigate

through the sub-graph t, as indicated by magenta on the

left, and may trigger some rewrite. The rewrite possibly

involves a part of the sub-graph C.

Case III: rewrite.

C

t

The token (•) is in the sub-graph C and triggers a rewrite.

The rewrite may involve a part of the sub-graph t, as

indicated by magenta on the left.

In this way, the rewrites-first interleaving of the DGoIM enables us to inspect

interaction between a context C and a fragment t in an elementary case-by-case
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manner, according to how the fragment t is involved in token moves and triggered

rewrites that are possible on the composite graph C[t]. This leads to a direct, case-

by-case, reasoning principle to prove observational equivalence, namely to prove that

two program fragments t and u interact with any context C in the same manner.

Intuitively, the way the fragment t is involved in token moves and triggered rewrites

on the graph C[t] should coincide with the way the fragment u is involved in token

moves and triggered rewrites on the graph C[u].

Sufficient conditions of observational equivalence can be identified by examining

scenarios of this coincidence, using the case analysis based on the local inspection.

Example scenarios of the coincidence are as follows:

Any scenario in Case I: move inside the common context.

C

F

(F denotes t or u.)

The token moves within the common context C,

which is regardless of the fragments. The coin-

cidence is in fact always guaranteed in Case I.

A scenario in Case II: visit to the fragments.

C

t  
C

u

Whenever the token visits the fragment t, trig-

gered rewrites change the fragment t to the other

fragment u, and hence the visit yields the same

result as visiting the fragment u. This typically

happens when the fragments t and u are taken

from reduction, e.g. t ≡ 1 + 2 and u ≡ 3.

A scenario in Case III: rewrite.

C

F  
C′

F

(F denotes t or u.)

The token in the common context C triggers a

rewrite that only affect a part of the context C.

The rewrite hence preserves the fragments.

The last scenario is of particular importance, giving rise to a new concept of

robustness. It characterises safe involvement of the fragments in rewrites, namely

where the fragments are respected in the same manner by the rewrites, and provides



1.3. THESIS OUTLINE 17

a sufficient condition of observational equivalence. Measuring robustness of the

fragments reveals when, namely with which rewrites allowed, the fragments can be

observationally equivalent.

The main technical result in Chap. 4, a characterisation theorem (Thm. 4.3.14),

identifies sufficient conditions of observational equivalence in the way described

above, by formalising the case analysis based on the local inspection. The theo-

rem provides a way to analyse which observational equivalences are respected by

which language features, by identifying robustness as a key sufficient condition. Ro-

bustness of program fragments are relative to rewrites, but it can be seen as being

relative to language features as well, because behaviour of language features are

modelled by rewrites. Therefore, by measuring robustness of program fragments,

one can examine which language features can enable the fragments to be observa-

tionally equivalent.

Finally, it is worth noting that the concept of locality here is not to be confused

with memory locality. Memory locality concerns memory access during program ex-

ecution. On the other hand, locality, together with robustness, captures the impact

that operations in a program make on other parts of the program during execution.

Locality could be seen as a generalisation of memory locality, because memory access

could be modelled as extrinsic features of Spartan and the UAM.

1.3 Thesis outline

Chap. 2 presents the DGoIM with the rewrites-first strategy, as efficient specifica-

tion for the lambda-calculus with various evaluation strategies. Materials in this

chapter have been produced under the supervision of Dan R. Ghica, and presented

in jointly-authored papers [Muroya and Ghica, 2017, 2018a], which are currently

under consideration as a journal article [Muroya and Ghica, 2018b]. We appreciate

encouraging and insightful comments by Ugo Dal Lago and anonymous reviewers
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on earlier versions of this work, and thank Steven W. T. Cheung for helping us

implement an on-line visualiser.

Chap. 3 presents the language Spartan and the UAM, and Chap. 4 presents

the local reasoning principle the UAM offers. Materials in these chapters have

been produced under the supervision of Dan R. Ghica. Hypernet diagrams were

produced by Ghica, and an associated on-line visualiser was implemented by Todd

Waugh Ambridge. A preliminary idea of local reasoning was formulated for the

lambda-calculus in Waugh Ambridge’s MSci thesis, under the joint supervision of

Ghica and the author, and was presented at the workshop on Syntax and Semantics

of Low-Level Languages (Oxford, 2018).

Chap. 5 discusses some topics that are relevant to both machines DGoIM and

UAM. Sec. 5.1 compares the two machines, and Sec. 5.2 gives an overview of related

work that adapts the DGoIM to model an unconventional programming paradigm.

This work can be seen as a case study of token-guided graph rewriting, which in fact

inspired the UAM. Materials mentioned in this section are based on joint work [Che-

ung et al., 2018, Muroya et al., 2018] with Steven W. T. Cheung, Victor Darvariu,

Dan R. Ghica and Reuben N. S. Rowe.

Chap 6 concludes this thesis with discussions about related and future work.



Chapter 2

Efficient implementation of

evaluation strategies

2.1 Outline

This chapter presents a token-guided graph-rewriting abstract machine for call-by-

need, left-to-right call-by-value, and right-to-left call-by-value evaluations. We give

the abstract machine as the Dynamic Geometry of Interaction Machine (DGoIM)

with the rewrite-first strategy, which turns out to be as natural as the passes-only

strategy for call-by-name evaluation. It switches the evaluations, by simply having

different nodes that correspond to the three different evaluations, rather than mod-

ifying the behaviour of a single node to suite different evaluation demands. This is

a first step in exploration of the flexibility of the DGoIM, which is achieved through

controlled interleaving of rewriting and token-passing, and through changing graph

representations of terms.

We prove the soundness and completeness of the graph-rewriting machine with

respect to the three evaluations separately, using a sub-machine semantics, where the

word “sub” indicates both a focus on substitution and its status as an intermediate

representation. The sub-machine semantics is based on token-passing semantics

of Sinot [2005, 2006] that makes explicit the two main tasks of abstract machines:

19
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searching redexes and substituting variables.

The time-cost analysis classifies the machine as efficient in a taxonomy of ab-

stract machines of Accattoli [2017]. We follow a general methodology developed

by Accattoli et al. [2014], Accattoli [2017] for quantitative analysis of abstract ma-

chines, however the method cannot be used “off the shelf”. Our machine is a more

refined transition system with more transition steps, and therefore does not satisfy

one of their assumptions [Accattoli, 2017, Sec. 3], which requires one-to-one corre-

spondence of transition steps. We overcome this technical difficulty by building a

weak simulation of the sub-machine semantics, which is also used in the proof of

soundness and completeness. The sub-machine semantics resembles the storeless

abstract machine of Danvy and Zerny [2013], to which the general recipe of cost

analysis does apply.

Finally, an on-line visualiser1 is implemented, in which our machine can be exe-

cuted on arbitrary closed (untyped) lambda-terms. The visualiser also supports an

existing abstract machine based on the token-passing GoI, which will be discussed

later, to illustrate various resource usage of abstract machines.

This chapter is organised as follows. We present the sub-machine semantics in

Sec. 2.2, and introduce the DGoIM with the rewrites-first strategy in Sec. 2.3. In

Sec. 2.4, we show how the DGoIM implements the three evaluation strategies via

translation of terms into graphs, and establish a weak simulation of the sub-machine

semantics by the DGoIM. The simulation result is used to prove soundness and

completeness of the DGoIM, and to analyse its time cost, in Sec. 2.5. We compare

our graph-rewriting approach to improve time efficiency of token-passing GoI, with

another approach from the literature, namely the so-called jumping approach, in

Sec. 2.6.

1Link to the on-line visualiser: https://koko-m.github.io/GoI-Visualiser/

https://koko-m.github.io/GoI-Visualiser/
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2.2 A term calculus with sub-machine semantics

We use an untyped term calculus that accommodates three evaluation strategies

of the lambda-calculus, by dedicated constructors for function application: namely,

@ (call-by-need),
−→
@ (left-to-right call-by-value) and

←−
@ (right-to-left call-by-value).

Mixing strategies in a single calculus is solely for the purpose of not presenting

three almost identical calculi. Even though the term calculus allows one to write

a term that uses all strategies, we are not interested in interaction between the

three strategies. Instead, our aim is to analyse evaluation cost of lambda-terms with

respect to each single strategy. In the rest of the chapter, we assume that each term

contains function applications of a single strategy only.

As shown in the top of Fig. 2.1, the calculus accommodates explicit substitutions

[x← u]. A term with no explicit substitutions is said to be pure.

The sub-machine semantics is used to establish the soundness of the graph-

rewriting abstract machine. It imitates an abstract machine, by having the following

two features. Firstly, it extends conventional reduction semantics with reduction

steps that explicitly search for a redex, following the style of token-passing semantics

given by Sinot [2005, 2006]. Secondly, it decomposes the meta-level substitution into

on-demand linear substitution, using explicit substitutions, as linear substitution

calculi do [Accattoli and Kesner, 2010]. The sub-machine semantics also resembles

a storeless abstract machine (e.g. [Danvy et al., 2012, Fig. 8]). However the sub-

machine semantics is still too “abstract” to be considered an abstract machine, in

the sense that it works modulo alpha-equivalence to avoid variable captures.

Fig. 2.1 defines the sub-machine semantics of our calculus. It is given by labelled

relations between enriched terms that are in the form of E〈LtM〉. In an enriched

term E〈LtM〉, a sub-term t is not plugged directly into an evaluation context, but

into a window L·M which makes it syntactically obvious where the reduction context

is situated. Note that the term t inside the window can be arbitrary. This means
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Terms t ::= x | λx.t | t@ t | t−→@ t | t←−@ t | t[x← t]

Values v ::= λx.t

Answer contexts A ::= 〈·〉 | A[x← t]

Evaluation contexts E ::= 〈·〉 | E[x← t] | E〈x〉[x← E]

| E @ t | E −→@ t | A〈v〉 −→@ E | t←−@ E | E←−@ A〈v〉

Basic rules 7→β, 7→σ, 7→ε: Lt@ uM 7→ε LtM @ u (2.1)

A〈Lλx.tM〉@ u 7→β A〈LtM[x← u]〉 (2.2)

Lt−→@ uM 7→ε LtM
−→
@ u (2.3)

A〈Lλx.tM〉 −→@ u 7→ε A〈λx.t〉
−→
@ LuM (2.4)

A〈λx.t〉 −→@ A′〈LvM〉 7→β A〈LtM[x← A′〈v〉]〉 (2.5)

Lt←−@ uM 7→ε t
←−
@ LuM (2.6)

t
←−
@ A〈LvM〉 7→ε LtM

←−
@ A〈v〉 (2.7)

A〈Lλx.tM〉 ←−@ A′〈v〉 7→β A〈LtM[x← A′〈v〉]〉 (2.8)

E〈LxM〉[x← A〈u〉] 7→ε E〈x〉[x← A〈LuM〉]
(u is not in the form of A′〈t′〉)

(2.9)

E〈x〉[x← A〈LvM〉] 7→σ A〈E〈LvM〉[x← v]〉 (2.10)

Reductions (β,(σ,(ε:
t̃ 7→χ ũ

E〈t̃〉(χ E〈ũ〉
(χ ∈ {β, σ, ε})

Figure 2.1: ”Sub-machine” operational semantics

that there may be several enriched terms that have the same underlying ordinary

term: namely, E〈LtM〉 and E ′〈Lt′M〉 such that E〈LtM〉 6= E ′〈Lt′M〉 as enriched terms but

E〈t〉 = E ′〈t′〉 as ordinary terms forgetting the window. This is crucial to explicitly

represent the redex search process in the sub-machine semantics, as a move of the

window on the same ordinary term.

Basic rules 7→ are labelled with β, σ or ε. The basic rules (2.2), (2.5) and (2.8),

labelled with β, apply beta-reduction and delay substitution for a bound variable.

Substitution is done one by one, and on demand, by the basic rule (2.10) with

label σ. Each application of the basic rule (2.10) replaces exactly one occurrence
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of a bound variable with a value, and keeps a copy of the value for later use. Note

that the basic rule (2.10) does not duplicate the answer context (A in Fig. 2.1) that

used to accompany the substituted value. The answer context is instead left shared

between two copies of the value, which makes sure that only one value is duplicated

in each application of the basic rule (2.10). All other basic rules, with label ε, search

for a redex by moving the window without changing the underlying term.

Reduction is defined by congruence of basic rules with respect to evaluation con-

texts, and labelled accordingly. Any basic rules and reductions are indeed between

enriched terms, because the window L·M is never duplicated or discarded. They are

also deterministic.

An evaluation of a pure term t (i.e. a term with no explicit substitution) is

a sequence of reductions starting from 〈LtM〉, which is simply LtM. Fig. 2.2 shows

evaluations of a pure term (λx.x) ((λy.y) (λz.z)) in the three evaluation strategies.

Reductions labelled with β and σ, which change an underlying term, are highlighted

in black. All three evaluations involve two beta-reductions, which apply λx.x and

λy.y to an argument. Application of λx.x comes first in the call-by-need evaluation,

and delayed application of λy.y happens inside an explicit substitution. On the

other hand, in two call-by-value evaluations, application of λy.y comes first, and no

reduction happens inside an explicit substitution. The two call-by-value evaluations

differ only in the way the window is moved around function application.

The following lemma enables us to follow the use of sub-terms of the initial term

t during the evaluation.

Lemma 2.2.1. For any evaluation LtM(∗ E ′〈Lt′M〉 starting from a pure closed term

t, the term t′ is a sub-term of t. Moreover, the evaluation context E ′ is given by the
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Call-by-need evaluation:

L(λx.x) @ ((λy.y) @ (λz.z))M(ε Lλx.xM @ ((λy.y) @ (λz.z))

(β LxM[x← (λy.y) @ (λz.z)]

(ε x[x← L(λy.y) @ (λz.z)M]
(ε x[x← Lλy.yM @ (λz.z)]

(β x[x← LyM[y ← λz.z]]

(ε x[x← y[y ← Lλz.zM]]
(σ x[x← Lλz.zM[y ← λz.z]]

(σ Lλz.zM[x← λz.z][y ← λz.z]

Call-by-value evaluations:

L(λx.x)
−→
@ ((λy.y)

−→
@ (λz.z))M

(ε Lλx.xM
−→
@ ((λy.y)

−→
@ (λz.z))

(ε λx.x
−→
@ L(λy.y)

−→
@ (λz.z)M

(ε λx.x
−→
@ (Lλy.yM−→@ (λz.z))

(ε λx.x
−→
@ ((λy.y)

−→
@ Lλz.zM)

(β λx.x
−→
@ (LyM[y ← λz.z])

(ε λx.x
−→
@ (y[y ← Lλz.zM])

(σ λx.x
−→
@ (Lλz.zM[y ← λz.z])

(β LxM[x← (λz.z)[y ← λz.z]]

(ε x[x← Lλz.zM[y ← λz.z]]

(σ Lλz.zM[x← λz.z][y ← λz.z]

L(λx.x)
←−
@ ((λy.y)

←−
@ (λz.z))M

(ε λx.x
←−
@ L(λy.y)

←−
@ (λz.z)M

(ε λx.x
←−
@ ((λy.y)

←−
@ Lλz.zM)

(ε λx.x
←−
@ (Lλy.yM←−@ (λz.z))

(β λx.x
←−
@ (LyM[y ← λz.z])

(ε λx.x
←−
@ (y[y ← Lλz.zM])

(σ λx.x
←−
@ (Lλz.zM[y ← λz.z])

(ε Lλx.xM
←−
@ ((λz.z)[y ← λz.z])

(β LxM[x← (λz.z)[y ← λz.z]]

(ε x[x← Lλz.zM[y ← λz.z]]

(σ Lλz.zM[x← λz.z][y ← λz.z]

Figure 2.2: Evaluations of (λx.x) ((λy.y) (λz.z))

following restricted grammar:

A ::= 〈·〉 | A[x← A〈u〉],

E ::= 〈·〉 | E[x← A〈u〉] | E〈x〉[x← E]

| E @ u | E −→@ u | A〈v〉 −→@ E | u←−@ E | E←−@ A〈v〉

where u and v are sub-terms of t, and v is additionally a value.

Proof outline. The proof is by induction on the length k of the evaluation LtM (k
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E ′〈Lt′M〉. In the base case, where k = 0, we have E = 〈·〉 and t′ = t. The inductive

case, where k > 0, is proved by inspecting a basic rule used in the last reduction of

the evaluation. In the case of the basic rule (2.9), the last reduction is in the form

of E0〈E〈LxM〉[x ← A〈u〉]〉 (ε E0〈E〈x〉[x ← A〈LuM〉]〉 where u is not in the form of

A′′〈t′′〉. By induction hypothesis, E0〈E〈〉[x← A〈u〉]〉 follows the restricted grammar,

and in particular, A〈u〉 can be decomposed into a restricted answer context and a

sub-term of t. Because a sub-term of t is also pure, it follows that A itself is a

restricted answer context and u is a sub-term of t.

2.3 The token-guided graph-rewriting machine

In the initial presentation of this work [Muroya and Ghica, 2017], we used proof

nets of the multiplicative and exponential fragment of linear logic [Girard, 1987] to

implement the call-by-need evaluation strategy. Aiming additionally at two call-by-

value evaluation strategies, we here use graphs that are closer to syntax trees but

are still augmented with the !-box structure taken from proof nets. Moving towards

syntax trees allows us to implement two call-by-value evaluations in a uniform way.

The !-box structure specifies duplicable sub-graphs, and help time-cost analysis of

implementations.

2.3.1 Graphs with interface

We use directed graphs, whose nodes are classified into proper nodes and link nodes.

Link nodes are required to meet the following conditions.

• For each edge, at least one of its two endpoints is a link node.

• Each link node is a source of at most one edge, and a target of at most one

edge.

In particular, a link node is called input if it is not a target of any edge, and output
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Figure 2.3: Full (left) and simplified (right) representation of a graph G(3, 1)

if it is not a source of any edge.2 An interface of a graph is given by the set of all

inputs and the set of all outputs. When a graph G has n input link nodes and m

output link nodes, we sometimes write G(n,m) to emphasise its interface. If a graph

has exactly one input, we refer to the input link node as root .

An example graphG(3, 1) is shown on the left in Fig. 2.3. It has four proper nodes

depicted by circles, and seven link nodes depicted by bullets. Its three inputs are

placed at the bottom and one output is at the top. Shown on the right in Fig. 2.3 is a

simplified version of the representation. We use the following simplification scheme:

not drawing link nodes explicitly (unless necessary), and using a bold-stroke arrow

(resp. circle) to represent a bunch of parallel edges (resp. proper nodes).

The idea of using link nodes, as distinguished from proper nodes, comes from a

graphical formalisation of string diagrams [Kissinger, 2012].3 String diagrams consist

of boxes that are connected to each other by wires, and may have dangling or looping

wires. In the formalisation, boxes are modelled by box-vertices (corresponding to

proper nodes in our case), and wires are modelled by consecutive edges connected

via wire-vertices (corresponding to link nodes in our case). It is link nodes that

allow dangling or looping wires to be properly modelled. The segmentation of wires

into edges can introduce an arbitrary number of consecutive link nodes, however

these consecutive link nodes are identified by the notion of wire homeomorphism.

We will later discuss these consecutive link nodes, from the perspective of the graph-

2In graph-theoretical terminology, source means what we call input, and sink means what we
call output. Our terminology is to avoid the abuse of the term “source” that refers to one endpoint
of a directed edge.

3Our link nodes should not be confused with the same terminology “link” of proof nets, which
refers to a counterpart of our proper nodes.
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rewriting machine. From now on we simply call a proper node “node”, and a link

node “link”.

Finally, an operation ◦n,m on graphs, parametrised by natural numbers n and m,

is defined as follows:

G ◦n,m H := G(1 +m,n) H(n,m) .

In the sequel, we omit the parameters n,m and simply write ◦.

2.3.2 Node labels and !-boxes

We use the following set L to label nodes:

L = {λ,@,−→@ ,
←−
@ , !, ?,D} ∪ {Cn | n: a natural number}.

A node labelled with X ∈ L is called an X-node. The first four labels correspond

to the constructors of the calculus presented in Sec. 2.2, namely λ (abstraction), @

(call-by-need application),
−→
@ (left-to-right call-by-value application) and

←−
@ (right-

to-left call-by-value application). These three application nodes are a part of the

novelty of this work. The token, travelling in a graph, reacts to these nodes in

different ways, and hence implements different evaluation orders. We believe that

it is a more extensible way to accommodate different evaluation orders as different

nodes, than to let the token react to the same node in different ways depending on

situation. The other labels, namely !, ?, D and Cn for any natural number n, are

used in the management of copying sub-graphs. These are inspired by proof nets

of the multiplicative and exponential fragment of linear logic [Girard, 1987], and

Cn-nodes generalise the standard binary contraction and subsume weakening.

We use the generators in Fig. 2.4 to build labelled graphs. Most generators are

given by a graph that consists of one labelled node and a fixed number of interface
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𝜆 @ @⃖ 
@
→

𝐷 𝐶𝑛 𝐺

!

?

Figure 2.4: Generators of graphs

links, which are adjacent to the node. The label of the node determines the interface

links and their connection with the node, as indicated in the figure. For example, a

label λ indicates three edges connecting a λ-node with one input link and two output

links. Going clockwise from the bottom, they are: one edge from the input link, one

from an output link, and one to an output link. Application generators (@,
−→
@ or

←−
@) have one edge from an input link and two edges to output links. We distinguish

the two output links, calling one “function output” and the other “argument output”

(cf. [Accattoli and Guerrini, 2009]). A bullet • in the figure specifies an edge to a

function output. A label Cn indicates n incoming edges from n input links and one

outgoing edge to an output link.

The last generator in Fig. 2.4 turns a graph G(1,m) into a sub-graph (!-box ), by

connecting it to one !-node (principal door) and m ?-nodes (auxiliary doors). This

!-box structure is indicated by a dashed box in the figure. The !-box structure, taken

from proof nets, assists the management of duplication of sub-graphs by specifying

those that can be copied.4

2.3.3 Graph states and transitions

We define a graph-rewriting abstract machine as a labelled transition system between

graph states .

4Our formalisation of graphs is related to the view of proof nets as string diagrams, and hence
of !-boxes as functorial boxes [Melliès, 2006].
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Definition 2.3.1 (Graph states). A graph state ((G(1, 0), e), δ) is formed of a graph

G(1, 0) with its distinguished link e, and token data δ = (d, f, S,B) that consists of:

• a direction defined by d ::= ↑ | ↓,

• a rewrite flag defined by f ::= � | λ | !,

• a computation stack defined by S ::= � | ? : S | λ : S | @ : S, and

• a box stack defined by B ::= � | ? : B | ! : B | � : B | e′ : B, where e′ is any

link of the graph G.

The distinguished link e of a graph state ((G, e), (d, f, S,B)) is called the position

of the token. Recall that any link of a graph, including the position, has at most one

incoming edge and at most one outgoing edge. The position will change along the

outgoing edge when the direction of the token is upwards (d = ↑), and move against

the incoming edge if the direction is downwards (d = ↓).5 These token moves can

only happen when the rewrite flag is not raised, namely when f = �. Otherwise the

graph G is rewritten, as instructed by the flag; the rewrite targets a λ-node when

f = λ, and targets a !-box when f = !.

The token uses stacks to determine, and record, its reaction to potential targets

of rewrites: namely, it uses the computation stack S for λ-nodes, and the box stack

B for !-boxes. The element ‘?’ at the top of either stack instructs the token not to

perform a rewrite even if the token finds a λ-node or a !-box. Instead, a new element

is placed at the top of the stack: namely, ‘λ’ indicating the λ-node or ‘!’ indicating

the !-box. Any other elements at the top of the stacks enable the token to actually

trigger a rewrite. They also help the token determine which rewrite to trigger, by

indicating a node to be involved in the rewrite. These elements are namely: ‘@’ of

the computation stack indicating an application node (i.e. nodes labelled with @,
−→
@

5The way the token direction works is tailored to our drawing convention of graphs, which is to
draw directed edges mostly upwards.
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◻, @ : S, B

λ D Dλ⟶ϵ

λ, S, B ◻, ⋆ : S, B

λ λ⟶ϵ

◻, λ : S, B ◻, S, B

@ @⟶ϵ

◻, @ : S, B

⟶ϵ

◻, S, B ◻, S, ⋄ : B

◻, S, B

@
→

! !@
→

⟶ϵ

◻, ⋆ : S, B ◻, λ : S, B

@
→

@
→

⟶ϵ

◻, S, ⋆ : B ◻, S, ! : B

@
→

@
→

⟶ϵ

◻, @ : S, B

⟶ϵ

◻, S, X : B !, S, X : B

◻, S, B

@⃖  ! !@⃖ ⟶ϵ

◻, S, ⋆ : B ◻, S, ! : B

@⃖  @⃖ ⟶ϵ

◻, @ : S, B ◻, S, B

Cn Cn⟶ϵ

◻, S, e : B

⟶ϵ

◻, S, ⋆ : B ◻, S, ! : B

e e

where X 6= ?.

Figure 2.5: Pass transitions

or
←−
@), ‘�’ of the box stack indicating a D-node, and a link of the graph G indicating

a C -node whose inputs include the link.

Definition 2.3.2 (Initial/final states).

1. A state ((G, e0), (↑,�,�, ? : �)), where e0 is the root of the graph G(1, 0), is

said to be initial .

2. A state ((G, e0), (↓,�,�, ! : �)), where e0 is the root of the graph G(1, 0), is

said to be final .

By the above definition, any graph G(1, 0) uniquely induces an initial state,

denoted by Init(G), and a final state, denoted by Final(G). An execution on a

graph G is a sequence of transitions starting from the initial state Init(G).

Each transition ((G, e), δ) →χ ((G′, e′), δ′) between graph states is labelled by

either β, σ or ε. Transitions are deterministic, and classified into pass transitions

that search for redexes and trigger rewriting, and rewrite transitions that actually

rewrite a graph as soon as a redex is found.

A pass transition ((G ◦H, e), (d,�, S, B))→ε ((G ◦H, e′), (d′, f ′, S ′, B′)), always

labelled with ε, applies to a state whose rewrite flag is �. The graph H contains only
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one node, and the positions e and e′ are an input or an output of the node. Fig. 2.5

defines pass transitions, by showing the single-node graph H, token positions and

data, omitting the irrelevant graph G. The position of the token is drawn as a black

triangle, pointing towards the direction of the token.

Each pass transition simply moves the token over a node, and modifies the token

data, while keeping an underlying graph unchanged. When the token passes a λ-node

or a !-node, a rewrite flag is changed to λ or !, which triggers a rewrite transition.

When the token passes a Cn-node, where n is positive, the old position e is pushed

to a box stack. This link e is drawn as a bullet in Fig. 2.5.

The way the token reacts to application nodes (@,
−→
@ and

←−
@) corresponds to

the way the window L·M moves in evaluating these function applications in the sub-

machine semantics (Fig. 2.1). When the token moves on to the function output of

an application node, the top element of a computational stack is either @ or ?. The

element ? makes the token return from a λ-node, which corresponds to reducing the

function part of application to a value (i.e. abstraction). The element @ lets the

token proceed at a λ-node, raises the rewrite flag λ, and hence triggers a rewrite

transition that corresponds to beta-reduction. The call-by-value application nodes

(
−→
@ and

←−
@) send the token to their argument output, pushing the element ? to a

box stack. This makes the token bounce at a !-node and return to the application

node, which corresponds to evaluating the argument part of function application to

a value. Finally, pass transitions through D-nodes, Cn-nodes and !-nodes prepare

copying of values, and eventually raise the rewrite flag ! that triggers on-demand

duplication.

A rewrite transition ((G ◦ H, e), (d, f, S,B)) →χ ((G ◦ H ′, e′), (d′, f ′, S, B′)), la-

belled with χ ∈ {β, σ, ε}, applies to a state whose rewrite flag is either λ or !. It

replaces the sub-graph H (redex ) with the graph H ′ of the same interface. The

position e that belongs to H is changed to the position e′ that belongs to H ′. The

transition may pop an element from a box stack. Fig. 2.6 defines rewrite transi-
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𝜆

$
𝐷

𝐺(1,𝑛)

!

?

𝑌 𝑍

⟶𝛽

𝑌 𝑍

⟶𝜖 𝐺(1,𝑛)

𝐶𝑘+1

𝐺(1,𝑛)

!

?

⟶𝜎

𝐶𝑘

𝐺(1,𝑛)

!

?

𝐺(1,𝑛)

!

?

𝐻(𝑛 + 𝑚, 𝑙) (2𝑛 + 𝑚, 𝑙)𝐻
′

𝜆,𝑆,𝐵 ◻,𝑆,𝐵 !,𝑆,⋄ : 𝐵 ◻,𝑆,𝐵 !,𝑆, 𝑒 : 𝐵 ◻,𝑆,𝐵

𝑒
𝑒

where Y ∈ L, Z ∈ L, $ ∈ {@,−→@ ,
←−
@}, and G(1, n) is any graph.

Figure 2.6: Rewrite transitions

tions, by showing the sub-graphs H and H ′, as well as token positions and data,

omitting the graph G. Before we go through each rewrite transition, we note that

rewrite transitions are not exhaustive in general, as a graph may not match a redex

even though a rewrite flag is raised. However we will see that there is no failure of

transitions in implementing the term calculus.

The first rewrite transition in Fig. 2.6, with label β, occurs when a rewrite flag

is λ. It implements beta-reduction by eliminating a pair of an abstraction node (λ)

and an application node ($ ∈ {@,−→@ ,
←−
@} in the figure). Outputs of the λ-node are

required to be connected to arbitrary nodes (labelled with Y and Z in the figure),

so that edges between links are not introduced. The Y -node and the Z-node may

be the same node.

The other rewrite transitions in Fig. 2.6 are for the rewrite flag !, and they target

at duplicable sub-graphs, i.e. !-boxes. They also pop the top element of a box stack,

which is used to determine which rewrite to perform.

The second rewrite transition in the figure, labelled with ε, finishes off each

duplication process by opening the !-box G. This box-opening operation eliminates

all doors of the !-box G, and replaces the interface of G with output links of the

auxiliary doors and the input link of the D-node, which is the new position of the

token. Again, no edge between links are introduced.
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Ck+1

G(1, 3)

!

?

⟶σ

Ck

! !

H(5, 2)

C3 C2

??

G(1, 3)

?

(8, 2)H
′

C5 C3

??

G(1, 3)

? ??

Figure 2.7: Example of rewrite transition →σ

The last rewrite transition in the figure, with label σ, actually copies a !-box. It

requires the top element e of the old box stack to be one of input links of the Ck+1-

node (where k is a natural number). The link e is popped from the box stack and

becomes the new position of the token, and the Ck+1-node becomes a Ck-node by

keeping all the inputs except for the link e. The sub-graph H(n+m, l) must consist of

l parallel C -nodes that altogether have n+m inputs. Among these inputs, n must be

connected to auxiliary doors of the !-box G(1, n), and m must be connected to nodes

that are not in the redex. The sub-graph H(n+m, l) is turned into H ′(2n+m, l) by

introducing n inputs to these C -nodes as follows: if an auxiliary door of the !-box G

is connected to a C -node in H, two copies of the auxiliary door are both connected

to the corresponding C -node in H ′. Therefore the two sub-graphs consist of the

same number l of C -nodes, whose in-degrees are possibly increased. The m inputs,

connected to nodes outside a redex, are kept unchanged. Fig. 2.7 shows an example

where copying of the graph G(1, 3) turns the graph H(5, 2) into H ′(8, 2).

All pass and rewrite transitions are well-defined, and indeed deterministic. Pass

transitions are also reversible, in the sense that no two different pass transitions

result in the same graph state. No transition is possible at a final state, and no

pass transition results in an initial state. Fig. 2.8 shows an example execution of

the DGoIM, which starts from an initial state and terminates at a final state. As
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Figure 2.8: Example execution of the DGoIM
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will be apparent in Sec. 2.4, this execution corresponds to evaluation of a term

(λx.x)
−→
@ (λy.y).

An execution of only pass transitions has some continuity in the following sense.

Lemma 2.3.3 (Pass continuity). For any execution Init(G) →∗ ((G, e), δ) of pass

transitions only, there exists a non-empty sequence e1, . . . , en of links of G that sat-

isfies the following.

• e1 is the root of G, and en = e.

• For each i ∈ {1, . . . , n − 1}, there exists a node whose inputs include ei and

whose outputs include ei+1.

• Each link in the sequence appears as a token position in the execution Init(G)→∗

((G, e), δ).

Proof outline. The proof is by induction on the length k of the execution Init(G)→∗

((G, e), δ). In the base case, where k = 0, the link e is the root of G, and e itself as

a sequence satisfies the conditions. The inductive case, where k > 0, is proved by

inspecting all possibilities of the last pass transition in the sequence.

The following sub-graph property is essential in time-cost analysis, because it

bounds the size of duplicable sub-graphs (i.e. !-boxes) in an execution.

Lemma 2.3.4 (Sub-graph property). For any execution Init(G) →∗ ((H, e), δ),

each !-box of the graph H appears as a sub-graph of the initial graph G.

Proof. Rewrite transitions can only copy or discard a !-box, and cannot introduce,

expand or reduce a single !-box. Therefore, any !-box of H has to be already a !-box

of the initial graph G.

When a graph has an edge between links, the token is just passed along. With this

pass transition over a link at hand, the equivalence relation between graphs that iden-

tifies consecutive links with a single link—so-called wire homeomorphism [Kissinger,



36 CHAPTER 2. EFFICIENT IMPLEMENTATION

2012]—lifts to a weak bisimulation between graph states. Therefore, behaviourally,

we can safely ignore consecutive links. From the perspective of time-cost analysis,

we benefit from the fact that rewrite transitions can be performed without introduc-

ing any edge between links; in other words, any edges between links introduced by

a rewrite transition can be immediately eliminated by identifying endpoints. This

means that, by assuming that an execution starts with a graph with no consecu-

tive links, we can analyse time cost of the execution without caring the extra pass

transition over a link.

2.4 Implementation of evaluation strategies

The implementation of the term calculus, by means of the dynamic GoI, starts

with translating (enriched) terms into graphs. The definition of the translation uses

multisets of variables, to track how many times each variable occurs in a term. A

multiset of variables is given by a function M : V → N from the set of variables to

the set of natural numbers, such that only a finite number of variables are mapped

to positive numbers. We assume that terms are alpha-converted in a form in which

all binders introduce distinct variables.

Notation 1 (Multiset). We write x ∈k M if M(x) = k, that is, the multiplicity of

x in a multiset M is k. The empty multiset is denoted by ∅, which means ∅(x) = 0

for any x. The sum of two multisets M1 and M2, denoted by M1 + M2, is defined

by (M1 + M2)(x) = M1(x) + M2(x). We can remove all occurrences of x from a

multiset M by changing the multiplicity of x to zero. This yields the multiset M\x,

e.g. [x, x, y]\x = [y]. We abuse the notation and refer to a multiset [x, . . . , x] of a

finite number of x’s, simply as x.

Definition 2.4.1 (Free variables). The map FV of terms to multisets of variables
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is inductively defined as below, where $ ∈ {@,−→@ ,
←−
@}:

FV(x) := [x],

FV(λx.t) := FV(t)\x,

FV(t $ u) := FV(t) + FV(u),

FV(t[x← u]) := (FV(t)\x) + FV(u).

For a multiset M of variables, the map FVM of evaluation contexts to multisets of

variables is defined by:

FVM(〈·〉) := M,

FVM(E @ t) := FVM(E) + FV(t),

FVM(E
−→
@ t) := FVM(E) + FV(t),

FVM(A〈v〉 −→@ E) := FV(A〈v〉) + FVM(E),

FVM(t
←−
@ E) := FV(t) + FVM(E),

FVM(E
←−
@ A〈v〉) := FVM(E) + FV(A〈v〉),

FVM(E[x← t]) := (FVM(E)\x) + FV(t),

FVM(E ′〈x〉[x← E]) := (FV(E ′〈x〉)\x) + FVM(E).

A term t is said be closed if FV(t) = ∅. Consequences of the above definition are

the following equations.

FV(E〈t〉) = FVFV(t)(E),

FVM(E〈E ′〉) = FVFVM (E′)(E),

FVM+M ′(E) = FVM(E) +M ′ (if M ′ is not captured in E),

FVx(E)\x = FV∅(E)\x.
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We give translations of terms, answer contexts, and evaluation contexts sepa-

rately. Fig. 2.11 and Fig. 2.12 define two mutually recursive translations (·)† and

(·)‡, the first one for terms and answer contexts, and the second one for evaluation

contexts. In the figures, $ ∈ {@,−→@ ,
←−
@}, and m is the multiplicity of x. Fig. 2.9

shows the general form of the translations, and Fig. 2.10 shows translation of a term

((λf .λx.f @ (f @ x)) @ (λy.y)) @ (λz.z).

The DGoIM can evaluate a closed term t by starting an execution on the trans-

lation t†. The execution shown in Fig. 2.8 is indeed on the translation ((λx.x)
−→
@

(λy.y))†, and executions on any translated closed pure terms can be seen in our

on-line visualiser6. The translations of answer contexts and evaluation contexts will

be used to define a weak simulation between the sub-machine semantics and the

DGoIM, both seen as labelled transition systems. The weak simulation plays a key

role in proving soundness, completeness and efficiency of the DGoIM.

The annotation of bold-stroke edges means each edge of a bunch is labelled with

6https://koko-m.github.io/GoI-Visualiser/

https://koko-m.github.io/GoI-Visualiser/
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an element of the annotating multiset, in a one-to-one manner. In particular if a

bold-stroke edge is annotated by a variable x, all edges in the bunch are annotated

by the variable x. Translation E‡M of an evaluation context has one input and

one output that are not annotated, which we refer to as the main input and the

main output. These annotations are only used to define the translations, and are

subsequently ignored during execution.

The translations are based on the so-called call-by-value translation of linear

logic to intuitionistic logic (e.g. [Maraist et al., 1999]). It is only abstraction that

is translated as a !-box, which captures the fact that only values (i.e. abstractions)

can be duplicated (see the basic rule (2.10) in Fig. 2.1). Indeed, if a term u stored

in an explicit substitution [x← u] is not a value, its translation is not a !-box, and

it cannot be duplicated as a whole. Note that only one C -node is introduced for

each bound variable. This is vital to achieve constant cost in looking up a variable,

namely in realising the basic rule (2.9) in Fig. 2.1.

The two mutually recursive translations (·)† and (·)‡ are related by the decom-

positions in Fig. 2.13, which can be checked by straightforward induction. In the

third decomposition, M ′ is not captured in E. Note that, in general, the translation

E〈t〉† of a term in an evaluation context cannot be decomposed into translations

E‡FV(t) and t†. This is because a translation (A〈λx.t〉−→@ E)‡M lacks a !-box structure,

compared to a translation (A〈λx.t〉 −→@ u)†.

Translation of an evaluation context can be traversed by pass transitions without

raising the rewrite flag λ or !, as the following lemma states.

Lemma 2.4.2. Let E be an evaluation context and M be a multiset. For any

graph G(1, 0) that has E‡M as a sub-graph and has no edge between links, let ei

and eo be the main input and the main output of the sub-graph E‡M , respectively.

For any pair (S,B) of a computation stack and a box stack, there exists a pair

(S ′, B′) of a computation stack and a box stack, such that ((G, ei), (↑,�, S, B)) →∗

((G, eo), (↑,�, S ′, B′)) is a sequence of pass transitions.
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Proof. By induction on E. We use
p→∗ to denote a sequence of pass transitions in

this proof. In the base case, where E = 〈·〉, the main input ei and the main output

eo coincides. An empty sequence suffices.

The first class of inductive cases are when the top-level constructor of E is func-

tion application, e.g. E ≡ E ′ @ t. Let e′i and e′o be the main input and the main

output of the sub-graph (E ′)‡M , respectively. In each of the cases, there exist stacks

S ′′ and B′′ such that ((G, ei), (↑,�, S, B))
p→∗ ((G, e′i), (↑,�, S ′′, B′′)). By the induc-

tion hypothesis, there exist stacks S ′ and B′ such that ((G, e′i), (↑,�, S ′′, B′′))
p→∗

((G, e′o), (↑,�, S ′, B′)). Combining these two sequences yields a desired sequence,

because e′o = eo.

The inductive case where E ≡ E ′[x ← t] simply boils down to the induction

hypothesis.

The last inductive case is when E ≡ E1〈x〉[x ← E2]. Let e′i and e′o be the main

input and the main output of the sub-graph (E1)
‡
∅, and e′′i and e′′o be the main in-

put and the main output of the sub-graph (E2)
‡
M , respectively. We have ei = e′i

and eo = e′′o . The link e′o is an input of a C -node and e′′i is the output of the C -

node. By the induction hypothesis on E1, there exist stacks S ′′ and B′′ such that

((G, e′i), (↑,�, S, B))
p→∗ ((G, e′o), (↑,�, S ′′, B′′)). This sequence can be followed by a

pass transition ((G, e′o), (↑,�, S ′′, B′′))→ ((G, e′′i ), (↑,�, S ′′, e′o : B′′)). By the induc-

tion hypothesis on E2, there exist stacks S ′ and B′ such that ((G, e′′i ), (↑,�, S ′′, e′o :

B′′))
p→∗ ((G, e′′o), (↑,�, S ′, B′)). Combining all these sequences yields a desired

sequence, because ei = e′i and eo = e′′o .

The inductive translations lift to a binary relation between closed enriched terms

and graph states.

Definition 2.4.3 (Binary relation �). The binary relation � is defined by E〈LtM〉 �
((E‡◦t†, e), (↑,�, S, B)), where: (i) E〈LtM〉 is a closed enriched term, and (E‡◦t†, e) is

given by E
‡
FV(t) t

†

FV(t)

with no edges between links, and (ii) there is an execution
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Init(E‡ ◦ t†)→∗ ((E‡ ◦ t†, e), (↑,�, S, B)) of pass transitions only, in which e appears

as a token position only in the last state.

A special case is LtM � Init(t†), which relates the starting points of an evaluation

and an execution. We require the graph E‡ ◦ t† to have no edges between links,

which is based on the discussion at the end of Sec. 2.3 and essential for time-cost

analysis. Although the definition of the translations and the operation ◦ on graphs

use edges between links (e.g. the translation x†), such edges can be eliminated as

soon as they are introduced, by identifying endpoints. For example, a variable can

be translated into a single link that is both an input and an output, and outputs

of the translation (t @ u)† can be simply the union of outputs of t† and u†. The

graph E‡ ◦ t† can be constructed by identifying interfaces of E‡ and t†, instead of

introducing edges.

The binary relation � gives a weak simulation of the sub-machine semantics

by the graph-rewriting machine. The weakness, i.e. the extra transitions compared

with reductions, comes from the locality of pass transitions and the bureaucracy of

managing !-boxes.

Theorem 2.4.4 (Weak simulation with global bound).

1. If E〈LtM〉 (χ E ′〈Lt′M〉 and E〈LtM〉 � ((E‡ ◦ t†, e), δ) hold, then there exists

a number n ≤ 3 and a graph state (((E ′)‡ ◦ (t′)†, e′), δ′) such that ((E‡ ◦

t†, e), δ)→n
ε→χ (((E ′)‡ ◦ (t′)†, e′), δ′) and E ′〈Lt′M〉 � (((E ′)‡ ◦ (t′)†, e′), δ′).

2. If A〈LvM〉 � ((A‡ ◦ v†, e), δ) holds, then the graph state ((A‡ ◦ v†, e), δ) is initial,

from which only the transition Init(A‡ ◦ v†)→ε Final(A‡ ◦ v†) is possible.

Proof. For the second half, e is the root of the graph A‡ ◦ v†, which means the state

((A‡ ◦ v†, e), δ) is not a result of any pass transition. Therefore, by the condition

(ii) of the binary relation �, we have Init(A‡ ◦ v†) = ((A‡ ◦ v†, e), δ), and one pass

transition from this state yields a final state Final(A‡ ◦ v†).
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For the first half, Fig. 2.14, Fig. 2.15 and Fig. 2.16 illustrate how the graph-

rewriting machine simulates each reduction ( of the sub-machine semantics. Each

sequence of transitions→ simulates a single reduction(. Annotations of edges are

omitted, and only the first and the last states of each sequence are shown, except

for the case of the basic rule (2.10).

Some sequences involve equations that apply the four decomposition properties

of the translations (·)† and (·)‡, which are given earlier in this section. These equa-

tions rely on the fact that terms are alpha-converted in a form in which all binders

introduce distinct variables, and reductions with labels β and σ work modulo alpha-

equivalence to avoid name captures. This implies the following.

• Free variables of u are not captured by A in the case of the basic rule (2.2).

• Free variables of A′〈v〉 are not captured by A in the case of the basic rules (2.5)

and (2.8).

• The variable x is not captured by E or E ′ in the case of the basic rules (2.9)

and (2.10).

• In the case of the basic rule (2.10), free variables of E ′ are not captured by A,

free variables of v are not captured by E ′, and x does not freely appear in v.

Simulation of the basic rule (2.10) involves duplicating the sub-graph v†, which

is a !-box. Because free variables of the value v are captured by either E or A, the

multiset FV(v) can be partitioned into two multisets as FV(v) = ME + MA, such

that ME is the multiset of those captured by E and MA is the multiset of those

captured by A. No variable is contained by both ME and MA. The translations

E‡ and A† include C -nodes that correspond to ME and MA, respectively. These

C -nodes get extra inputs by the rewrite transition labelled with σ, as represented

by the middle state in the simulation sequence.

In each sequence, let Gs and Gt be the first and the last graph, respectively.

By the condition (ii) of the binary relation �, there exists an execution Exec :
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Init(Gs) →∗ ((Gs, e1), (↑,�, S ′, B′)) of only pass transitions, in which the link e1

(see the figures) appears as a token position only once at the end.

1. In simulation of the basic rules (2.1), (2.3) and (2.6), the figures use S and B

instead of S ′ and B′. By Lem. 2.3.3, the result position e2 (see the figures)

does not appear in the execution Exec; if this is not the case, e1 would appear

more than once in Exec, which is a contradiction. Therefore, Exec followed by

the pass transitions shown in the figures gives a desired execution that meets

the condition (ii) of the binary relation �.

2. In simulation of the basic rule (2.9), the figure uses S and B instead of S ′ and

B′. Because x is not captured by E ′, the starting position e1 is in fact an input

of the Cm+1-node. Using Lem. 2.3.3 again in the same way, the result position

e2 does not appear in the execution Exec. Therefore, Exec followed by the

pass transition shown in the figures gives a desired execution that meets the

condition (ii) of the binary relation �.

3. In simulation of the basic rule (2.7), by the reversibility of pass transitions,

there exist stacks S and B such that: S ′ = S, B′ = ? : B, and the execution

Exec can be decomposed into an execution Exec′ : Init(Gs) →∗ ((Gs, e0),

(↑,�, S, B)) and one subsequent pass transition (see the figure for e0). In the

execution Exec ′, the link e0 appears as a token position only once at the end,

which can be checked by contradiction as follows.

• If e0 appears more than once in Exec ′ and its first appearance is with

direction ↓, it must be a result of a pass transition. However, no pass

transition leads to this situation, because e0 is an input of a function

application node. This is a contradiction.

• If e0 appears more than once in Exec′ and its first appearance is with

direction ↑, it must be with rewrite flag �, because Exec ′ consists of pass
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transitions only. Regardless of token data, the first appearance leads to

an extra appearance of e1 in Exec ′, which is a contradiction.

Given this freshness of e0 in Exec ′, by Lem. 2.3.3, the result position e2 does not

appear in the execution Exec ′. Therefore, Exec followed by the pass transitions

shown in the figures gives a desired execution that meets the condition (ii) of

the binary relation �.

4. In simulation of the basic rules (2.2), (2.5) and (2.8), by the reversibility of

pass transitions, there exist stacks S and B such thatthe execution Exec can

be decomposed into an execution Exec′ : Init(Gs) →∗ ((Gs, e0), (↑,�, S, B))

and at least one subsequent pass transition. In the execution Exec′, the link

e0 appears as a token position only once at the end, which can be checked in

the same manner as the previous case (3). Using this freshness of e0 in Exec ′

and Lem. 2.3.3, we can conclude that any node that interacts with a token in

the execution Exec ′ (i.e. that is relevant in a pass transition in the execution

Exec ′) belongs to E‡. This means that any pass transition in Exec ′, on the

starting graph Gs, can be imitated in the resulting graph Gt. Namely, the link

e0 corresponds to the result position e2, and Exec′ corresponds to an execution

Exec ′′ : Init(Gt)→∗ ((Gt, e2), (↑,�, S, B)) of only pass transitions, in which e2

appears only once at the end. This execution Exec′′ gives a desired execution

that meets the condition (ii) of the binary relation �.

5. In simulation of the basic rule (2.4), the same reasoning as the previous case (4)

gives an execution Exec ′′ : Init(Gt) →∗ ((Gt, e0), (↑,�, S, B)) of only pass

transitions, in which e0 appears only once at the end. By Lem. 2.3.3, the

result position e2 does not appear in the execution Exec ′′. Therefore, Exec ′′

followed by pass transitions gives a desired execution that meets the condition

(ii) of the binary relation �.

6. In simulation of the basic rule (2.10), by the reversibility of pass transitions,
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there exist an input e0 of the Cm+1-node and stacks S and B such that: S ′ = S,

B′ = e0 : B, and the execution Exec can be decomposed into an execution

Exec ′ : Init(Gs)→∗ ((Gs, e0), (↑,�, S, B)) and one subsequent pass transition

that pushes e0 to the box stack. By Lem. 2.3.3, the link e3 (see the figure)

appears in the execution Exec ′. Analysing this appearance, we can conclude

that the link e0 is in fact the main output of (E ′)‡∅.

• If e3 appears with direction ↓ in Exec ′, because e3 is an input of a function

application node or a C -node, this appearance cannot be a result of any

pass transition. This is a contradiction.

• If e3 appears with direction ↑, it must be with rewrite flag �, because

Exec ′ consists of pass transitions only. Because e3 is the main input of

(E ′)‡∅, by Lem. 2.4.2, this appearance leads to a state whose token position

is the main output e′ of (E ′)‡∅, direction is ↑ and rewrite flag is �. One

pass transition from the state leads to a state whose token position is e1.

This means there exists an execution Exec′′′ of pass transitions only, via

the token position e3 and the second last token position e′, to the token

position e1. Because pass transitions are deterministic, it is either: (1)

Exec is strictly a sub-sequence of Exec′′′, (2) Exec = Exec ′′′, or (3) Exec ′′′

is strictly a sub-sequence of Exec. Because Exec is followed by a pass

transition and a rewrite transition as shown in the figure, the case (1)

is impossible. Because e1 appears only once at the end in the execution

Exec, the case (3) leads to a contradiction. Therefore we can conclude

that (2) is the case, i.e. Exec = Exec ′′′. This means e′ = e0, i.e. e0 is the

main output of (E ′)‡∅.

As a consequence, the link e2 is indeed the result position, corresponding to

the link e0.

The rest of the reasoning is similar to the case 4. In the execution Exec to
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the starting position e1, the token does not interact with nodes that belong

to A† or v†; otherwise, by Lem. 2.3.3, e1 would have an extra appearance in

Exec, which is a contradiction. For the same reason, the execution Exec′ to the

link e0 does not involve any interaction of the token with the Cm+1-node, and

hence e0 appears only once at the end in the execution Exec′. As a result, the

execution Exec ′ gives an execution Exec′′ : Init(Gt) →∗ ((Gt, e2), (↑,�, S, B))

of only pass transitions on the resulting graph Gt, in which e2 appears only

once at the end. This execution Exec ′′ gives a desired execution that meets

the condition (ii) of the binary relation �.

2.5 Time-cost analysis

We analyse how time-efficiently the token-guided graph-rewriting machine imple-

ments evaluation strategies, following the methodology developed by Accattoli et al.

[2014], Accattoli and Sacerdoti Coen [2014], Accattoli [2017]. The time-cost analysis

focuses on how efficiently an abstract machine implements an evaluation strategy.

In other words, we are not interested in efficiency of evaluation strategies them-

selves, nor in minimising the number of β-reduction steps simulated by an abstract

machine. Our aim is to see if the number of transitions of an abstract machine is

reasonable, compared to the number of necessary β-reduction steps determined by

a given evaluation strategy.

Accattoli’s methodology assumes that an abstract machine has three groups of

transitions: 1) β-transitions that correspond to β-reduction in which substitution is

delayed, 2) transitions that perform substitution, and 3) other overhead transitions.

We incorporate this classification using the labels β, σ and ε of transitions.

Another assumption of the methodology is that, a single transition of an abstract

machine is enough to simulate each step of β-reduction, or each step of substitu-
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Figure 2.14: Illustration of simulation: left-to-right call-by-value application
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Figure 2.15: Illustration of simulation: call-by-need application and explicit substi-
tutions
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Figure 2.16: Illustration of simulation: right-to-left call-by-value application

tion in which one occurrence of a variable is replaced. This is satisfied by many

known abstract machines, including the storeless abstract machine of Danvy and

Zerny [2013] which our sub-machine semantics resembles, however not by the token-

guided graph-rewriting abstract machine. The machine has finer transitions and

can take several transitions to simulate a single step of reduction, as we can ob-

serve in Thm. 2.4.4. In spite of this mismatch we can still follow the methodology,

thanks to the weak simulation �. It discloses what transitions of the token-guided

graph-rewriting machine exactly correspond to β-reduction and substitution, and

gives a concrete number of overhead transitions that the machine needs to simulate
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β-reduction and substitution.

The methodology of time-cost analysis has four steps: (I) bound the number of

transitions required in implementing evaluation strategies, (II) estimate time cost

of each transition, (III) bound overall time cost of implementing evaluation strate-

gies, by multiplying the number of transitions with time cost for each transition,

and finally (IV) classify the abstract machine according to its execution time cost.

Consider now the following taxonomy of abstract machines introduced in Accattoli

[2017].

Definition 2.5.1 (classes of abstract machines [Accattoli, 2017, Def. 7.1]).

1. An abstract machine is said to be efficient if its execution time cost is linear

in both the input size and the number of β-transitions.

2. An abstract machine is said to be reasonable if its execution time cost is

polynomial in the input size and the number of β-transitions.

3. An abstract machine is said to be unreasonable if it is not reasonable.

In our case, the input size is given by the size |t| of the term t, inductively defined

by:

|x| := 1,

|λx.t| := |t|+ 1,

|t@ u| = |t−→@ u| = |t←−@ u| := |t|+ |u|+ 1,

|t[x← u]| := |t|+ |u|+ 1.

The number of β-transitions of the DGoIM is simply the number of transitions →β

labelled with β. Thm. 2.4.4 implies that this number in fact corresponds to the

number of reductions (β, labelled with β, of the sub-machine semantics.

Given an evaluation Eval , the number of occurrences of a label χ is denoted by

|Eval |χ. The sub-machine semantics comes with the following quantitative bounds.
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Proposition 2.5.2. For any pure closed term t and any evaluation Eval : LtM (∗

A〈LvM〉 that terminates, the number of reductions is bounded by |Eval |σ = O(|Eval |β)

and |Eval |ε = O(|t| · |Eval |β).

Proof. The first equation can be proved by directly applying the methodology of

time-cost analysis by Accattoli et al. [2014] to the sub-machine semantics. Its outline

is as follows.

Recall our assumption that each term involves function applications of a single

evaluation strategy only, which is either one of these three: call-by-need, left-to-right

call-by-value, or right-to-left call-by-value. Using the concept of distillery [Accattoli

et al., 2014, Sec. 4], we can establish simulation between evaluations by the sub-

machine semantics and derivations in three linear substitution calculi [Accattoli

and Kesner, 2010], each of which uses one of the three evaluation strategies. At the

core of the simulation is the fact that enriched terms of the sub-machine semantics

can be turned into terms of the linear substitution calculi by simply forgetting the

windows.

The simulation in particular entails that each step of reduction (β (resp. (σ)

of the sub-machine semantics is simulated by exactly one multiplicative (resp. expo-

nential) derivation step in the linear substitution calculi. This enables us to use the

complexity result about the three linear substitution calculi [Accattoli and Sacerdoti

Coen, 2014, Cor. 1 & Thm. 2], which states that, in derivations that successfully

terminate, the number of exponential steps is linear with respect to the number

of multiplicative steps. Consequently, the number of reductions (σ is linear with

respect to the number of reductions (β in evaluations that successfully terminate,

and this is exactly the first equation |Eval |σ = O(|Eval |β).

The second equation is proved by combining the first equation and an equation

|Eval |ε = O(|t| · (|Eval |β + |Eval |σ)). This auxiliary equation can be proved using

ideas from analysis of various abstract machines by Accattoli et al. [2014, Thm. 11.3

& Thm. 11.5], as below.
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For any enriched term E ′〈Lt′M〉 that appears in the evaluation Eval : LtM (∗

A〈LvM〉, we define two measures. The first measure #1(E
′〈Lt′M〉) is defined by: |t′|+|u|

if E ′ is in the form of E ′′〈A′〈·〉@u〉, E ′′〈A′〈·〉−→@u〉, or E ′′〈u←−@A′〈·〉〉; and |t′| otherwise.

By Lem. 2.2.1, both t′ and u above are sub-terms of t, and we have #1(E
′〈Lt′M〉) ≤

2 · |t|. The second measure #2(E
′) is on E ′ only, and defined inductively as below.

#2(〈·〉) := 0,

#2(E
′′〈x〉[x← E ′′′]) := #2(E

′′) + #2(E
′′′) + 1,

#2(E
′′ @ t) = #2(E

′′ −→@ t) = #2(A〈v〉
−→
@ E ′′) := #2(E

′′),

#2(t
←−
@ E ′′) = #2(E

′′←−@ A〈v〉) = #2(E
′′[x← t′′]) := #2(E

′′).

Because the basic rules (2.1), (2.3), (2.4), (2.6) and (2.7) strictly reduce the

measure #1, these rules can be consecutively applied at most 2 · |t| times. The

evaluation Eval can be seen as applications of these rules interleaved with other

rules, so the total number of applications of these five basic rules can be bounded

by O(|t| · (|Eval |β + |Eval |σ + |Eval |9)), where |Eval |9 denotes the total number of

applications of the basic rule (2.9).

The measure #2 is increased only by the basic rule (2.9) and decreased only

by the basic rule (2.10). Both the increase and the decrease are of one. Because

the measure #2 gives zero for both LtM and A〈LvM〉, namely #2(〈·〉) = #2(A) = 0,

the basic rule (2.9) must be applied as many times as the basic rule (2.10) in the

evaluation Eval . This means |Eval |σ = |Eval |9.

Combining the bound O(|t| · (|Eval |β + |Eval |σ + |Eval |9)) with the equation

|Eval |σ = |Eval |9 gives the auxiliary equation on |Eval |ε.

We use the same notation |Exec|χ, as for an evaluation, to denote the number

of occurrences of each label χ in an execution Exec. Additionally the number of

rewrite transitions with the label ε, i.e. those that eliminates a !-box structure, is

denoted by |Exec|εR. Note that pass transitions are all labelled with ε, and hence
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|Exec|εR ≤ |Exec|ε. The following proposition completes the first step of the cost

analysis.

Proposition 2.5.3 (Soundness and completeness, with transition bounds). For any

pure closed term t, an evaluation Eval : LtM(∗ A〈LvM〉 terminates with the enriched

term A〈LvM〉 if and only if an execution Exec : Init(t†)→∗ Final(A‡ ◦ v†) terminates

with the graph A‡ ◦ v†. Moreover the number of transitions is bounded by |Exec|β =

|Eval |β, |Exec|σ = O(|Eval |β), |Exec|ε = O(|t| · |Eval |β), |Exec|εR = O(|Eval |β).

Proof. Because the initial term t is closed, any enriched term E ′〈Lt′M〉 that appears in

the evaluation Eval is also closed. This implies that a reduction is always possible

at E ′〈Lt′M〉 unless it is in the form of A′〈v′〉. In particular, if t′ is a variable, the

variable is captured by an explicit substitution in E ′ and the basic rule (2.10) is

possible. Consequently, if an evaluation of the pure closed term t terminates, the

last enriched term is in the form of A′〈v′〉.

The forward direction of the equivalence, that is, the evaluation Eval implies

the execution Exec, follows from Thm. 2.4.4. The backward direction, that is, the

execution Exec implies the evaluation Eval , also follows from Thm. 2.4.4, because

an evaluation of the pure closed term t is in the form of LtM (∗ A〈LvM〉 or never

terminates.

Thm. 2.4.4 also gives equations |Exec|β = |Eval |β, |Exec|σ = |Eval |σ and |Exec|ε =

O(|Eval |β + |Eval |σ + |Eval |ε). Combining these with Prop. 2.5.2 yields the desired

equations except for the last one (i.e. |Exec|εR = O(|Eval |β)).

This last equation follows from an equation |Exec|εR = |Exec|β that can be

proved as follows. For any graph state ((G, e), δ) that appears in the execution

Exec : Init(t†) →∗ Final(A‡ ◦ v†), we define a measure #(G) by the number of λ-

nodes that are outside any !-box in the graph G.

Firstly, at any point of the execution Exec, the token is inside a !-box if and

only if it has the rewrite flag ‘!’. This means that, if a λ-node gets eliminated by

a rewrite transition labelled with β, the λ-node is outside a !-box. By Lem. 2.3.4,
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each !-box has exactly one λ-node that directly belongs to it. It follows that each

rewrite transition labelled with ε brings exactly one λ-node outside a !-box.

As a result, each rewrite transition labelled with β decreases the measure # by

one, and each rewrite transition labelled with ε increases the measure # by one. No

other transitions change the measure #. Because the measure # gives zero for the

initial and final graph states Init(t†) and Final(A‡◦v†), namely #(t†) = #(A‡◦v†) =

0, we have |Exec|εR = |Exec|β.

The next step in the cost analysis is to estimate the time cost of each transition.

We are interested in implementing evaluation strategies, and therefore we focus on

transitions that happen in executions starting from the translation of a term. We

assume that graphs are implemented in the following particular way, for the purposes

that we will explain shortly afterwards.

Each ?-node, and its input and output, are identified and implemented as a single

link. Each link is given by two pointers to its child and its parent. If a node is not

a ?-node, it is given by its label, pointers to its inputs, and pointers to its outputs;

the pointers to inputs are omitted for C -nodes. Additionally, each link and node

has a pointer to a !-node, or a null pointer, to indicate the !-box structure it directly

belongs in. Note that each link has at most three pointers, and each node has at

most two input (resp. output) pointers, which are distinguished. The size of a graph

can be estimated using the number of nodes that are not ?-nodes. Accordingly, a

position of the token is a pointer to a link, a direction and a rewrite flag are two

symbols, a computation stack is a stack of symbols, and finally a box stack is a stack

of symbols and pointers to links.

There are two key purposes of these rather involved assumptions of implemen-

tation. One purpose is to bound the number of pointers that represent each node.

Pointers to inputs are omitted at C -nodes for this purpose, because these nodes are

the only ones that can have an arbitrary number of inputs. The other purpose is to

estimate that the translation of terms yields linear representation, namely that the
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translation t† of each term t has the size that is linear to the size |t| of the term.

This estimation is impossible without the assumption that each !-box structure is

implemented using pointers to its principal door (!-node) and omitting auxiliary

doors (?-nodes). Without this assumption, a single variable may be translated using

multiple ?-nodes whose number can only be bounded by the size of the term, which

leads to not linear but polynomial representation.

The assumption about implementation of !-boxes is also for the purpose of de-

termining !-boxes simply by traversing nodes, in executions that start from the

translation of a term. At any point of these executions, each !-box already appeared

as a sub-graph of the initial graph (by Lem. 2.3.4), which is the translation of a

term. This means that the !-box is always the translation of abstraction, and more-

over, every node inside the !-box is reachable from the principal door (!-node) of the

!-box. The !-box structure can therefore be recovered by traversing nodes from the

principal door. The end of traversal can be determined using the assumed pointers

from nodes to !-nodes, and the traversal cost can be bounded by the size of the !-box.

Under the assumptions about implementation, time cost of each transition can

be finally estimated as follows. All pass transitions have constant cost. Each pass

transition looks up one node and its outputs (that are either one or two) next to the

current position, and involves a fixed number of elements of the token data. Rewrite

transitions with the label β have constant cost, as they change a constant number

of nodes and links, and only a rewrite flag of the token data.

Rewrite transitions with the label ε or σ manipulate !-boxes, namely, those with

the label ε remove a !-box and those with the label σ copy a !-box. Both these

manipulations amount to traversing nodes in the !-box, whose cost can be bounded

by the size of the !-box. Additionally, rewrite transitions with the label σ update the

sub-graph H ′ and a C -node connected to the copied !-box (see Fig. 2.6). Updating

cost of H ′ is bounded by the number of auxiliary doors of the !-box, which is less

than the size of the !-box. Updating cost of the C -node is constant, because C -nodes
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do not have pointers to its inputs, by the assumption about the implementation of

graphs. Overall, rewrite transitions with the label ε or σ have the time cost bounded

by the size of the involved !-box.

With the results of the previous two steps, we can now give the overall time cost

of executions and classify our abstract machine.

Theorem 2.5.4 (Soundness and completeness, with cost bounds). For any pure

closed term t, an evaluation Eval : LtM(∗ A〈LvM〉 terminates with the enriched term

A〈LvM〉 if and only if an execution Exec : Init(t†)→∗ Final(A‡ ◦ v†) terminates with

the graph A‡ ◦ v†. The overall time cost of the execution Exec is bounded by O(|t| ·

|Eval |β).

Proof. Non-constant cost of rewrite transitions is the size of a !-box. By Lem. 2.3.4,

this size is less than the size of the initial graph t†, which can be bounded by the size

|t| of the initial term. Therefore any non-constant cost of each rewrite transition, in

the execution Exec, can be also bounded by |t|. By Prop. 2.5.3, the overall time cost

of rewrite transitions labelled with β is O(|Eval |β), and that of the other rewrite

transitions and pass transitions is O(|t| · |Eval |β).

Note that the time cost of constructing the initial graph t†, and attaching a token

to it, does not affect the bound O(|t| · |Eval |β), because it can be done in linear time

with respect to |t|. This is thanks to the assumption about implementation, namely

that ?-nodes and input pointers of C -nodes are omitted.

Corollary 2.5.5. The token-guided graph-rewriting machine is an efficient abstract

machine implementing call-by-need, left-to-right call-by-value and right-to-left call-

by-value evaluation strategies, in the sense of Def. 2.5.1.

Cor. 2.5.5 classifies the graph-rewriting machine as not just reasonable, but in

fact efficient. In terms of token passing, this efficiency benefits from the graphi-

cal representation of environments (i.e. explicit substitutions in our setting). The
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graphical representation is in such a way that each bound variable is associated

with exactly one C -node, which is ensured by the translations (·)† and (·)‡ and the

rewrite transition →σ. Excluding any two sequentially-connected C -nodes is essen-

tial to achieve the efficient classification, because it yields the constant cost to look

up a bound variable and its associated computation.

As for graph rewriting, the efficient classification shows that introduction of

graph rewriting to token passing does not bring in any inefficiencies. In our setting,

graph rewriting can have non-constant cost in two ways. One is duplication cost

of a sub-graph, which is indicated by a !-box, and the other is elimination cost

of a !-box that delimits abstraction. Unlike the duplication cost, the elimination

cost leads to non-trivial cost that abstract machines in the literature usually do

not have. Namely, our graph-rewriting machine simulates a β-reduction step, in

which an abstraction constructor is eliminated and substitution is delayed, at the

non-constant cost depending on the size of the abstraction. The time-cost analysis

confirms that the duplication cost and the unusual elimination cost have the same

impact, on the overall time cost, as the cost of token passing. What is vital here is

the sub-graph property (Lem. 2.3.4), which ensures that the cost of each duplication

and elimination of a !-box is always linear in the input size.

2.6 Rewriting vs. jumping

The starting point of our development is the GoI-style token-passing abstract ma-

chines for call-by-name evaluation, given by Danos and Regnier [1996], and by Mackie

[1995]. Fig. 2.17 recalls these token-passing machines as a version of the DGoIM

with the passes-only interleaving strategy (i.e. the DGoIM with only pass transi-

tions). It follows the convention of Fig. 2.5, but a black triangle in the figure points

along (resp. against) the direction of the edge if the token direction is ↑ (resp. ↓).

Note that this version uses different token data, to which we will come back later.



2.6. REWRITING VS. JUMPING 59

Token data (d, S,B,E) consists of:

• a direction defined by d ::= ↑ | ↓,

• a computation stack defined by S ::= � | A : S | @ : S, and

• a box stack B and an environment stack E, both defined by B,E ::=
� | σ : B, using exponential signatures σ ::= ? | e · σ | 〈σ, σ〉 where e
is any link of the underlying graph.

Pass transitions:
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λ

D D
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λ λ⟶ϵ
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⟶ϵ

S, B, E S, ⋄ : B, E

! !⟶ϵ

S, σ : B, E
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S, (e ⋅ σ) : B, E
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e

⟶ϵ

S, σ : B, E
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e

S, B, σ : E

!

S, B, σ : E

⟶ϵ !

S, σ : B, E

? ?⟶ϵ

S, σ : B, : Eσ ′ S, ⟨σ, ⟩ : B, Eσ ′

?

S, ⟨σ, ⟩ : B, Eσ ′

⟶ϵ ?

S, σ : B, : Eσ ′

Given a term t with the call-by-need function application (@) abused, a suc-
cessful execution ((t†, et), (↑,�,�,�,�))→∗ ((t†, ev), (↑,�,�,�,�)) starts
at the root et of the translation t†, and ends at the root ev of the translation
v†, for some sub-value v of the term t. The value v indicates the evaluation
result.

Figure 2.17: Passes-only DGoIM for call-by-name [Danos and Regnier, 1996, Mackie,
1995]
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Token-passing GoI keeps the underlying graph fixed, and re-evaluates a term

by repeating token moves. It therefore favours space efficiency at the cost of time

efficiency. The repetition of token actions poses a challenge for evaluations in which

duplicated computation must not lead to repeated evaluation, especially call-by-

value evaluation [Fernández and Mackie, 2002, Schöpp, 2014b, Hoshino et al., 2014,

Dal Lago et al., 2015]. Moreover, in call-by-value the repetition of token actions

raises the additional technical challenge of avoiding repeating any associated com-

putational effects [Schöpp, 2011, Muroya et al., 2016, Dal Lago et al., 2017]. A

partial solution to this conundrum is to focus on the soundness of the equational

theory, while deliberately ignoring the time costs [Muroya et al., 2016]. Introduction

of graph reduction, the key idea of the DGoIM, is one complete solution that also

deals with the time costs. It namely avoids repeated token moves and also improves

time efficiency of token-passing GoI. Another such solution in the literature is in-

troduction of jumps. We discuss how these two solutions affect machine design and

space efficiency.

The most greedy way of introducing graph reduction, namely the rewrites-first

interleaving we studied in this work, simplifies machine design in terms of the va-

riety of pass transitions and token data. First, some token moves turn irrelevant

to an execution. This is why Fig. 2.5 for the rewrites-first interleaving has fewer

pass transitions than Fig. 2.17 for the passes-only interleaving. Certain nodes, like

‘?’, always get eliminated before visited by the token, in the rewrites-first interleav-

ing. Accordingly, token data can be simplified. The box stack and the environment

stack used in Fig. 2.17 are integrated to the single box stack used in Fig. 2.5. The

integrated stack does not need to carry the exponential signatures. They make sure

that the token exits !-boxes appropriately in the token-passing GoI, by maintaining

binary tree structures, but the token never exits !-boxes with the rewrites-first in-

terleaving. Although the rewrites-first interleaving simplifies token data, rewriting

itself, especially duplication of sub-graphs, becomes the source of space-inefficiency.
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A jumping mechanism can be added on top of the token-passing GoI, and enables

the token to jump along the path it would otherwise follow step-by-step. Although no

quantitative analysis is provided, it gives time-efficient implementations of evaluation

strategies, namely of call-by-name evaluation [Danos and Regnier, 1996] and call-

by-value evaluation [Fernández and Mackie, 2002]. Jumping can reduce the variety

of pass transitions, like rewriting, by letting some nodes always be jumped over.

Making a jump is just changing the token position, so jumping can be described as

a variation of pass transitions, unlike rewriting. However, introduction of jumping

rather complicates token data. Namely it requires partial duplication of token data,

which not only complicates machine design but also damages space efficiency. The

duplication effectively represent virtual copies of sub-graphs, and accumulate during

an execution. Tracking virtual copies is the trade-off of keeping the underlying graph

fixed. Some jumps that do not involve virtual copies can be described as a form of

graph rewriting that eliminates nodes.

Finally, we give a quantitative comparison of space usage between rewriting

and jumping. As a case study, we focus on implementations of call-by-name/need

evaluation, namely on the passes-only DGoIM recalled in Fig. 2.17, our rewrites-first

DGoIM, and the passes-only DGoIM equipped with jumping that we will recall in

Fig. 2.18. A similar comparison is possible for left-to-right call-by-value evaluation,

between our rewrites-first DGoIM and the jumping machine given by Fernández and

Mackie [2002].

Fig. 2.18 recalls the token-passing machine equipped with jumping, given by Danos

and Regnier [1996], which is proved to be isomorphic to Krivine’s abstract ma-

chine [Krivine, 2007] for call-by-name evaluation. The machine has pass transitions

as well as the jump transition that lets the token jump to a remote position.7 Com-

pared with the token-passing GoI (Fig. 2.17), pass transitions for nodes related to

!-boxes are reduced and changed, so that the jumping mechanism imitates rewrites

7Our on-line visualiser additionally supports this jumping machine.
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Token data (d, S,B,E) consists of:

• a direction defined by d ::= ↑ | ↓,

• a computation stack defined by S ::= � | A : S | @ : S, and

• a box stack B and an environment stack E, both defined by B,E ::=
� | (e, E) : B, where e is any link of the underlying graph.

Pass transitions:

@ : S, B, E

λ

D D

λ⟶β

S, B, E S, B, E

λ λ⟶ϵ

@ : S, B, E

S, B, E

@ @⟶ϵ

@ : S, B, E

⟶ϵ

S, B, E S, (e, E) : B, E

! !⟶ϵ

S, ( , ) : B, Ee
′
E
′

S, B, E

Cn Cn⟶σ

S, B, E

𝖠 : S, B, E

λ λ⟶ϵ

S, B, E S, B, E

λ λ⟶ϵ

𝖠 : S, B, E

@ : S, B, E

@ @⟶ϵ

S, B, E 𝖠 : S, B, E

@ @⟶ϵ

S, B, E S, B, E

@ @⟶ϵ

𝖠 : S, B, E

S, B, ( , ) : Ee
′
E
′

? ?⟶ϵ

S, B, ( , ) : Ee
′
E
′

S, B, E

e e

Jump transition: ((G, e), (↓, S, B, (e′, E ′) : E)) →ε ((G, e′), (↓, S, B,E ′)),

where the old position e is the output of a !-node: !

e

.

Given a term t with the call-by-need function application (@) abused, a suc-
cessful execution ((t†, et), (↑,�,�,�,�))→∗ ((t†, ev), (↑,�,�,�,�)) starts
at the root et of the translation t†, and ends at the root ev of the translation
v†, for some sub-value v of the term t. The value v indicates the evaluation
result.

Figure 2.18: Passes-only DGoIM plus jumping for call-by-name [Danos and Regnier,
1996]
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machines token-passing only
(Fig. 2.17)

rewriting added
(Fig. 2.5 & Fig. 2.6)

jumping added
(Fig. 2.18)

evaluations
implemented

call-by-name call-by-need call-by-name

size of graph |G0| O(n · |G0|) |G0|
size of

token position
log |G0| O(log (n · |G0|)) log |G0|

size of token data O(n · log |G0|) O(n · log (n · |G0|)) O(2n · log |G0|)

Table 2.1: Comparison between rewriting and jumping, case study: space usage
after n transitions from an initial state of a graph G0

involving !-boxes. The token remembers its old position, together with its current

environment stack, when passing a D-node upwards. The token uses this informa-

tion and makes a jump back in the jump transition, in which the token exits a !-box

at the principal door (!-node) and changes its position to the remembered link e′.

The quantitative comparison, whose result is stated below, shows that partial

duplication of token data impacts space usage much more than duplication of sub-

graphs, and therefore rewriting has asymptotically better space usage than jumping.

Proposition 2.6.1. After n transitions from an initial state of a graph of size |G0|,

space usage of three versions of the DGoIM is bounded as in Table 2.1.

Proof. The size |Gn| of the underlying graph after n transitions can be estimated

using the size |G0| of the initial graph. Our rewrites-first DGoIM is the only one

that changes the underlying graph during an execution. Thanks to the sub-graph

property (Lem. 2.3.4), the size |Gn| can be bounded as |Gn| = O(nσ · |G0|), where

nσ is the number of σ-labelled transitions in the n transitions. In the token-passing

machines with and without jumping (Fig. 2.17 and Fig. 2.18), clearly |Gn| = |G0|.

In any of the three machines, the token position can be represented in the size of

log |Gn|.

Next estimation is of token data. Because stacks can have a link of the underlying

graph as an element, the size of token data after n transitions depends on log |Gn|.

Both in the token-passing machine (Fig. 2.17) and our rewrites-first DGoIM, at most
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one element is pushed in each transition. Therefore the size of token data is bounded

by O(n · log (|Gn|)).

On the other hand, in the jumping machine (Fig. 2.18), it is only the computation

stack that has at most linear growth during execution. The other stacks (i.e. the

box stack and the environment stack) jointly grows at most exponentially, for the

following reason.

Possible changes that each transition can make to these two stacks are: pushing

a pair (e, E) of a link e and a copy of the environment stack E onto the box stack;

popping the top element of the environment stack; and simply moving the top

element from the box stack to the environment stack. Only the first one among

these changes increases the combined size of the box stack and the environment

stack. Let #(Sn) and #(En) be the number of links stored in the box stack and the

environment stack, respectively, after n transitions. The combined number of links

therefore satisfies #(Sn+1)+#(En+1) ≤ #(Sn)+2·#(En)+1 ≤ 2·(#(Sn)+#(En))+1,

which implies the exponential bound #(Sn) + #(En) = O(2n).

Since the jumping machine never changes the underlying graph, the size of each

link stored in stacks is always bounded by log (|G0|). Consequently, the combined

size of the box stack and the environment stack can be bounded by O(2n · log (|G0|)).

This overpowers the linear bound O(n) of the size of the computation stack, which

stores symbols A and @.

Fig. 2.19 illustrates an execution of the jumping machine where the token data,

namely the environment stack, indeed grows exponentially before the token per-

forms any jump. The execution is on a term (λx.(λy.(λa.a)y)x) (λw.w). The term

contains nested η-expansions, and these are translated into a specific pattern of D-

nodes and !-nodes that causes the exponential growth. The translation of the term

is shown in Fig. 2.19(a), where e0, e1, e2, e3 are links.

Fig. 2.19(b) shows how the box stack and the environment stack evolve, until

the token reaches the link e3 for the first time. Starting from the root of the graph,
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!

𝐶1

𝜆

!

𝐶1

𝐶1

𝜆

!

@

𝐷

@

𝐷

𝐷

@

𝐶1

𝜆

𝜆

!

𝑒0

𝑒1

𝑒2

𝑒3

(a) Translation of a term (λx.(λy.(λa.a)y)x) (λw.w)

box stack environment stack
posi-
tion

� � e0
(e0,�) : � �

� (e0,�) : � e1
(e1, (e0,�) : �) : � (e0,�) : �

� (e1, (e0,�) : �) : (e0,�) : � e2
(e2, (e1, (e0,�) : �) : (e0,�) : �) : � (e1, (e0,�) : �) : (e0,�) : �

� (e2, (e1, (e0,�) : �) : (e0,�) : �)
: (e1, (e0,�) : �) : (e0,�) : � e3

(b) Trace of the token data (selected), until the token reaches e3 for the first time

Figure 2.19: Example execution of the jumping machine: exponential growth of the
environment stack
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the token follows the shortest (directed) path to e3, visiting D-nodes and !-nodes

alternatively. First, the token passes a D-node. It pushes the input link e of the

D-node and a copy of the whole environment stack E (indicated by magenta in

Fig. 2.19(b)) onto the box stack. Immediately afterwards, the token passes a !-node.

It moves the new top element (e, E) of the box stack to the top of the environment

stack E. As a result, the environment stack E has become (e, E) : E, doubling in

size and additionally gaining the extra element e.

By the time the token reaches the link e3, the token repeats this doubling pro-

cedure three times in a row, and hence the environment stack exponentially grows.

Note that the token does not consume any element of the stack meanwhile. The

token does not visit any ?-nodes nor perform any jump until it reaches e3. It is the

nested η-expansions of the term that creates this behaviour here.



Chapter 3

Focussed graph rewriting for

the core calculus Spartan

3.1 Outline

This chapter presents a semantical framework with which observational equivalence

can be proved directly by exploiting the idea of locality, the idea that naturally arises

in token-guided graph rewriting. We revise the rewrites-first DGoIM presented in

Chap. 2 for the lambda-calculus, into the Universal Abstract Machine (UAM) for

the core untyped language Spartan. All language features but three—variable

binding, name binding and thunking—have to be provided as extrinsic operations

to Spartan, with their behaviour provided as extrinsic graph-rewrite rules to the

UAM. This means that it is not necessary to classify features into intrinsic and

extrinsic, or into effects and pure computation; in fact, even the function-abstraction

and application are modelled as extrinsic operations in our framework.

This chapter is organised as follows. In Sec. 3.2 we present a simple calculus

(Spartan) which intermediates syntactically between languages with effects and

the focussed hypernet representation. Hypernet rewriting is overviewed in Sec. 3.3,

with enough technical detail to understand the examples of observational equivalence

listed in Sec. 3.4. The technical details of focussed hypernet rewriting, including the

67



68 CHAPTER 3. FOCUSSED GRAPH REWRITING FOR SPARTAN

definition of the UAM, are given in Sec. 3.5. Execution of the UAM, given a variety

of pre-loaded extrinsic operations, can be seen in an on-line visualiser1.

3.2 The Spartan calculus

The syntactic elements of Spartan are a set of variables V, (ranged over by x, y), a

set of atoms A, (ranged over by a), and a set of operations O (ranged over by φ). The

set of operations is partitioned into O = OX ] O , namely: passive operations OX

(ranged over by φX) and active operations O (ranged over by φ ). We will usually

denote a sequence of variables x0, . . . , xk by ~x, a sequence of atoms a0, . . . , ak by

~a, etc. These sequences may be empty, case in which we write −. We denote the

length of a sequence ~x by |~x|. If convenient we may treat the sequences as sets; for

example, we write y ∈ ~x if y appears in the sequence ~x, and we denote the set of

common elements between two sequences ~x and ~y by ~x ∩ ~y.

Definition 3.2.1 (Spartan terms). The terms of Spartan, typically ranged over

by s, t, u, are generated by the grammar:

t ::= x | a | new a( t in t | bind x→ t in t | ~y.t | φ(~t;~t).

The term formers are variables, names, name binding, variable binding, thunking

and operations. Note that the sequences above may be empty. In particular, thunk-

ing may be applied without binding any variable (−.t), in which case we may simply

write t. In the formation of an operation term φ(~s;~t) arguments ~s are used eagerly

and the arguments ~t lazily (we also say they are deferred). The eager arguments are

evaluated in the given order, whereas the evaluation of lazy arguments is deferred.

The distinction between name-binding and variable-binding will be seen to play a

crucial role in the management of sharing vs. copying during execution.

1Link to the on-line UAM visualiser: https://tnttodda.github.io/Spartan-Visualiser/

https://tnttodda.github.io/Spartan-Visualiser/
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The calculus provides only the most basic infrastructure. All interesting compu-

tational content must be concretely provided as extrinsic operations. The following

is a non-exhaustive list of such operations which may be added to the Spartan

framework. These operations can be used to write Spartan terms that recursively

compute the factorial of five, for example, as shown in Fig. 3.1.

Some passive operations (constructors) that can be added to Spartan are nu-

merical constants (n
def
= n(−;−)), boolean constants (tt

def
= tt(−;−) and ff

def
=

ff(−;−)), pairing (〈t, u〉 def
= P(t, u;−)), empty tuple (〈〉 def

= 〈〉(−;−)), injections

(inji(t)
def
= inji(t;−), i ∈ {1, 2}), etc.

Some examples of active Spartan operations are successor (succ(t)
def
=

succ(t;−)), addition (t + u
def
= +(t, u;−)), conjunction (t&u

def
= &(t, u;−)), con-

ditionals (if t then u1 else u2
def
= if(t;u1, u2)), recursion (µx.t

def
= µ(−;x.t)),

sequential composition (t;u
def
= ;(t;u) where the operation ‘;’ is distinguished from

the punctuation ‘;’) etc.

Datatype destructors can also be added as active operations, for example projec-

tions (πi(t)
def
= πi(t;−), i ∈ {1, 2}), pattern matching (match t with x1 7→ u1, x2 7→

u2
def
= match(t;x1.u1, x2.u2)), etc.

Operations with multiple arguments can come in different flavours depending

on order of evaluations and eagerness. For example conjunction can be left-to-right

&(t, u;−), right-to-left &(u, t;−), or short-cut &(t;u) that evaluates u only when

the evaluation result of t is true (tt). Pairs can be also evaluated left-to-right (as

above), but also, right-to-left, or lazily.

Most strikingly, abstraction and application themselves can be presented as op-

erations. Abstraction is simply a thunking of the function body: λx.t
def
= λ(−;x.t),

whereas application can be defined by-name or by-value, left-to-right or right-to-

left: t u
def
= @(t;u)(call-by-name), t u

def
=
−→
@(t, u;−)(left-to-right call-by-value), or

t u
def
=
←−
@(u, t;−)(right-to-left call-by-value).

Algebraic operations are operations of certain arity and equational properties,
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Simple recursion: with and without syntactic sugar
bind fact → µf. λx. if x = 1 then 1 else x× (f (x− 1))

in fact 5
bind fact → µ(-; f.λ(-;x. if(=(x,1(-; -); -);

-.1(-; -),

-.×(x,
−→
@ (f,−(x,1(-; -); -); -); -))))

in
−→
@ (fact ,5(-; -); -)

Tail recursion using pairs: with and without syntactic sugar
bind factT → µf. λn. if π2(n) = 1 then π1(n)

else f 〈π1(n)× π2(n), π2(n)− 1〉
in factT 〈1, 5〉
bind factT → µ(-; f.λ(-;n. if(=(π2(n; -),1(-; -); -);

-.π1(n; -),

-.
−→
@ (f, P(×(π1(n; -),π2(n; -); -),

−(π2(n; -),1(-; -); -); -); -))))

in
−→
@ (factT , P(1(-; -),5(-; -); -); -)

Recursion using state: with and without syntactic sugar
bind factS → new a( 1 in

µf. λx. if x = 1 then !a else ((a := !a× x); f (x− 1))

in factS 5
bind factS → new a( 1(-; -) in

µ(-; f.λ(-;x. if(=(x,1(-; -); -);

-.deref(a; -),

-.; (assign(a,×(deref(a; -), x, ; -); -);

-.
−→
@ (f,−(x,1(-; -); -); -)))))

in
−→
@ (factS ,5(-; -); -)

Figure 3.1: Spartan terms with extrinsic operations (highlighted in magenta)
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designed to characterise a class of computational effects [Plotkin and Power, 2003].

All examples of algebraic operations from loc. cit. can be presented as (active)

Spartan operations. Non-deterministic choice t(−;u1, u2) selects one of its deferred

argument non-deterministically; equipping it with a probability p ∈ [0, 1] yields a

probabilistic choice tp(−;u1, u2). Interactive input read(−;x.u) assigns an input

value to bound variable x, whereas interactive output write(t;u) produces the result

of evaluating (eager) argument t as an output value. Both operations continue with

the deferred argument u. State lookup and update take form lookup(t0;x.u) and,

respectively, update(t0, t;u). The difference from interactive I/O is that the first

eager argument t0 is evaluated to yield an atom, which serves as a location in a

store. In their generic form, state operations !t0
def
= deref(t0;−) and t0 := t

def
=

assign(t0, t;−) return a stored value and the empty pair, respectively, instead of

continuing with a deferred argument. Finally, creation of a local state, in the generic

form, is modelled by ref(t;−) that stores evaluation result of t to a fresh location

(atom) and returns it.

Effect handlers are studied as a generalisation of exception handlers to algebraic

effects in Plotkin and Pretnar [2013]. In our setting, a handler that targets operations

φ1, . . . , φm can be constructed by a passive operation handlerφ1,...,φm tagged with

the targets. It is natural to assume that targeted operations are never passive (e.g.

lambda-abstraction, pairing operation, injection, and handlers themselves). These

handler constructors are a (rare) example in which a deferred argument may bind

more than one variables. A handler can be then used with the handling operation

with handle(t, u;−) to evaluate u with handler t.

Control operators are similarly dealt with. The undelimited control operator

call/cc can be defined as:

callcc(t)
def
= callcc(−; t), abort(t)

def
= abort(−; t)
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The delimited control operator shift/reset of Danvy and Filinski [1990] can be

defined as:

shift(t)
def
= shift(−; t), reset(t)

def
= reset(t;−).

3.2.1 The Spartan type system

The type system is primarily used to distinguish thunks from eager terms and to

ensure terms are well formed. However, this type system does not enforce any notion

of run-time safety.

Terms are defined by τ ::= ? | Tm(?) where m ∈ N. Eager terms have type ? and

thunks have type Tm(?) for some m ∈ N, representing the number of bound variables

that accompany the thunk. Note that T 0(?) is a valid type and that T 0(?) 6= ?. A

sequence τ1, . . . , τn of types is denoted by an expression ⊗ni=1τi. This is empty if

n = 0, and equal to a single type if n = 1, i.e. ⊗1
i=1τ = τ . The empty sequence is

written as ε. We use syntactic sugar τ⊗n ≡ ⊗ni=1τ , and τ⊗n ⊗ τ⊗n′ = τ⊗(n+n
′).

Each operation φ ∈ O has an arity , given in the form of φ ` (me;~n) ∈ N×Nmd .

It indicates that the operation φ takes me eager arguments and md thunks. The

sequence ~n specifies the number of bound variables each thunk expects.

For a type τ and a term t, judgements are written as ~x | ~a ` t : τ , where all

variables in ~x and all atoms in ~a are distinct. The rules are given in Fig. 3.2, where

|~x| = k, |~y| = n, |~a| = h. If − | − ` t : ? is derivable, term t is called a program.

3.2.2 Semantics of bindings: copying vs. sharing

We opt for simple semantics of bindings, that is, bound computation (u in bind x→

u in t or new a( u in t) is not evaluated eagerly. In variable binding bind x →

u in t, moreover, the bound computation u is evaluated as many times as the variable

x is required in t. The eager version of variable binding, where u is always evaluated

exactly once, can be actually included in Spartan as a single extrinsic operation

let(u;x.t). On the other hand, the lazy version, where u is evaluated at most
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~x | ~a ` xi : ?
1 ≤ i ≤ k

~x | ~a ` aj : ?
1 ≤ j ≤ h

~x | ~a ` u : ? ~x, x | ~a ` t : ?

~x | ~a ` bind x→ u in t : ?
x /∈ ~x

~x | ~a ` u : ? ~x | a,~a ` t : ?

~x | ~a ` new a( u in t : ?
a /∈ ~a

~y, ~x | ~a ` t : ?

~x | ~a ` ~y.t : T n(?)
n = |~y|, ~x ∩ ~y = ∅

φ ` (m;~n) ∈ N× Np {~x | ~a ` ti : ?}mi=1 {~x | ~a ` sj : T nj(?)}pj=1

~x | ~a ` φ(~t;~s) : ?

Figure 3.2: The Spartan type system

once, would require combination of extrinsic operations (à la CPS transformation

for the call-by-need lambda-calculus [Okasaki et al., 1994]) or an additional intrinsic

mechanism of Spartan such as memoisation.

Roughly speaking, the two kinds of binding in Spartan, namely variable binding

and name binding, deal with copying and sharing of computation respectively. In

variable binding bind x→ u in t, the bound variable x is expected to be substituted

by its associated term u. This means that multiple occurrences of x in t would require

copying of u. On the other hand, in name binding new a( u in t, the bound name

a is expected to act merely as the unique reference to (or literally, the unique name

of) its associated term u. Even if the bound name a occurs multiple times in t, its

associated computation u remains shared. The shared computation u can only be

accessed by extrinsic operations, such as deref(t0;−) and assign(t0, t;−) that we

mentioned earlier, using the name a.

The copying behaviour of variable binding and the sharing behaviour of name

binding are combined in Spartan, in such a way that shared computation is never

copied unless it is deferred. In other words, the copying power of variable binding is

restricted, so that it does not violate sharing that is already caused by name binding.

We illustrate this below, using the aforementioned extrinsic operations λ and
−→
@ for

the lambda-calculus. What determines the restriction of duplication is where name
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binding appears, namely whether name binding appears inside a thunk (i.e. deferred

computation).

Firstly, in a term bind x → (new a( u in λ(−; y.t)) in
−→
@(x, x;−), the name

binding new a( u in λ(−; y.t) appears outside any thunk, and hence is not deferred.

This means that the computation u is already shared, and is never copied by variable

binding. Reduction of the term would be as below:

bind x→ (new a( u in λ(−; y.t)) in
−→
@(x, x;−)

 new a( u in bind x→ λ(−; y.t) in
−→
@(λ(−; y.t), λ(−; y.t);−) (3.1)

where the variable binding for x can only copy the term λ(−; y.t). The shared

computation u is kept shared via the unique name a across all the copies of the

term λ(−; y.t). Note that the type system ensures that the bound variable x does

not appear in the shared computation u, which allows the name binding and the

variable binding to be commutative.

On the other hand, in a term bind x→ λ(−; y.(new a( u in t)) in
−→
@(x, x;−),

the name binding new a( u in t appears inside a thunk. Sharing of the computation

u is considered to be delayed accordingly, and reduction of the term would be as

follows:

bind x→ λ(−; y.(new a( u in t)) in
−→
@(x, x;−)

 bind x→ λ(−; y.(new a( u in t)) in

−→
@(λ(−; y.(new a( u in t)), λ(−; y.(new a( u in t));−). (3.2)

In contrast to reduction (3.1), the variable binding for x is allowed to copy the whole

term λ(−; y.(new a( u in t)) including name binding.

Although it would be possible to define reduction semantics of Spartan, we

leave it for future work and opt for focussed graph-rewriting semantics. The fo-
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cussed graph-rewriting semantics can model the subtle interplay between copying

and sharing, namely the rather complicated behaviour of variable binding, in a sim-

pler way than the reduction semantics. This is due to the name-free representation

of terms as graphs where bindings are maintained simply by connections.

Representing terms as graphs is crucial also to develop a proof methodology of

observational equivalence, in which one can directly analyse how sub-terms evolve

during evaluation. The analysis can be done simply by looking at sub-graphs, which

may not represent a term. For example, in reduction (3.1) above, the name binding

new a( u in λ(−; y.t) syntactically evolves into two copies of the sub-term λ(−; y.t)

and a string “new a( u in” that is not itself a sub-term. In the corresponding fo-

cussed graph-rewriting, however, the graph representation of new a( u in λ(−; y.t)

would evolve into three sub-graphs that represent the sub-terms λ(−; y.t), λ(−; y.t),

and the string “new a( u in”. This suggests that the direct analysis is difficult by

means of sub-terms, but instead possible by means of sub-graphs.

3.3 Overview of focussed graph rewriting

3.3.1 Monoidal hypergraphs and hypernets

Given a set X we write by X∗ the set of elements of the free monoid over X. Given

a function f : X → Y we write f ∗ : X∗ → Y ∗ for the point-wise application (map)

of f to the elements of X∗.

Definition 3.3.1. A monoidal hypergraph is a pair (V,E) of finite sets, vertices and

(hyper)edges, along with a pair of functions S : E → V ∗, T : E → V ∗ defining the

source list and target list, respectively, of an edge.

Definition 3.3.2. A labelled monoidal hypergraph consists of a monoidal hyper-

graph, a set of vertex labels L, a set of edge labels M , and labelling functions

fV : V → L, fE : E →M such that:
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• For any edge e ∈ E, its source list S(e) consists of distinct vertices, and its

target list T (e) also consists of distinct vertices.

• For any vertex v ∈ V there exists at most one edge e ∈ E such that v ∈ S(e)

and at most one edge e′ ∈ E such that v ∈ T (e′).

• For any edges e1, e2 ∈ E if fE(e1) = fE(e2) then f ∗V
(
S(e1)

)
= f ∗V

(
S(e2)

)
, and

f ∗V
(
T (e1)

)
= f ∗V

(
T (e2)

)
.

In words, the label of an edge is always consistent with the number and labelling

of its endpoints. This makes it possible to use the vertex labels as types for edge

labels. Given m ∈M we can write m : x⇒ x′ for x, x′ ∈ L∗ such that x = f ∗V
(
S(e)

)

and x′ = f ∗V
(
T (e)

)
for any e ∈ E such that fE(e) = m.

If a vertex belongs to the target (resp. source) list of no edge we call it an input

(resp. output).

Definition 3.3.3. A labelled monoidal hypergraph is interfaced if inputs and out-

puts are respectively ordered, and no vertex is both an input and an output.

We can type an interfaced hypergraph G : f ∗V(I) ⇒ f ∗V(O) where I, O are the

lists of inputs and outputs, respectively. Note that a single hypergraph can be

interfaced, and hence typed, in several ways. Interfaces (i.e. pairs of a list of inputs

and a list of outputs) of the same hypergraph are given by permutations of inputs

and permutations of outputs.

Definition 3.3.4 (Interface permutation). Let G be a hypergraph with an input

list i1, . . . , in and an output list o1, . . . , om. Given two bijections ρ and ρ′ on sets

{1, . . . , n} and {1, . . . ,m}, respectively, we write Πρ′
ρ (G) to denote the hypergraph

that is defined by the same data as G except for the input list iρ(1), . . . , iρ(n) and the

output list oρ′(1), . . . , oρ′(m).

In the sequel, when we say hypergraphs we always mean interfaced labelled monoidal

hypergraphs.
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Figure 3.3: Graphical conventions

Definition 3.3.5 (Hypernets). Given a set of vertex labels L and edge labels M we

write H(L,M) for the set of hypergraphs with these labels; we also call these level-0

hypernets H0(L,M). We call level-(k+1) hypernets the set of hypergraphs

Hk+1(L,M) = H
(
L,M ∪

⋃

i≤k

Hi(L,M)
)
.

We call (labelled monoidal) hypernets the set Hω(L,M) =
⋃
i∈NHi(L,M).

Informally, hypernets are nested hypergraphs, up to some finite depth, using the

same sets of labels. An edge labelled with a hypergraph is called box edge, and a

hypergraph labelling a box edge is called content. Edges of a hypernet G are said to

be shallow . Edges of nesting hypernets of G, i.e. edges of hypernets that recursively

appear as edge labels, are said to be deep edges of G. Shallow edges and deep edges

of a hypernet are altogether referred to as edges at any depth.
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3.3.2 Graphical conventions

A monoidal hypergraph G with vertices V = {v0, v1, v2, v3, v4, v5} and edges E =

{e0, e1} such that

S(e0) = {v0, v1}

T (e0) = S(e1) = {v2, v3, v4}

T (e1) = {v5}

fV = {v0 7→ m, v1 7→ m′, v2 7→ l, v3 7→ l′, v4 7→ l′′, vk 7→ k}

fE = {e0 7→ X, e1 7→ Y }

is normally represented as Fig. 3.3a. However, this style of representing hypergraphs

is awkward for understanding their structure. We will often graphically represent

hypergraphs as graphs, like Fig. 3.3b, with both vertices and edges drawn as nodes

marked by their labels and connecting input vertices with edges, and edges with

output vertices using arrows. To distinguish them, the edge labels are circled.

Since the node labels are often determined in our typed graphs by the edges we

can omit them to avoid clutter, showing only the edges and the way they link. The

graph G would be drawn like Fig. 3.3c.

Sometimes we will draw a hypergraph so that to identify sub-graphs of interest.

In this case we may draw interface nodes twice and connect them with arrowless

lines which indicate identity, i.e. the nodes at either ends are two graphical repre-

sentations of the same node. If it is obvious from context we may just draw the

identity lines between the sub-graphs, or just one line if the entire input interface

of a sub-graph is identified with the entire output interface of another sub-graph.

For example, the graph G can be drawn like Fig. 3.3d, where GX and GY are the

sub-graphs consisting just of edge e0 (labelled with X) and e1 (labelled with Y ),

respectively.
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The final conventions are that a bunch of parallel arrows can be drawn as a single

arrow with a dash across, and that a hypergraph-labelled edge is indicated with a

dotted box, and decorated with its type.

3.3.3 From terms to hypernets

We represent terms in Spartan as hypernets with vertex labels either τ or �, ranged

over by `. The same notational conventions apply, extended with the extra symbol

�. The edge labels have unique types, and they are: the operations φ (with the

edge-label-type inherited from the Spartan type system), an instance label I :

? ⇒ �, an atom label ◦ : � ⇒ ?, a family of weakening and contraction labels

{⊗`W: ε⇒ `, ⊗`C: `⊗2 ⇒ ` | ` ∈ {?, �}}, a family of token labels ?,X, : ?⇒ ?. When

a hypergraph is used as an edge label it must always have type G : ?⇒ ?⊗n ⊗ �⊗h;

the box edge is assigned type T n−k(?)⇒ ?⊗k ⊗ �⊗h for some k ≤ n.

The hypernet is said to be focussed if: there exists only one token-labelled edge,

the token-labelled edge is shallow, and the hypernet satisfies some other basic well-

formedness conditions discussed later.

To graphically represent multiple occurrences of a single variable or a single atom,

we will define and use a family of sub-graphs D`
k,m : `⊗km ⇒ `⊗k with ` ∈ {�, ?}

which we call distributors (Def. 3.5.6). Intuitively, they are the k-interleaving of

bunches of m-contraction edges, for instance, D∗2,3 =

? ? ?? ? ?

⌦⌦
⌦
?

⌦
⌦⌦

⌦
?

⌦
and D�3,0 = ⌦⌦⌦

⇧ ⇧⇧
.

The translation function (−)† from Spartan terms to hypernets is given in

Fig 3.4, where �mi=1Gi is a hypernet formed of a family of hypernets (Gi : ? ⇒

?⊗ki ⊗ �⊗hi) placed side by side. We can easily see that the hypernet of a Spartan

program always has type (− | − ` t : ?)† : ? ⇒ ε, i.e. one input and no outputs.

The hypernet of a program is focussed by adding a ? token in the input position.
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Figure 3.4: Hypernet semantics of Spartan
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3.3.4 Focussed rewriting

In this section we illustrate an abstract machine for rewriting hypernets of Spartan

terms, thus giving a notion of evaluation for the calculus. The machine, dubbed Uni-

versal Abstract Machine (UAM), is based on the DGoIM presented in Chap. 2, which

it generalises for the modelling of effects. The full technical details are presented

later, in Sec. 3.5.

In a conventional reduction semantics a subtle and often complex aspect of the

reduction bureaucracy is the identification and isolation of a sub-term which is a

redex from the context [Felleisen and Hieb, 1992]. Similarly, in an abstract machine

much of the work consists of moving information (representing the context) on and

off the stack in order to reach redexes [Wright and Felleisen, 1994]. In both cases the

formal machinery identifies an implicit focus of action which either moves around

the term or is acted upon via a substitution. In the case of focussed graph rewriting

the focus is represented by the token edge. The redex search is defined by the local

interaction between the token and the neighbouring edges, which can cause the token

to navigate the graph. The same local interactions can determine a rewrite action.

The state of the token edge determines the possible actions. If the token is ?

then the applicable rules (interaction rules) are search rules, which do not change

the underlying graph; the ? token always travels in the direction of the edges and it

is searching for a redex. In comparison to a conventional reduction semantics this

is a narrowing of the term-in-context. If the token is X then the applicable rules

are also search (interaction) rules but the token travels against the direction of the

edges. In comparison to a reduction semantics this is a widening of the term-in-

context normally following the detection of a value. Finally, if the token is  then a

rewrite is about to be performed at the very next step.

Interaction rules are in Fig. 3.5. These rules capture the intuition behind redex

search discussed earlier:
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Figure 3.5: Interaction rules

Rule 1. When encountering a contraction (⊗) the search token (?) becomes a

rewrite token ( ) as a copying action will follow. This rule has two sub-rules de-

pending on whether the focus is on the left or right branch.

Rule 2. When encountering an instance edge (I) the search token (?) changes to a

value token (X) as atoms block both evaluation and copying.

Rule 3. When encountering an operation (ψ) with at least one eager argument the

search token (?) will inspect the first argument.

Rule 4. After resolving a (k + 1)-th eager argument of an operation (ψ) the value

token (X) changes to a search token (?) which proceeds to inspect the next eager

argument, if it exists.

Rule 5a. After all eager arguments of an operation ψt (t ∈ {X, }), the token will

change to a t-token depending on the kind of operation ψt is, value or rewrite. (Rule

5b. is a degenerate version for operations with no eager arguments).
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Once the token is  , it triggers a rewrite. There are two kinds of rewrites: those

intrinsic to the Spartan calculus and those extrinsic, defined by the operations.

The intrinsic rewrites are only copying of sub-graphs, and they are triggered when

a  token interacts with contraction ⊗. The extrinsic rewrites represent actual

computation with the operations, and they are triggered when a  token interacts

with an active operation φ .

Fig. 3.6 shows an example of focussed rewriting, given a hypernet with opera-

tions λ(−;x.t) (abstraction) and
−→
@(t, u;−) (left-to-right call-by-value application).

This example corresponds to an evaluation of a lambda-term (λx.x) (λy.y) with the

left-to-right call-by-value strategy, and it is a counterpart of the DGoIM execution

presented in Fig. 2.8 (Chap. 2). In the example, steps •→ apply the interaction rules,

and steps→ perform the extrinsic and intrinsic rewrites, whose actual definition will

be presented in Sec. 3.4 and Sec. 3.5.4. A  token interacts with the application
−→
@

in the first rewrite, and with contraction ⊗ in the second rewrite.

3.4 Observational equivalence

This section formulates some desirable observational equivalences of Spartan. They

hold in general in well-behaved languages, but the Spartan framework is broad

enough to allow the definition of operations that would break these and most equiv-

alences. This is why we would refer to them for now as desiderata. Later in Sec. 4.5,

we will show that they hold with respect to some of the operations discussed in

Sec. 3.2.

Recall that our framework is parametrised by an operation set O. Our notion of

equivalence is additionally parametrised by a set BO (behaviour) of extrinsic rewrites

associated with the operations O. Given two derivable judgements ~x | ~a ` t1 : ? and

~x | ~a ` t2 : ?, we write BO |= (~x | ~a ` t1 �†all t2 : ?) (resp. BO |= (~x | ~a ` t1 '†all t2 :

?)) if the hypernet of t1 is a refinement (resp. equivalence) of t2 in any context, with
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Figure 3.6: Example execution of the UAM
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the operation set being O and extrinsic rewrites being BO. In particular, we write

BO |= (~x | ~a ` t1 �†bf t2 : ?) (resp. BO |= (~x | ~a ` t1 '†bf t2 : ?)), if the refinement

(resp. equivalence) holds only in the contexts that do not bind a hole to a variable

nor an atom. These concepts are formally defined in Sec. 4.2.1.

In the sequel, we simply write t1 �†all t2 etc., omitting the type ? and the se-

quences ~x and ~a, and making the parameter BO implicit.

3.4.1 Structural laws

Before considering equivalences involving specific operations, it is useful to examine

structural equivalences, which focus on intrinsic features of Spartan. Let fv(t) and

fa(t) be the sets of free variables and free atoms of a term, respectively, defined as

usual.

Desiderata 3.4.1 (Coherences).

bind x→ t in bind y → u in s '†all bind y → u in bind x→ t in s (3.3)

(whenever x 6∈ fv(u), y 6∈ fv(t))

new a( t in new b( u in s '†all new b( u in new a( t in s (3.4)

(whenever a 6∈ fa(u), b 6∈ fa(t))

bind x→ (bind y → u in t) in s '†all bind y → u in bind x→ t in s (3.5)

(whenever y 6∈ fv(s))

new a( (new b( u in t) in s '†all new b( u in new a( t in s (3.6)

(whenever b 6∈ fa(s))

The second batch of laws concern non-generative terms defined below. Such

terms are referentially transparent, in the sense that they can be safely replicated or

substituted in other terms:

Definition 3.4.2 ((Non-)generative terms). A term is said to be generative if it
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Figure 3.7: Beta rewrite rule (G,GS are hypernets)

contains a name-binder (‘new’) outside any thunks. A term u is said to be non-

generative, and written as u, if all name-binders appear inside thunks.

Desiderata 3.4.3 (Referential transparency). If u is non-generative then

bind x→ u in bind y → x in bind z → x in t

'†all bind y → u in bind z → u in t (whenever x 6∈ fv(t)) (3.7)

bind x→ u in t '†all t[u/x] (3.8)

To be clear, the referential transparency laws hold in contexts with most “rea-

sonable” operations, including all mentioned in Sec. 3.4.2. However, even though

referential transparency laws are very robust, one can think of operations which may

violate them such as Gc.stat mentioned earlier.

3.4.2 Operations

We proceed to equivalences that involve some of the operations discussed in Sec. 3.2.

First we consider operations for the lambda-calculus, namely:

λx.t
def
= λ(−;x.t) (abstraction)

t
→
@u

def
=

→
@(t, u;−). (left-to-right call-by-value application)
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While the abstraction λ is a passive operation, the application
→
@ is an active opera-

tion. Fig. 3.7 shows the beta rewrite rule associated with
→
@. The usual observational

equivalences (laws) induced by the beta rewrite are as follows.

Desiderata 3.4.4 (Call-by-value beta laws). If v is a value then

(λx.t)
→
@ v '†bf bind x→ v in t (Micro beta)

Moreover, if v is a referentially-transparent value then

(λx.t)
→
@ v '†bf t[v/x] (Beta)

The beta law is also robust relative to the operations described in the sequel,

but reasonable operations that violate it do exist. For example, we mentioned the

Gc.stat() function of OCaml which returns the size of the term violates this law.

Next we add some passive operations for constants (the empty pair, boolean

values and integers) and active operations for arithmetic:

()
def
= ()(−;−), n

def
= n(−;−), (empty pair, integers)

true
def
= tt(−;−), false

def
= ff(−;−), (boolean values)

t+ u
def
= +(t, u;−), t− u def

= −(t, u;−), (addition, subtraction)

−t def
= −1(t;−). (negation)

Fig. 3.8 shows a selected rewrite rule for arithmetic.

We further add to the language state (assignment and dereferencing), namely



88 CHAPTER 3. FOCUSSED GRAPH REWRITING FOR SPARTAN

m

? 7!
?

?

+

? ?

n

?

p

?

Figure 3.8: Arithmetic rewrite
rule (selected), where m,n, p ∈ N
and p = m+ n

?
GS

D⇧
1,1

I

?

? ?

?

⇧

⇧

?

~̀

7!ref

?

GS

~̀

 

Figure 3.9: Reference creation
(GS is a hypernet)

C C 0

⇧⌦k1 ⇧

?

I

⇧

?

I

=

?

 

⇧⌦k2

⇧

?

⇧⌦k1 ⇧⌦k2?

⇧

?

7!

C C 0

⇧⌦k1 ⇧

?

I

⇧

?

I

ff

?

?

⇧⌦k2

⇧

?

⇧⌦k1 ⇧⌦k2?

⇧

?

⌦ ⌦

C

⇧⌦k1 ⇧

?

I

⇧

?

I

=

?

 

⇧

?

⇧⌦k1 ?

7!

C

⇧⌦k1 ⇧

?

I

⇧

?

I

tt

?

?

⇧

?

⇧⌦k1 ?

⌦ ⌦

C

⇧⌦k1 ⇧ ⇧⌦k2

⇧

?

?

I

?
:=

?

 

?⇧⌦k1

GS

⇧⌦k2 ~̀

~̀

7!

C

⇧⌦k1 ⇧ ⇧⌦k2

⇧

?

?

I

?
()

?

?

?⇧⌦k1

GS

⇧⌦k2 ~̀

~̀

⌦

⌦

C

⇧⌦k1 ⇧

⇧

?

?

I

!

?

 
?⇧⌦k1

C

⇧⌦k1 ⇧

⇧

?

?

I

⇧⌦k1

D?
1,2
?

?

?

?

⌦

7!

Figure 3.10: Equality, assignment, and dereferencing rewrite rules (C and C ′ are
contraction trees, and GS is a hypernet)



3.4. OBSERVATIONAL EQUIVALENCE 89

the following four active operations:

ref t
def
= ref(t;−) (reference creation)

t = u
def
= =(t, u;−) (equality testing on references)

t := u
def
= :=(t, u;−) (assignment)

!t
def
= !(t;−). (dereferencing)

The rewrite rule for reference creation is given in Fig. 3.9, while equality, assignment

and dereferencing are given in Fig. 3.10. Since Spartan is (essentially) untyped,

by default we consider state which can store any terms (or rather values), including

lambda-abstractions.

For convenience we use the following syntactic sugar:

t u
def
= t

→
@u

νx.t
def
= (λx.t) (ref ())

let x = u in t
def
= (λx.t) u

λ .t
def
= λz.t (where z is not a free variable in t)

u; t
def
= (λ .t) u

Because we are focusing on the call-by-value function application, the let-binding

as a sugar has different behaviour from the intrinsic variable-binding, which has the

call-by-name nature as explained in Sec. 3.2.2.

Also note that in the absence of type restrictions it is straightforward to tie

recursive knots in the store. For example let x = ref 0 in x := x stores a self-

reference into x, so that any dereferencing !x, !!x, !!!x, etc., will always produce the

same result.

Some desirable equivalences which hold in contexts containing stateful operations

are:
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Desiderata 3.4.5 (Stateful laws).

νz.λx.x = z �†bf λx.false (Freshness)

νx.f '†bf f (Locality)

let x = ref 0 in (f (λ .x :=!x+ 1)) (λ .!x)

'†bf let x = ref 0 in (f (λ .x :=!x− 1)) (λ .−!x) (Parametricity 1)

let x = ref 1 in λf.((f ()); !x) '†bf λf.((f ()); 1) (Parametricity 2)

The first two equivalences originate in the ν-calculus of Pitts and Stark [1993],

a (call-by-value) lambda-calculus extended with construct νx.t which creates a new

name and binds it to x in t, plus equality testing on names. These names are

virtually identical to unit references, therefore for economy of presentation we will

consider them as such. The proof techniques in loc. cit. rely on logical relations,

which make essential use of the typing structure of the language. In contrast, we

can show that these equivalences hold even in untyped state, with the caveat that

one becomes a refinement, rather than an equivalence, since equality checking can

get stuck if not applied to names.

The other equivalences originate in the Idealised Algol literature [O’Hearn and

Tennent, 1997], a call-by-name language with ground-type local variables. The

proofs again use logical relations, but formulated in a denotational semantics of

functor categories. Escalating the proofs to call-by-value and higher-order state re-

quires more complex techniques such as step-indexed logical relations [Ahmed et al.,

2009]. Our approach will be seen to be rather different, involving a case analysis of

the operations involved as they interact in all possible pairwise combinations, in a

type-free setting.
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3.5 Technical details of focussed graph rewriting

In this section we give a definition of the abstract machine introduced informally

in Sec. 3.3.4. We call it a universal abstract machine because it can be seen as a

universal algebra (the operations) combined with a mechanism for sharing or copying

resources and scheduling evaluation. The machine, and hence the definitions below,

are all globally parametrised by some operation set O and its behaviour BO.

3.5.1 Auxiliary definitions

We use the terms incoming and outgoing to characterise the incidence relation be-

tween neighbouring edges. Conventionally incidence is defined relative to nodes, but

we find it helpful to extend this notion to edges.

Definition 3.5.1 (Incoming and outgoing edges). An incoming edge of an edge e

has a target that is a source of the edge e. An outgoing edge of the edge e has a

source that is a target of the edge e.

Definition 3.5.2 (Path). A path in a hypergraph is given by a non-empty sequence

of edges, where an edge e is followed by an edge e′ if the edge e is an incoming edge

of the edge e′.

Note that, in general, the first edge (resp. the last edge) of a path may have no

source (resp. target). A path is said to be from a vertex v, if v is a source of the

first edge of the path. Similarly, a path is said to be to a vertex v′, if v′ is a target

of the last edge of the path. A hypergraph G is itself said to be a path, if all edges

of G comprise a path from an input (if any) and an output (if any) and every vertex

is an endpoint of an edge.

Definition 3.5.3 (Reachability). A vertex v′ is reachable from a vertex v if v = v′

holds, or there exists a path from the vertex v to the vertex v′.
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To represent Spartan terms, we fix the vertex label set L and the edge label set

MO as described in Sec. 3.3.3, using the given operation set O.

L := {?, �} ∪ {T n(?) | n ∈ N}

MO := {I : ?⇒ �, ? : ?⇒ ?, X : ?⇒ ?,  : ?⇒ ?}

∪ {φ : ?⇒ ?⊗me ⊗⊗md
i=1T

ni(?) | (φ ` (me;n1, . . . , nmd
)) ∈ O}

∪ {◦ : � ⇒ ?, ⊗`W: ε⇒ `, ⊗`C: `⊗2 ⇒ ` | ` ∈ {?, �}}

Definition 3.5.4 (Operation path). A path whose edges are all labelled with oper-

ations is called operation path.

Definition 3.5.5 (Contraction tree). For each ` ∈ {?, �}, a contraction tree is a

hypernet (C : `⊗k ⇒ `) ∈ H({`}, {⊗`W, ⊗`C}), such that the unique output is reachable

from each vertex.

It can be observed that, for any contraction tree, an input (if any) is not an

output but a source of a contraction edge.

Definition 3.5.6 (Distributor). We define a family {D`
k,m : `⊗km ⇒ `⊗k}k∈N, with

` ∈ {?, �}, of hypernets which we call distributors , inductively as follows:

D`
0,m = ∅

D`
1,0 =

`

⌦

D`
1,1 =

`

⌦

`

⌦

`

D`
1,m+2 = `⌦m `

D`
1,m+1

`

`

⌦
`

D`
k+1,m = Πid

ρ

(
D`

k,m D`
1,m

`⌦km `⌦m

``⌦k
)
,

where ∅ denotes the empty hypernet, id is the identity map, and ρ is a bijection such
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that, for each j ∈ {1, . . . , k} and i ∈ {1, . . . ,m}, ρ(j + (k+ 1)(i− 1)) = j + k(i− 1)

and ρ((k + 1)i) = km+ i.

Examples of distributors are D∗2,3 =

? ? ?? ? ?

⌦⌦
⌦
?

⌦
⌦⌦

⌦
?

⌦
and D�3,0 = ⌦⌦⌦

⇧ ⇧⇧
. When k = 1,

a distributor D`
1,m is a contraction tree that includes one weakening edge.

Definition 3.5.7 (Box/stable hypernets). If a hypernet is a path of only one box

edge, it is called box hypernet. A stable hypernet is a hypernet (G : ?⇒ ⊗mi=1`i) ∈

H(L, {I} ∪ OX), such that ⊗mi=1`i ∈ ({�} ∪ {T n(?) | n ∈ N})m and each vertex is

reachable from the unique input.

Definition 3.5.8 (Copyable hypernets). A hypernet H : ? ⇒ ?⊗k ⊗ �⊗h is called

copyable if it is I

⇧

?

or
⇥m0

i=1Bi

~̀

?

?⌦m ?⌦k0 ⇧⌦h

 
, where φ ∈ O, and each Bi is a box hypernet.

Definition 3.5.9 (One-way hypernets). A hypernet H is one-way if, for any pair

(vi, vo) of an input and an output of H such that vi and vo both have type ?, any

path from vi to vo is not an operation path.

Remark 3.5.10 (Distributors). To the reader familiar with diagrammatic languages

based on monoidal categories equipped with “sharing” (co)monoid operators, such

as the ZX-calculus by Coecke and Duncan [2011], the distributors may seem an

awkward alternative to quotienting the hypernets by the equational properties of the

(co)monoid operator. Indeed a formulation of Spartan semantics in which distrib-

utors are collapsed into n-ary contractions would be quite accessible.

However, the structural laws of Spartan including equational properties of con-

traction, mentioned in Sec. 3.4.1, can be invalidated by certain ill-behaved but de-

finable operations. Forcing these properties into the framework does not seem to

be practically possible, as it leads to intractable interactions between such complex

n-ary contractions and operations in the context as required by the key notion of

robustness which will be introduced in Sec. 4.3.2.
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In Sec. 4.5.2, we will introduce the equational properties of contraction that are

validated by the extrinsic operations described in Sec. 3.4. These equational proper-

ties do not make contractions and weakenings form a (co)monoid, but they enable us

to identify contraction trees so long as the trees contain at least one weakening. If we

see the equations on contraction trees as rewrite rules from left to right, distributors

are indeed normal forms with respect to these rules.

3.5.2 Focussed hypernets

Definition 3.5.11. A token edge in a hypergraph is said to be exposed if its source

is an input and its target is an output, and self-acyclic if its source and its target

are different vertices.

Definition 3.5.12 (Focussed hypernets). A hypernet is said to be focussed if it

contains only one token edge, and moreover, the token edge is shallow, self-acyclic

and not exposed.

Focussed hypernets are typically ranged over by Ġ, Ḣ, Ṅ .

Focus-free hypernets are given by Hω(L,MO\{?,X, }), i.e. hypernets without

token edges. A focussed hypernet Ġ can be turned into an underlying focus-free

hypernet |Ġ| with the same type, by removing its unique token edge and identifying

the source and the target of the edge. When a focussed hypernet Ġ has a t-token,

then changing the token label t to another one t′ yields a focussed hypernet denoted

by 〈Ġ〉t′/t. The source (resp. target) of a token is called token source (resp. token

target) in short.

Given a focus-free hypernet G, a focussed hypernet t;iG with the same type can

be yielded by connecting a t-token to the i-th input of G if the input has type ?.

Similarly, a focussed hypernet G;i t with the same type can be yielded by connecting

a t-token to the i-th output of G if the output has type ?. If it is not ambiguous,

we omit the index i in the notation ;i.
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3.5.3 Contexts

The set of holed hypernets (typically ranged over by C) is given by Hω(L,MO ∪M),

where the edge label set MO is extended by a set M of hole labels. Hole labels are

typed, and typically ranged over by χ : ~̀⇒ ~̀′.

Definition 3.5.13 (Contexts). A holed hypernet C is said to be a context if each

hole label appears at most once (at any depth) in C.

Definition 3.5.14. A context is said to be simple if it contains a single hole, and

moreover, the hole is shallow.

When ~χ gives a list of all and only hole labels that appear in a context C, the

context can be also written as C[~χ]; a hypernet in Hω(L,MO) can be seen as a

“context without a hole”, C[ ].

Let C[ ~χ1, χ, ~χ2] and C ′[ ~χ3] be contexts, such that the hole χ and the latter context

C ′ have the same type and ~χ1∩ ~χ2∩ ~χ3 = ∅. A new context C[ ~χ1, C ′, ~χ2] ∈ Hω(L,MO∪
~χ1∪ ~χ3∪ ~χ2) can be obtained by plugging C ′ into C: namely, by replacing the (possibly

deep) hole edge of C that has label χ with the context C ′, and by identifying each

input (resp. output) of C ′ with its corresponding source (resp. target) of the hole

edge (Def. A.2.1). Each edge of the new context C[ ~χ1, C ′, ~χ3] is inherited from either

C or C ′, keeping the type; this implies that the new context is indeed a context

with hole labels ~χ1, ~χ3, ~χ2. Inputs and outputs of the new context coincide with

those of the original context C, and hence these two contexts have the same type.

The plugging is associative in two senses: plugging two contexts into two holes of

a context yields the same result regardless of the order, i.e. C[ ~χ1, C ′, ~χ2, C ′′, ~χ3] is

well-defined; and nested plugging yields the same result regardless of the order, i.e.

C[ ~χ1, C ′[ ~χ3, C ′′, ~χ4], ~χ2] = (C[ ~χ1, C ′, ~χ2])[ ~χ1, ~χ3, C ′′, ~χ4, ~χ2].

The notions of focussed and focus-free hypernets can be naturally extended to

contexts. In a focussed context Ċ[~χ], the token is said to be entering if it is an
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?

 

C
?

?
H

? ?⌦k0

? ?⌦k0

?⌦k ⇧⌦h

7! C
?

?
H

? ?⌦k0

? ?⌦k0

?⌦k ⇧⌦h

⌦

?
H

?⌦k ⇧⌦h

D?
k,2 D⇧

h,2

?⌦k ?⌦k ⇧⌦h ⇧⌦h

⇧⌦h?⌦k

Figure 3.11: Contraction rules, with C a contraction tree, and H a copyable hypernet

incoming edge of a hole, and exiting if it is an outgoing edge of a hole. The token

may be both entering and exiting.

3.5.4 States and transitions

Given the two parameters O and BO, the universal abstract machine U(O, BO) is

defined as a state transition system. It is namely given by data (SO, T ] BO) as

follows, each of which we will describe in the sequel.

• SO ⊆ Hω(L,MO) is a set of states ,

• T ⊆ SO × SO is a set of intrinsic transitions , and

• BO ⊆ SO × SO is a set of extrinsic transitions .

A focussed hypernet of type ?⇒ ε in Hω(L,MO) is said to be a state. A state Ġ

is called initial if Ġ =?; |Ġ|, and final if Ġ = X; |Ġ|. A state is said to be stuck if it

is not final and cannot be followed by any transition. An execution on a focus-free

hypernet G : ? ⇒ ε is a sequence of transitions starting from an initial state ?;G.

The following will be apparent once transitions are defined: initial states are indeed

initial in the sense that no search transition results in an initial state; and final states

are indeed final in the sense that no transition is possible from a final state.

The interaction rules in Fig. 3.5 specify the first class of intrinsic transitions,

search transitions, and the contraction rules in Fig. 3.11 specify the second class
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of intrinsic transitions, copy transitions. These intrinsic transitions are defined as

follows: for each interaction rule Ġ
•7→ Ġ′ (or resp. contraction rule Ġ

⊗7→ Ġ′), if there

exists a focus-free simple context C[χ] : ? ⇒ ε such that C[Ġ] and C[Ġ′] are states,

C[Ġ]→ C[Ġ′] is a search transition (or resp. copy transition).

Search transitions are deterministic, because at most one interaction rule can be

applied at any state. Although two different contraction rules may be possible at

a state, copy transitions are still deterministic. Namely, if two different contraction

rules Ġ 7→ Ġ′ and Ḣ 7→ Ḣ ′ can be applied to the same state, i.e. there exist focus-

free simple contexts CG and CH such that CG[Ġ] = CH [Ḣ], then these two rules yield

the same transition, by satisfying CG[Ġ′] = CH [Ḣ ′]. Informally, in Fig. 3.11, H is

determined uniquely and the choice of C does not affect the result.

Intrinsic transitions are therefore all deterministic, and moreover, search transi-

tions are reversible because the inverse of the interaction rules is again deterministic.

When a sequence Ġ→∗ Ġ′ of transitions consists of search transitions only, it is an-

notated by the symbol • as Ġ •→∗ Ġ′.

An execution on any stable net, or on representation of any value, terminates

successfully at a final state with only search transitions (by Lem. A.4.2, Lem. A.4.4

and Lem. A.4.6(1)).

The behaviour BO, which is a parameter of the machine, specifies a set of extrinsic

transitions. Extrinsic transitions are also called compute transitions, and each of

them must target an active operation. Namely, a transition Ġ → Ġ′ is a compute

transition if: the first state Ġ has a rewrite token ( ) that is an incoming edge of

an active operation edge; and the second state Ġ′ has a search token (?). Copy

transitions or compute transitions are possible if and only if a state has a rewrite

token ( ), and they always change the token to a search token (?). We refer to copy

transitions and compute transitions altogether as rewrite transitions.

Compute transitions may be specified locally, by rewrite rules , in the same man-

ner as the intrinsic transitions. The rewrite rules introduced in Sec. 3.4.2 are such
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examples. However, we leave it entirely open what the actual rewrite associated to

some operation is, by having the behaviour BO as parameter as well as the operation

set O. This is part of the semantic flexibility of our framework. We do not specify a

meta-language for encoding effects as particular transitions. Any algorithmic state

transformation is acceptable.



Chapter 4

Robustness and observational

equivalence

4.1 Outline

This chapter presents a novel proof methodology of observational equivalence, offered

by the UAM. In focussed graph rewriting that is performed by the UAM, information

of program-execution status is centralised to the token (or focus), and each step of

program execution is determined by the token and its neighbourhood. This enables

a new style of reasoning centred around a graph-theoretic intuition of locality, in

which one can analyse how a program fragment evolves during program execution

by examining how the token interacts with the fragment.

Exploiting local reasoning yields a case-by-case reasoning principle for proving

observational equivalence between two program fragments t and u. The proof namely

boils down to establishing coincidence between the way these two fragments interact

with the token. This can be done by direct, step-wise, comparison between two

executions of programs C[t] and C[u], the fragments in an arbitrary common context

C. At each step of these executions, we can enumerate possible interaction between

the token and either of the fragments, and identify sufficient conditions for the

fragments to have the same interaction with the token. A key sufficient condition,

99
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robustness, is our conceptual contribution. It characterises when the fragments are

respected by a rewrite triggered by the token.

The main technical result, a characterisation theorem (Thm. 4.3.14), formalises

this local reasoning principle for proving observational equivalence, and identifies the

sufficient conditions including robustness. The theorem focuses on the UAM that

is deterministic, to avoid over-complication of the technical development. Although

this restriction leaves some computational effects beyond the scope, the deterministic

UAM can still accommodate interesting effects such as state and exception. We will

illustrate that the theorem can be used to prove some challenging observational

equivalences from the literature, involving arbitrary (untyped) state.

Additionally, we propose a generalised notion of observational equivalence that

has two parameters: a class of contexts and a preorder on natural numbers. The first

parameter enables us to quantify over some contexts, instead of all contexts as in the

standard notion. This can be used to identify a shape of contexts that respects or

violates certain observational equivalences, given that not necessarily all arbitrarily

generated contexts arise in program execution. The second parameter, a preorder

on natural numbers, deals with numbers of steps it takes for the UAM to terminate.

Taking the universal relation recovers the standard notion of observational equiv-

alence. Observational equivalence with respect to the greater-than-equal relation,

for example, means that replacing a fragment with another in any programs (within

the class specified by the first parameter) never increases the number of execution

steps.

This chapter is organised as follows. The generalised notion of observational

equivalence is defined in Sec. 4.2, and the characterisation theorem is presented in

Sec. 4.3. The proof of the theorem is given in Sec. 4.4, some of whose details can be

found in an appendix. Sec. 4.5 gives applications of the characterisation theorem to

proving observational equivalence.
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4.2 Contextual refinement and equivalence

We propose notions of contextual refinement and equivalence that check for suc-

cessful termination of execution. These notions generalise the standard notions, by

additionally taking into account a class of contexts to quantify over, and also the

number of transitions. They are namely with respect to the universal abstract ma-

chine U(O, BO) with some operation set O and its behaviour BO, and parametrised

by the following: a set C ⊆ Hω(L,MO ∪ M) of focus-free contexts that is closed

under plugging (i.e. for any contexts C[ ~χ1, χ, ~χ2], C ′ ∈ C such that C[ ~χ1, C ′, ~χ2] is

defined, C[ ~χ1, C ′, ~χ2] ∈ C); and a preorder Q on natural numbers.

Definition 4.2.1 (State refinement and equivalence). Let Q be a preorder on N,

and Ġ1 and Ġ2 be two states.

• Ġ1 is said to refine Ġ2 up to Q, written as BO |= (Ġ1 �̇Q Ġ2), if for any

number k1 ∈ N and any final state Ṅ1 such that Ġ1 →k1 Ṅ1, there exist a

number k2 ∈ N and a final state Ṅ2 such that k1 Q k2 and Ġ2 →k2 Ṅ2.

• Ġ1 and Ġ2 are said to be equivalent up to Q, written as BO |= (Ġ1 '̇Q Ġ2), if

BO |= (Ġ1 �̇Q Ġ2) and BO |= (Ġ2 �̇Q Ġ1).

Definition 4.2.2 (Contextual refinement and equivalence). Let C be a set of con-

texts that is closed under plugging, Q be a preorder on N, and H1 and H2 be

focus-free hypernets of the same type.

• H1 is said to contextually refine H2 in C up to Q, written as BO |= (H1 �C
Q H2),

if any focus-free context C[χ] ∈ C, such that ?; C[H1] and ?; C[H2] are states,

yields refinement BO |= (?; C[H1] �̇Q ?; C[H2]).

• H1 and H2 are said to be contextually equivalent in C up to Q, written as

BO |= (H1 'C
Q H2), if BO |= (H1 �C

Q H2) and BO |= (H2 �C
Q H1).
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In the sequel, we simply write Ġ1 �̇Q Ġ2 etc., making the parameter BO implicit.

Because Q is a preorder, �̇Q and �C
Q are indeed preorders, and accordingly,

equivalences '̇Q and 'C
Q are indeed equivalences (Lem. A.5.2). Examples of preorder

Q include: the universal relation N× N, the “greater-than-or-equal” order ≥N, and

the equality =N.

When the relationQ is the universal relation N×N, the notions concern successful

termination, and the number of transitions is irrelevant. If all compute transitions

are deterministic, contextual equivalences 'C
≥N and 'C

=N coincide for any C (as a

consequence of Lem. A.5.3).

Because C is closed under plugging, the contextual notions �C
Q and 'C

Q indeed

become congruences. Namely, for any H1 �C H2 and C ∈ C such that C[H1] and

C[H2] are defined, C[H1] �C C[H2], where � ∈ {�Q,'Q}.

As the parameter C, we will particularly use the set CO ⊆ Hω(L,MO ∪M) of

any focus-free contexts, and its subset CO-bf of binding-free contexts.

Definition 4.2.3 (Binding-free contexts). A focus-free context C is said to be

binding-free if there exists no path, at any depth, from a source of a contraction,

atom, box or hole edge, to a source of a hole edge.

The set CO is closed under plugging, and so is the set CO-bf (Lem. A.5.1). Restric-

tion to binding-free contexts is useful to focus on call-by-value languages, because

only values will be bound during evaluation in these languages. The restriction

syntactically means forbidding the hole of contexts from appearing in the bound

positions, as discussed below.

The standard notions of contextual refinement and equivalence can be recovered

as �CO
N×N and 'CO

N×N, by taking the set CO ⊆ Hω(L,MO∪M) of all focus-free contexts,

and the universal relation N× N.
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4.2.1 Observational equivalences on terms

The notion of observational refinement on terms, informally introduced in Sec. 3.4,

can now be defined using the contextual refinement on hypernets as follows. Recall

that the observational refinement is parametrised by an operation set O and its

behaviour BO. Given two derivable judgements ~x | ~a ` t1 : ? and ~x | ~a ` t2 : ?, we

write:

BO |= (~x | ~a ` t1 �†all t2 : ?) if BO |= ((~x | ~a ` t1 : τ)† �CO
N×N (~x | ~a ` t2 : τ)†),

BO |= (~x | ~a ` t1 '†all t2 : ?) if BO |= ((~x | ~a ` t1 : τ)† 'CO
N×N (~x | ~a ` t2 : τ)†),

BO |= (~x | ~a ` t1 �†bf t2 : ?) if BO |= ((~x | ~a ` t1 : τ)† �CO-bf

N×N (~x | ~a ` t2 : τ)†),

BO |= (~x | ~a ` t1 '†bf t2 : ?) if BO |= ((~x | ~a ` t1 : τ)† 'CO-bf

N×N (~x | ~a ` t2 : τ)†).

The refinements �†all and �†bf enjoy different congruence properties, as specified

by the set CO of focus-free contexts (as hypernets) and its binding-free restriction

CO-bf . This difference can also be described in terms of syntactical contexts as fol-

lows. Let term-contexts and their binding-free restriction be defined by the following

grammar:

C ::= [ ] | new a( t in C | bind x→ t in C

| new a( C in t | bind x→ C in t

| ~y.C | φ(~t, C, ~t′;~s) | φ(~t;~s, C, ~s′) (term-contexts)

C̃ ::= [ ] | new a( t in C̃ | bind x→ t in C̃

| ~y.C̃ | φ(~t, C̃, ~t′;~s) | φ(~t;~s, C̃, ~s′) (binding-free term-contexts)

The type system of Spartan (Fig. 3.2) can be extended to term-contexts, by an-

notating the hole ‘[ ]’ as ‘[ ]~x|~a’ and adding a typing rule ~x | ~a ` [ ]~x|~a : ?. We write

C[ ]~x|~a when the hole of C is annotated with ~x | ~a.
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Lemma 4.2.4. Let ~x | ~a ` t1 : ? and ~x | ~a ` t2 : ? be derivable judgements. Let C

be a term-context, ~x′ be a sequence of variables and ~a′ be a sequence of atoms, such

that ~x′ | ~a′ ` C[ ]~x|~a : ?.

1. If ~x | ~a ` t1 �†all t2 : ?, then ~x′ | ~a′ ` C[t1] �†all C[t2] : ?.

2. If ~x | ~a ` t1 '†all t2 : ?, then ~x′ | ~a′ ` C[t1] '†all C[t2] : ?.

3. If ~x | ~a ` t1 �†bf t2 : ?, and C is binding-free, then ~x′ | ~a′ ` C[t1] �†bf C[t2] : ?.

4. If ~x | ~a ` t1 '†bf t2 : ?, and C is binding-free, then ~x′ | ~a′ ` C[t1] '†bf C[t2] : ?.

Proof outline. The translation (−)† of Spartan terms to hypernets (Fig. 3.4) can

be extended to term-contexts, by translating the rule ~x | ~a ` [ ]~x|~a : ? into a path

hypernet χ : ? ⇒ ?⊗|~x| ⊗ �⊗|~a|. Translating term-contexts indeed yields (graphical)

contexts, and translating binding-free term-contexts yields (graphical) binding-free

contexts (proof by induction on (binding-free) term-contexts).

For each i ∈ {1, 2}, a judgement ~x′ | ~a′ ` C[ti] : ? is derivable, and moreover,

(~x′ | ~a′ ` C[ti] : ?)† = (~x′ | ~a′ ` C[ ]~x|~a : ?)†[(~x | ~a ` ti : ?)†]

(proof by induction on C). The congruence property of contextual refinements

concludes the proof.

4.3 A characterisation theorem

We can now formalise a proof method for contextual refinement and equivalence.

All the technical development in this section is with respect to the universal abstract

machine U(O, BO), parametrised by an operation set O and its behaviour BO, that

satisfies some conditions including determinism.

Firstly in Sec. 4.3.1, we state the conditions of the machine, to which the proof

method applies. Sec. 4.3.2 formalises the proof method as a characterisation theorem
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(Thm. 4.3.14), introducing the key concept of robustness. Additionally, in Sec. 4.3.3,

we list some useful lemmas that can be used in robustness check.

4.3.1 Determinism and refocusing

We focus on the situation where the universal abstract machine is both deterministic

as a state transition system, and refocusing in the following sense.

Definition 4.3.1 (Rooted states and refocusing machine).

• A state Ġ is rooted if ?; |Ġ| •→∗ Ġ.

• The universal abstract machine U(O, BO) is refocusing if every transition pre-

serves the rooted property.

Recall that intrinsic transitions are all deterministic, and that intrinsic transitions

and extrinsic transitions are mutually exclusive. The machine becomes determinis-

tic, as a state transition system, if compute transitions specified by the behaviour

BO are deterministic.

Any initial state is trivially rooted, and search transitions preserve the rooted

property. The stationary property below gives a sufficient condition for a rewrite

transition to preserve the rooted property (Lem. A.3.8).

Definition 4.3.2 (Stationary rewrite transitions). A rewrite transition Ġ → Ġ′ is

stationary if there exist a focus-free simple context C, focus-free hypernets H and

H ′, and a number i ∈ N, such that H is one-way, Ġ = C[ ;iH] and Ġ′ = C[?;iH
′],

and the following holds. For any j ∈ N\{i}, such that C[?;j H] is a state, there exists

a state Ṅ with a rewrite token, such that C[?;j H] •→ Ṅ .

Copy transitions are stationary, and hence they preserve the rooted property,

because each input of the contraction tree C in Fig. 3.11 is a source of a contrac-

tion edge. Therefore, the machine becomes refocusing if the behaviour BO specifies

compute transitions that preserve the rooted property.
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Remark 4.3.3 (Refocusing). When a rewrite transition results in a rooted state

Ṅ ′, starting the search process (i.e. search transitions) from the state Ṅ ′ can be

seen as resuming the search process ?; |Ṅ ′| •→∗ Ṅ ′, from an initial state, on the

underlying hypernet |Ṅ ′|. Resuming redex search after a rewrite, rather than start-

ing from scratch, is an important aspect of abstract machines. In the case of the

lambda-calculus, enabling the resumption is identified as one of the key steps (called

refocusing) to synthesise abstract machines from reduction semantics by Danvy et al.

[2012]. In our setting, it is preservation of the rooted property that justifies the re-

sumption.

The stationary property, as a sufficient condition of preservation of the rooted

property, characterises many operations with local behaviour. Compute transitions

of operations that involve non-local change of a token position, like label jumping,

could preserve the rooted property without being stationary.

4.3.2 Templates and robustness

A candidate for contextual refinement, called pre-template, is given by a family of

pairs of hypernets, indexed by types.

Definition 4.3.4 (Pre-template). A pre-template is a union C := ∪I∈I CI of a

family of binary relations on focus-free hypernets Hω(L,MO\{?,X, }) indexed by

a set I of types, such that for any G1 CI G2 where I ∈ I, G1 and G2 are focus-free

hypernets with type G1 : I and G2 : I.

Obviously, if C is a pre-template, its converse C−1 is also a pre-template.

Pre-templates do not necessarily relate hypernets that represent terms, nor hy-

pernets that arise from rewrite rules of the operations. However, the rewrite rules are

indeed natural candidates for contextual refinements, and therefore natural sources

of pre-templates.
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Example 4.3.5 (Beta pre-template). As a leading example, we consider the beta

pre-template C
→
@ derived from the beta rewrite rule (Fig. 3.7), by forgetting the token:

namely, |Ġ1| C
→
@ |Ġ2| if Ġ1 7→ Ġ2 is a beta rewrite rule. These hypernets |G1| and

|G2| have the same type ? ⇒ ?⊗k ⊗ �⊗h ⊗ ~̀, where k, h ∈ N and the sequence ~̀ of

types can be arbitrary.

Throughout this section, let C be a set of contexts, and Q, Q′ and Q′′ be binary

relations on N. Given a pre-template C, our goal is to prove that H1 C H2 implies

contextual refinement H1 �C
Q H2, possibly with the help of state refinement �̇ up to

Q′ or Q′′. As will be apparent in Sec. 4.5, the use of state refinement is particularly

convenient in reasoning, allowing us to identify different contraction trees of the

same type.

At the core of the proof is comparison between hypernets related by the pre-

template C, in any possible contexts specified by the set C. In other words, the

comparison is between a pair of states whose only difference is given by the pre-

template C. This pair is given by data called specimen. The comparison can be

relaxed by allowing state refinements �̇Q′ and �̇Q′′ , in addition to the pre-template

C, to specify the difference between states. The relaxed comparison is targeted

at a pair of states, which is intuitively a specimen up to state refinements, called

quasi-specimen.

Definition 4.3.6 ((Quasi-)specimens). Let C be a pre-template, and R and R′ be

binary relations on states.

1. A triple (Ċ[~χ]; ~H1; ~H2) is a C-specimen of C if the following hold:

(A) |Ċ[~χ]| ∈ C, and |~χ| = | ~H1| = | ~H2|.

(B) H1
i C H2

i for each i ∈ {1, . . . , |~χ|}.

(C) Ċ[ ~Hp] is a state for each p ∈ {1, 2}.

2. A pair (Ṅ1, Ṅ2) of states is a quasi-C-specimen of C up to (R,R′), if there
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exists a C-specimen (Ċ; ~H1; ~H2) of C such that the following hold:

(A) The tokens of Ċ, Ṅ1 and Ṅ2 all have the same label.

(B) If Ṅ1 and Ṅ2 are rooted, then Ċ[ ~H1] and Ċ[ ~H2] are also rooted, Ṅ1 R Ċ[ ~H1],

and Ċ[ ~H2] R′ Ṅ2.

We can refer to the token label of a C-specimen and a quasi-C-specimen. Any

C-specimen (Ċ; ~H1; ~H2) gives a quasi-C-specimen (Ċ[ ~H1], Ċ[H2]) up to (=,=). Note

that the focussed context of each C-specimen may have multiple holes. We say a

C-specimen (Ċ[~χ]; ~H1; ~H2) is single if |~χ| = 1, i.e. the context Ċ has exactly one hole

edge (at any depth).

For the pre-template C to imply contextual refinement, hypernets related by C

should intuitively induce the same behaviour of the token, regardless of contexts. We

use specimens to analyse the token behaviour, in a case-by-case manner. Namely,

given any C-specimen (Ċ; ~H1; ~H2) of a pre-template C, we analyse how the token in

the context Ċ interacts with the hypernets ~H1, and ~H2, that are contributed by C.

According to the actual position and the label of the token, the possible interaction

can be classified as follows:

Case I: move inside the common context. The token is a search token (?) or

a value token (X), and it interacts with an edge of the context Ċ. It does not

interact with the fragments at all.

Case II: visit to the fragments. The token is a search token (?) or a value to-

ken (X), and it is set to interact with edges of the fragments. The token is

necessarily next to a hole edge in the context Ċ.

Case III: rewrite. The token in the context Ċ is a rewrite token ( ). It triggers a

compute transition, in which a part of the fragments may be rewritten.

Case IV: termination. The token is a value token (X) and does not have an edge

to interact, which is an incoming edge of the token. In this case, both states
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Ċ[ ~H1] and Ċ[ ~H2] are necessarily final.

Our objective is to establish that the token always interacts with the hypernets

~H1 in the same manner as with the hypernets ~H2. By step-wise reasoning whose

details will appear in Sec. 4.4,it suffices to show that the interaction in the C-

specimen (Ċ; ~H1; ~H2), described above, always results in another (quasi-)C-specimen

of C, unless it results in stuck states or final states.

Apart from Case IV which actually involves no interaction, it is only Case I that

always results in another C-specimen (Ċ ′; ~H1; ~H2) with a different context Ċ ′. For

the other cases, i.e. Case II and Case III, we identify sufficient conditions for the

pre-template C, as well as for the operations O, to yield a (quasi-)C-specimen as a

result.

There are two sufficient conditions for Case II, according to the token: input-

safety for a search token (?), and output-closure for a value token (X). Input-safety

enumerates some situations of interaction that yield a (quasi-)specimen or a pair of

stuck states. On the other hand, output-closure characterises a situation where a

value token cannot interact with the hypernets contributed by the pre-template C,

under the assumption that the machine is refocusing.

Definition 4.3.7 (Input-safety). A pre-template C is (C, Q,Q′)-input-safe if, for

any C-specimen (Ċ; ~H1; ~H2) of C such that Ċ has an entering search token, one of

the following holds.

(I) There exist two stuck states Ṅ1 and Ṅ2 such that Ċ[ ~Hp]→∗ Ṅp for each p ∈ {1, 2}.

(II) There exist a C-specimen (Ċ ′; ~H ′1; ~H ′2) of C and two numbers k1, k2 ∈ N, such

that the token of Ċ ′ is not a rewrite token and not entering, (1+k1) Q k2, Ċ[ ~H1]→1+k1

Ċ ′[ ~H ′1], and Ċ[ ~H2]→k2 Ċ ′[ ~H ′2].

(III) There exist a quasi-C-specimen (Ṅ1, Ṅ2) of C up to ('̇Q′ , '̇Q′), whose token

is not a rewrite token, and two numbers k1, k2 ∈ N, such that (1 + k1) Q (1 + k2),

Ċ[ ~H1]→1+k1 Ṅ1, and Ċ[ ~H2]→1+k2 Ṅ2.
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Definition 4.3.8 (Output-closure). A pre-template C is output-closed if, for any

hypernets H1 C H2, either H1 or H2 is one-way.

Definition 4.3.9 (Templates). A pre-template C is a (C, Q,Q′)-template, if it is

(C, Q,Q′)-input-safe and also output-closed.

It is possible to allow a value token to interact with the hypernets contributed

by the pre-template C, and define a counterpart of input-safety for a value token.

However, we here opt for a simple sufficient condition, output-closure, that excludes

interaction in the refocusing machine. It is simple yet powerful enough to prove

many interesting contextual refinements, as we will see in Sec. 4.5.

Example 4.3.10 (Beta template). We continue with the beta pre-template C
→
@ from

Ex. 4.3.5. It is natural to expect that the beta pre-template C
→
@ is input-safe, because

it is derived from the beta rewrite rule. Given hypernets H1 C
→
@ H2, whenever a

search token enters H1, it should eventually become a rewrite token and trigger the

beta rewrite of H1 to H2. If this is the case, Def. 4.3.7(II) is fulfilled, where k2 = 0

and the new context Ċ ′ has one less hole than the original context Ċ.

However, the actual behaviour of an entering search token is not necessarily as

expected. When a search token visits the hypernet GS that is the second argument of

the application operation (see Fig. 3.7), there is no guarantee that the token returns

to the application edge (@) and hence triggers the beta rewrite of the hypernet H1.

Even if it returns, it may have triggered some rewrites that change the hypernet GS

to something else. Consequently, the pre-template C
→
@ is not necessarily input-safe

as it is.

One possible solution is to restrict the pre-template C
→
@, by requiring the hypernet

GS to be stable. This restriction ensures that a search token that enters H1 eventually

triggers the beta rewrite of H1 to H2, because a search token that visits the stable

hypernet GS is guaranteed to return without triggering any rewrites (by Lem. A.4.4

and Lem. A.4.6(1)). Moreover, this restriction makes the pre-template C
→
@ output-
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closed, because of the type of GS. The restriction in fact corresponds to restriction of

the standard beta law to the call-by-value one (λx.t) v ' v[t/x], where the argument

v is required to be a value.

For Case III, where the token in the context triggers a rewrite, we identify a

sufficient condition called robustness. It is in a similar style as input-safety, but

additionally relative to the triggered rewrite, whose target is a contraction ⊗ or an

active operation φ .

Definition 4.3.11 (Robustness). A pre-template C is (C, Q,Q′, Q′′)-robust relative

to a rewrite transition Ṅ → Ṅ ′ if, for any C-specimen (Ċ; ~H1; ~H2) of C, such that

Ċ[ ~H1] = Ṅ and the token of Ċ is a rewrite token and not entering, one of the

following holds.

(I) Ċ[ ~H1] or Ċ[ ~H2] is not rooted.

(II) There exists a stuck state Ṅ ′′ such that Ṅ ′ →∗ Ṅ ′′.

(III) There exist a quasi-C-specimen (Ṅ ′′1 , Ṅ
′′
2 ) of C up to (�̇Q′ , �̇Q′′), whose token is

not a rewrite token, and two numbers k1, k2 ∈ N, such that (1+k1) Q k2, Ṅ ′ →k1 Ṅ ′′1 ,

and Ċ[ ~H2]→k2 Ṅ ′′2 .

Example 4.3.12 (Robustness of beta pre-template). Let us see informally how

robust the beta pre-template C
→
@, from Ex. 4.3.5, can be.

The beta pre-template is robust relative to the arithmetic rewrite rule in Fig. 3.8,

because application of the rewrite rule does not interfere with any hypernets con-

tributed by the pre-template C
→
@. Any specimen (Ċ; ~H1; ~H2) is therefore turned into

another specimen (Ċ ′; ~H1; ~H2) with a different context Ċ ′.

The beta pre-template is also robust relative to the beta rewrite rule. Hypernets

contributed by the pre-template C
→
@ may appear as a part of the redex of the rewrite

rule, namely, as a part of G and GS in Fig. 3.7. However, the rewrite does not ma-

nipulate what is inside G and GS, and hence it preserves the contributed hypernets.

Any specimen is again turned into another specimen with a different context.
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When it comes to a copy transition, which applies a contraction rule (Fig. 3.11),

robustness is not guaranteed in general. Starting from a pair of states given by a

specimen (Ċ; ~H1; ~H2), it may be the case that some copy transitions are possible with-

out reaching another (quasi-)specimen. An example scenario is when the specimen

yields the following two states, where the context Ċ is indicated by magenta:

Ċ[ ~H1] =

@

𝜆

⋆

⋆

(⋆)𝑇
1

⋆

⋆

⋆

5

⋆

?

⋆

3

⋆

⋄

𝖨

⋆

, Ċ[ ~H2] =

⋆

⋆

⋆

5

?

⋆

3

⋆

⋄

𝖨

⋆

.

Transitions from the state Ċ[ ~H1] eventually duplicate the application edge (@), the

abstraction edge (λ) and also the entire box connected to the abstraction edge. In

particular, these transitions duplicate the atom edge contained in the box. However,

transitions from the state Ċ[ ~H2] can never duplicate the atom edge, because the edge

is shallow in this state. This mismatch of duplication prevents the beta pre-template

from being robust relative to a copy transition.

This is why we might prefer to restrict contexts to be binding-free. If the context

|Ċ| is binding-free, the situation explained above would never happen. Application of

a contraction rule can involve the hypernets ~H1 and ~H2 only as a part of box con-
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tents that are duplicated as a whole. Any specimen is therefore turned into another

specimen whose context possibly has more holes, by a single copy transition. Note

that this explains why we allow the context of a specimen to have multiple holes.

Another interesting example is given by the operation stat mentioned earlier,

whose rewrite transition measures the size of the whole hypernet. The transition

introduces an edge labelled by an integer, which can be seen as a passive operation

with no arguments, that represents the measured size. Consequently, the rewrite

transition on states Ċ[ ~H1] and Ċ[ ~H2] may introduce different integer edges, which

cannot be related by the pre-template C
→
@. Robustness of the beta pre-template fails

relative to the operation stat.

Since robustness is only a sufficient condition, this failure does not necessarily

mean that the beta pre-template cannot imply contextual refinement. Nevertheless,

the failure suggests how the operation stat could violate the contextual refinement.

It namely indicates that such a violation would rely on equality testing of integers,

such as an active operation test(t, u;−) whose rewrite transition is only defined

when the two eager arguments are the same integer.

Finally, the characterisation theorem (Thm. 4.3.14 below) enables us to prove

contextual refinement �C
Q using state refinements �̇Q′ and �̇Q′′ , under the assump-

tion that the machine is deterministic and refocusing, and that the triple (Q,Q′, Q′′)

is reasonable in the following sense.

Definition 4.3.13 (Reasonable triples). A triple (Q,Q′, Q′′) of preorders on N is

reasonable if the following hold:

(A) Q is closed under addition, i.e. any k1 Q k2 and k′1 Q k′2 satisfy (k1 + k′1) Q

(k2 + k′2).

(B) Q′ ⊆ ≥N, and Q′ ⊆ Q′′.

(C) Q′ ◦Q ◦Q′′ ⊆ Q, where ◦ denotes composition of binary relations.
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Examples of a reasonable triple (Q,Q′, Q′′) include: (N× N,≥N,N× N),

(N× N,≥N,≥N), (N× N,=N,=N), (≥N,≥N,≥N), (≥N,=N,≥N), (≤N,=N,≤N),

(≥N,=N,=N), (≤N,=N,=N), (=N,=N,=N).

Theorem 4.3.14. If a universal abstract machine U(O, BO) is deterministic and

refocusing, it satisfies the following property. For any set C ⊆ Hω(L,MO ∪M) of

contexts that is closed under plugging, any reasonable triple (Q,Q′, Q′′), and any

pre-template C on focus-free hypernets Hω(L,MO\{?,X, }):

1. If C is a (C, Q,Q′)-template and (C, Q,Q′, Q′′)-robust relative to all rewrite

transitions, then C implies contextual refinement in C up to Q, i.e. any G1 C

G2 implies G1 �C
Q G2.

2. If C is a (C, Q−1, Q′)-template and the converse C−1 is (C, Q,Q′, Q′′)-robust

relative to all rewrite transitions, then C−1 implies contextual refinement in C

up to Q, i.e. any G1 C G2 implies G2 �C
Q G1.

Proof. This is a consequence of Prop. 4.4.6, Prop. 4.4.2 and Prop. 4.4.4 in Sec. 4.4.

Remark 4.3.15 (Monotonicity). Contextual/state refinement and equivalence are

monotonic with respect to Q, in the sense that Q1 ⊆ Q2 implies �Q1 ⊆ �Q2 for each

� ∈ {�̇, '̇,�C,'C}. Contextual refinement and equivalence are anti-monotonic with

respect to C, in the sense that C1 ⊆ C2 implies �C2 ⊆ �C1 for each � ∈ {�Q,'Q}.

This means, in particular, 'CO
Q ⊆ '

CO-bf

Q .

Given that C1 ⊆ C2, Q1 ⊆ Q2, Q
′
1 ⊆ Q′2, Q

′
1 ⊆ Q′2, R1 ⊆ R2 and R′1 ⊆

R′2, the following holds. Any C1-specimen is a C2-specimen, and any quasi-C1-

specimen up to (R1, R
′
1) is a quasi-C2-specimen up to (R2, R

′
2). Any (C, Q1, Q

′
1)-

template is a (C, Q2, Q
′
2)-template. If C is (C, Q1, Q

′
1, Q

′′
1)-robust relative to a rewrite

transition, then it is also (C, Q2, Q
′
2, Q

′′
2)-robust relative to the same transition. Note

that the notions of template and robustness are not monotonic nor anti-monotonic

with respect to C.



4.3. A CHARACTERISATION THEOREM 115

To prove that a pre-template C induces contextual equivalence, one can use

Thm. 4.3.14(1) twice with respect to C and C−1. One can alternatively use

Thm. 4.3.14(1) and Thm. 4.3.14(2), both with respect to C. This alternative ap-

proach is often more economical. The reason is that the approach involves proving

input-safety of C with respect to two parameters (C, Q,Q′) and (C, Q−1, Q′), which

typically boils down to a proof for one parameter, thanks to the monotonicity.

4.3.3 Sufficient conditions for robustness

A proof of robustness becomes trivial for a specimen with a rewrite token that gives

a non-rooted state. Thanks to the lemma below, we can show that a state is not

rooted, by checking paths from the token target.

Definition 4.3.16 (Accessible paths).

• A path of a hypernet is said to be accessible if it consists of edges whose all

sources have type ?.

• An accessible path is called stable if the labels of its edges are included in

{I} ∪OX.

• An accessible path is called active if it starts with one active operation edge

and possibly followed by a stable path.

Note that box edges and atom edges never appear in an accessible path.

Lemma 4.3.17. If a state has a rewrite token that is not an incoming edge of a

contraction edge, then the state satisfies the following property: If there exists an

accessible, but not active, path from the token target, then the state is not rooted.

Proof. This is a contraposition of a consequence of Lem. A.3.5 and Lem. A.4.6(2).
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Checking the condition (III) of robustness (see Def. 4.3.11) involves finding a

quasi-C-specimen of C up to (�̇Q′ , �̇Q′′), namely checking the condition (B) of

Def. 4.3.6(2). The following lemma enables us to use contextual refinement �C
Q′

to yield state refinement �̇Q′ , via single C-specimens of a certain pre-template C.

Definition 4.3.18. A pre-template C is a trigger if it satisfies the following:

(A) For any single C-specimen (Ċ[χ];H1;H2) of C, such that Ċ has an entering

search token, Ċ[Hp]→ 〈Ċ[Hp]〉 /? for each p ∈ {1, 2}.

(B) For any hypernets H1 C H2, both H1 and H2 are one-way.

Lemma 4.3.19. Let C be a set of contexts, and Q′ be a binary relation on N such

that, for any k0, k1, k2 ∈ N, (k0 + k1) Q
′ (k0 + k2) implies k1 Q

′ k2. Let C be a

pre-template that is a trigger and implies contextual refinement �C
Q′. For any single

C-specimen (Ċ[χ];H1;H2) of C, if compute transitions are all deterministic, and

one of states Ċ[H1] and Ċ[H2] is rooted, then the other state is also rooted, and

moreover, Ċ[H1] �̇Q′ Ċ[H2].

Proof. This is a corollary of Lem. A.6.1.

Remark 4.3.20. The notion of contextual refinement concerns initial states, and

therefore, only enables us to safely replace a part of a hypernet before execution.

Because any initial state is rooted, if all transitions preserve the rooted property,

we can safely assume that any state that arises in an execution is rooted. If all

transitions are also deterministic, Lem. 4.3.19 enables us to use some contextual

refinement and safely replace a part of a hypernet during execution. This can validate

run-time garbage collection, for example.

4.4 Proof of the characterisation theorem

This section details the proof of Thm. 4.3.14, with respect to the machine U(O, BO)

parametrised by O and BO.
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At the core of the proof is step-wise reasoning, or transition-wise reasoning, using

a lax variation of simulation. Providing a simulation boils down to case analysis on

transitions, namely on possible interactions between the token and parts of states

contributed by a pre-template. While output-closure helps us disprove some cases

under the assumption that the machine is refocusing, input-safety and robustness

deal with the cases that are specific to a pre-template and an operation set.

The step-wise reasoning is enriched with the so-called up-to technique (see e.g. Mil-

ner [1999]). Our variation of simulation is namely up to state refinements, which is

reflected in the definition of quasi-specimen (Def. 4.3.6(2)). In order to make this

particular up-to technique work, it is essential to additionally equip our simulation

with a quantitative restriction. The restriction is implemented by the notion of rea-

sonable triple. A similar form of up-to technique is studied categorically by Bonchi

et al. [2017], but for the ordinary notion of (weak) simulation, without this quanti-

tative restriction.

The lax variation of simulation we use is namely (Q,Q′, Q′′)-simulation,

parametrised by a triple (Q,Q′, Q′′). This provides a sound approach to prove state

refinement �̇Q, using �̇Q′ and �̇Q′′ , given that all transitions are deterministic and

(Q,Q′, Q′′) forms a reasonable triple.

Definition 4.4.1 ((Q,Q′, Q′′)-simulations). Let R be a binary relation on states,

and (Q,Q′, Q′′) be a triple of preorders on N. The binary relation R is a (Q,Q′, Q′′)-

simulation if, for any two related states Ġ1 R Ġ2, the following (A) and (B) hold:

(A) If Ġ1 is final, Ġ2 is also final.

(B) If there exists a state Ġ′1 such that Ġ1 → Ġ′1, one of the following (I) and (II)

holds:

(I) There exists a stuck state Ġ′′1 such that Ġ′1 →∗ Ġ′′1.

(II) There exist two states Ḣ1 and Ḣ2, and numbers k1, k2 ∈ N, such that

Ḣ1 (�̇Q′ ◦R ◦ �̇Q′′) Ḣ2, (1 + k1) Q k2, Ġ′1 →k1 Ḣ1, and Ġ2 →k2 Ḣ2.
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Proposition 4.4.2. When the universal abstract machine U(O, BO) is determinis-

tic, it satisfies the following.

For any binary relation R on states, and any reasonable triple (Q,Q′, Q′′), if R

is a (Q,Q′, Q′′)-simulation, then R implies refinement up to Q, i.e. any Ġ1 R Ġ2

implies Ġ1 �̇Q Ġ2.

Proof. Our goal is to show the following: for any states Ġ1 R Ġ2, any number k1 ∈ N

and any final state Ṅ1, such that Ġ1 →k1 Ṅ1, there exist a number k2 ∈ N and a

final state Ṅ2 such that k1 Q k2 and Ġ2 →k2 Ṅ2. The proof is by induction on

k1 ∈ N.

In the base case, when k1 = 0, the state Ġ1 is itself final because Ġ1 = Ṅ1.

Because R is a (Q,Q′, Q′′)-simulation, Ġ2 is also a final state, which means we can

take 0 as k2 and Ġ2 itself as Ṅ2. Because (Q,Q′, Q′′) is a reasonable triple, Q is a

preorder and 0 Q 0 holds.

In the inductive case, when k1 > 0, we assume the induction hypothesis on

any h ∈ N such that h < k1. Now that k1 > 0, there exists a state Ġ′1 such

that Ġ1 → Ġ′1 →k−1 Ṅ1. Because all intrinsic transitions are deterministic, the

assumption that compute transitions are all deterministic implies that states and

transitions comprise a deterministic abstract rewriting system, in which final states

and stuck states are normal forms. By Lem. A.3.1, we can conclude that there exists

no stuck state Ġ′′1 such that Ġ′1 →∗ Ġ′′1.

Therefore, by R being a (Q,Q′, Q′′)-simulation, there exist two states Ḣ1 and Ḣ2,

and numbers l1, l2 ∈ N, such that Ḣ1 (�̇Q′ ◦R ◦ �̇Q′′) Ḣ2, (1 + l1) Q l2, Ġ′1 →l1 Ḣ1,

and Ġ2 →l2 Ḣ2. By the determinism, 1 + l1 ≤ k1 must hold; if Ḣ1 is a final state,

Ġ′1 →l1 Ḣ1 must coincide with Ġ′1 →k−1 Ṅ1; otherwise, Ġ′1 →l1 Ḣ1 must be a suffix

of Ġ′1 →k−1 Ṅ1. There exist two states Ḣ3 and Ḣ4, and we have the following

situation, where the relations R, �̇Q′ and �̇Q′′ are represented by vertical dotted
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lines from top to bottom.

Ġ1
//

R

Ġ′1
l1//

(1+l1)Q l2

Ḣ1

k1−1−l1//

�̇Q′

Ṅ1

Ḣ3

R

Ḣ4

�̇Q′′

Ġ2

l2// Ḣ2

We expand the above diagram as below (indicated by magenta), in three steps.

Ġ1
//

R

Ġ′1
l1//

(1+l1)Q l2

Ḣ1

k1−1−l1//

�̇Q′

Ṅ1

(k1−1−l1)Q′m3

Ḣ3

R

m3// Ṅ3

m3Qm4

Ḣ4

�̇Q′′

m4// Ṅ4

m4Q′′m2

Ġ2

l2// Ḣ2

m2// Ṅ2

Firstly, by definition of state refinement, there exist a number m3 ∈ N and a final

state Ṅ3 such that (k1 − 1 − l1) Q′ m3 and Ḣ3 →m3 Ṅ3. Because (Q,Q′, Q′′) is a

reasonable triple, Q′ ⊆≥N, and hence k1 > k1 − 1− l1 ≥ m3. Therefore, secondly,

by induction hypothesis on m3, there exist a number m4 ∈ N and a final state Ṅ4

such that m3 Q m4 and Ḣ4 →m4 Ṅ4. Thirdly, by definition of state refinement, there

exist a number m2 ∈ N and a final state Ṅ2 such that m4 Q
′′ m2 and Ḣ2 →m2 Ṅ2.

Now we have (k1 − 1 − l1) Q′ m3, m3 Q m4 and m4 Q′′ m2, which means

(k1 − 1 − l1) (Q′ ◦Q ◦Q′′) m2. Because (Q,Q′, Q′′) is a reasonable triple, this

implies (k1 − 1 − l1) Q m2, and moreover, k1 Q (l2 + m2). We can take l2 + m2 as

k2.
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The token in a focussed context Ċ is said to be remote, if it is a search token, a

value token, or not entering. The procedure of contextual lifting reduces a proof of

contextual refinement down to that of state refinement.

Definition 4.4.3 (Contextual lifting). Let C ⊆ Hω(L,MO ∪M) be a set of con-

texts. Given a pre-template C on focus-free hypernets Hω(L,MO\{?,X, }), its

C-contextual lifting CC is a binary relation on states defined by: Ġ1 CC Ġ2 if there

exists a C-specimen (Ċ; ~H1; ~H2) of C, such that the token of Ċ is remote, Ġp = Ċ[ ~Hp],

and Ċ[ ~Hp] is rooted, for each p ∈ {1, 2}.

The contextual lifting CC is by definition a binary relation on rooted states.

Proposition 4.4.4. For any set C ⊆ Hω(L,MO ∪ M) of contexts that is closed

under plugging, any preorder Q on N, and any pre-template C on focus-free hy-

pernets Hω(L,MO\{?,X, }), if the C-contextual lifting CC implies refinement �̇Q
(resp. equivalence '̇Q), then C implies contextual refinement �C

Q (resp. contextual

equivalence 'C
Q).

Proof of refinement case. Our goal is to show that, for any H1 C H2 and any focus-

free context C[χ] ∈ C such that ?; C[H1] and ?; C[H2] are states, we have refinement

?; C[H1] �̇Q ?; C[H2].

Because ?; C[Hp] =?; (C[Hp]) = (?; C)[Hp] for p ∈ {1, 2}, and |?; C| = C ∈ C, the

triple ((?; C);H1;H2) is a C-specimen of C with a search token. Moreover the states

?; C[H1] and ?; C[H2] are trivially rooted. Therefore, ?; C[H1] CC ?; C[H2], and by the

assumption, ?; C[H1] �̇Q ?; C[H2].

Proof of equivalence case. It suffices to show that, for any H1 C H2 and any focus-

free context C[χ] ∈ C such that ?; C[H1] and ?; C[H2] are states, we have refinements

?; C[H1] �̇Q ?; C[H2] and ?; C[H2] �̇Q ?; C[H1], i.e. equivalence ?; C[H1] '̇Q ?; C[H2].

Because ?; C[Hp] =?; (C[Hp]) = (?; C)[Hp] for p ∈ {1, 2}, and |?; C| = C ∈ C, the

triple ((?; C);H1;H2) is a C-specimen of C with a search token. Moreover the states
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?; C[H1] and ?; C[H2] are trivially rooted. Therefore, ?; C[H1] CC ?; C[H2], and by the

assumption, ?; C[H1] '̇Q ?; C[H2].

Lemma 4.4.5. For any set C ⊆ Hω(L,MO ∪M) of contexts that is closed under

plugging, any pre-template C on focus-free hypernets Hω(L,MO\{?,X, }), and any

C-specimen (Ċ[~χ]; ~H1; ~H2) of C, the following holds.

1. The state Ċ[ ~H1] is final (resp. initial) if and only if the state Ċ[ ~H2] is final

(resp. initial).

2. If C is output-closed, and Ċ[ ~H1] and Ċ[ ~H2] are both rooted states, then the

token of Ċ is not exiting.

3. If C is output-closed, Ċ[ ~H1] and Ċ[ ~H2] are both rooted states, the token of Ċ is

a value token or a non-entering search token, and a transition is possible from

Ċ[ ~H1] or Ċ[ ~H2], then there exists a focussed context Ċ ′ with a remote token

such that |Ċ ′| = |Ċ| and Ċ[ ~Hp]→ Ċ ′[ ~Hp] for each p ∈ {1, 2}.

Proof of point (1). Let (p, q) be an arbitrary element of a set {(1, 2), (2, 1)}. If Ċ[ ~Hp]

is final (resp. initial), the token source is an input in Ċ[ ~Hp]. Because input lists of

Ċ[ ~Hp], Ċ and Ċ[ ~Hq] all coincide, the token source must be an input in Ċ, and in

Ċ[ ~Hq] too. This means Ċ[ ~Hq] is also a final (resp. initial) state.

Proof of point (2). This is a consequence of the contraposition of Lem. A.3.7(3).

Proof of the point (3). The transition possible from Ċ[ ~H1] or Ċ[ ~H2] is necessarily a

search transition. By case analysis on the token of Ċ, we can confirm that the search

transition applies an interaction rule to the token and an edge from Ċ.

• When the token of Ċ is a value token, the transition can only change the token

and its incoming operation edge. Because C is output-closed, by the point (2),

the token of Ċ is not exiting. This implies that the incoming operation edge

of the token is from Ċ in both states Ċ[ ~H1] and Ċ[ ~H2].



122 CHAPTER 4. ROBUSTNESS AND OBSERVATIONAL EQUIVALENCE

• When the token of Ċ is a non-entering search token, the transition can only

change the token and its outgoing edge. Because the token is not entering in

Ċ, the outgoing edge is from Ċ in both states Ċ[ ~H1] and Ċ[ ~H2].

Therefore, there exist a focus-free simple context C0[χ, ~χ] and an interaction rule

Ṅ0 7→ Ṅ ′0, such that Ċ = C0[Ṅ0, ~χ], and C0[Ṅ ′0, ~χ] is a focussed context.

Examining interaction rules confirms |Ṅ0| = |Ṅ ′0|, and hence |Ċ| = |C0[Ṅ0, ~χ]| =

|C0[Ṅ ′0, ~χ]|. By definition of search transitions, we have:

Ċ[ ~Hp] = C0[Ṅ0, ~Hp]→ C0[Ṅ ′0, ~Hp]

for each p ∈ {1, 2}.

The rest of the proof is to check that C0[Ṅ ′0, ~χ] has a remote token, namely that,

if its token is a rewrite token, the token is not entering. This is done by inspecting

interaction rules.

• When the interaction rule Ṅ0 7→ Ṅ ′0 changes a value token to a rewrite token,

this must be the interaction rule (5a), which means Ṅ ′0 consists of the rewrite

token and its outgoing operation edge. The operation edge remains to be a

(unique) outgoing edge of the token in C0[Ṅ ′0, ~χ], and hence the token is not

entering in C0[Ṅ ′0, ~χ].

• When the interaction rule Ṅ0 7→ Ṅ ′0 changes a search token to a rewrite token,

this must be the interaction rule (1a), (1b) or (5b), which means Ṅ ′0 = 〈Ṅ0〉 /?.

Because the token is not entering in C0[Ṅ0, ~χ] = Ċ, the token is also not entering

in C0[Ṅ ′0, ~χ] = 〈C0[Ṅ0, ~χ]〉 /?.

Proposition 4.4.6. When the universal abstract machine U(O, BO) is deterministic

and refocusing, it satisfies the following, for any set C ⊆ Hω(L,MO∪M) of contexts
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that is closed under plugging, any reasonable triple (Q,Q′, Q′′), and any pre-template

C on focus-free hypernets Hω(L,MO\{?,X, }).

1. If C is a (C, Q,Q′)-template and (C, Q,Q′, Q′′)-robust relative to all rewrite

transitions, then the C-contextual lifting CC is a (Q,Q′, Q′′)-simulation.

2. If C is a (C, Q−1, Q′)-template and the converse C−1 is (C, Q,Q′, Q′′)-robust

relative to all rewrite transitions, then the C-contextual lifting C−1C of the

converse is a (Q,Q′, Q′′)-simulation.

Proof prelude. Let (Ċ; ~H1; ~H2) be an arbitrary C-specimen of C, such that the token

of Ċ is remote, and Ġp := Ċ[ ~Hp] is a rooted state for each p ∈ {1, 2}. By definition

of contextual lifting, Ġ1 CC Ġ2, and equivalently, Ġ2 (CC)−1 Ġ1. Note that C−1C =

(CC)−1.

Because C is output-closed, by Lem. 4.4.5(2), the token is not exiting in Ċ. This

implies that, if the token has an incoming edge in Ġ1 or Ġ2, the incoming edge must

be from Ċ.

Because the machine is deterministic and refocusing, rooted states and transi-

tions comprise a deterministic abstract rewriting system, in which final states and

stuck states are normal forms. By Lem. A.3.1, from any state, a sequence of transi-

tions that results in a final state or a stuck state is unique, if any.

Because (Q,Q′, Q′′) is a reasonable triple, Q′ and Q′′ are reflexive. By Lem. A.5.2,

this implies that �̇Q′ and �̇Q′′ are reflexive, and hence CC ⊆ �̇Q′ ◦CC ◦ �̇Q′′ , and

(CC)−1 ⊆ �̇Q′ ◦ (CC)−1 ◦ �̇Q′′ .

Proof of the point (1). Our goal is to check conditions (A) and (B) of Def. 4.4.1 for

the states Ġ1 CC Ġ2.

If Ġ1 is final, by Lem. 4.4.5(1), Ġ2 is also final. The condition (A) of Def. 4.4.1

is fulfilled.

If there exists a state Ġ′1 such that Ġ1 → Ġ′1, we show that one of the conditions

(I) and (II) of Def. 4.4.1 is fulfilled, by case analysis of the token in Ċ.
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• When the token is a value token, or a search token that is not entering, by

Lem. 4.4.5(3), there exists a focussed context Ċ ′ with a remote token, such

that |Ċ ′| = |Ċ| and Ġp = Ċ[ ~Hp] → Ċ ′[ ~Hp] for each p ∈ {1, 2}. We have the

following situation, namely the black part of the diagram below. Showing the

magenta part confirms that the condition (II) of Def. 4.4.1 is fulfilled.

Ġ1=Ċ[ ~H1] //

CC 1Q 1

Ċ′[ ~H1] = Ġ′1

CC

Ġ2=Ċ[ ~H2] // Ċ′[ ~H2]

By the determinism, Ċ ′[ ~H1] = Ġ′1. Because (Q,Q′, Q′′) is a reasonable triple, Q

is a preorder and 1 Q 1. The context Ċ ′ satisfies |Ċ ′| = |Ċ| ∈ C, so (Ċ ′; ~H1; ~H2)

is a C-specimen of C. The context Ċ ′ has a remote token, and the states Ċ ′[ ~H1]

and Ċ ′[ ~H2] are both rooted. Therefore, we have Ċ ′[ ~H1] CC Ċ ′[ ~H2].

• When the token is a search token that is entering in Ċ, because C is (C, Q,Q′)-

input-safe, we have one of the following three situations corresponding to (I),

(II) and (III) of Def. 4.3.7.

– There exist two stuck states Ṅ1 and Ṅ2 such that Ġp →∗ Ṅp for each

p ∈ {1, 2}. By the determinism of transitions, we have Ġ1 → Ġ′1 →∗ Ṅ1,

which means the condition (I) of Def. 4.4.1 is satisfied.

– There exist a C-specimen (Ċ ′; ~H ′1; ~H ′2) of C and two numbers k1, k2 ∈ N,

such that the token of Ċ ′ is not a rewrite token and not entering, (1+k1) Q

k2, Ċ[ ~H1] →1+k1 Ċ ′[ ~H ′1], and Ċ[ ~H2] →k2 Ċ ′[ ~H ′2]. By the determinism of

transitions, we have the following situation, namely the black part of the

diagram below. Showing the magenta part confirms that the condition

(II) of Def. 4.4.1 is fulfilled.

Ġ1=Ċ[ ~H1] //

CC (1+k1)Qk2

Ġ′1
k1// Ċ′[ ~H′1]

CC

Ġ2=Ċ[ ~H2]
k2// Ċ′[ ~H′2]
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The context Ċ ′ has a remote token, and states Ċ ′[ ~H ′1] and Ċ ′[ ~H ′2] are

rooted. Therefore, Ċ ′[ ~H ′1] CC Ċ ′[ ~H ′2].

– There exist a quasi-C-specimen (Ṅ1, Ṅ2) of C up to ('̇Q′ , '̇Q′), whose

token is not a rewrite token, and two numbers k1, k2 ∈ N, such that

(1 + k1) Q (1 + k2), Ċ[ ~H1] →1+k1 Ṅ1, and Ċ[ ~H2] →1+k2 Ṅ2. By the

determinism of transitions, we have the following situation, namely the

black part of the diagram below. Showing the magenta part confirms

that the condition (II) of Def. 4.4.1 is fulfilled.

Ġ1=Ċ[ ~H1] //

CC (1+k1)Q (1+k2)

Ġ′1
k1// Ṅ1

�̇Q′◦C
C◦�̇Q′′

Ġ2=Ċ[ ~H2]
1+k2// Ṅ2

Because (Ṅ1, Ṅ2) is a quasi-C-specimen of C up to ('̇Q′ , '̇Q′), and states

Ṅ1 and Ṅ2 are rooted, there exists a C-specimen (Ċ ′; ~H ′1; ~H ′2) of C with

a non-rewrite token, such that Ċ ′[ ~H ′1] and Ċ ′[ ~H ′2] are also rooted, Ṅ1 '̇Q′

Ċ ′[ ~H ′1], and Ċ ′[ ~H ′2] '̇Q′ Ṅ2. Because (Q,Q′, Q′′) is a reasonable triple,

Q′ ⊆ Q′′, and hence '̇Q′ ⊆ '̇Q′′ . Therefore, we have:

Ṅ1 �̇Q′ Ċ ′[ ~H ′1] CC Ċ ′[ ~H ′2] �̇Q′′ Ṅ2.

• When the token is a rewrite token, Ġ1 → Ġ′1 is a rewrite transition, and by

definition of contextual lifting, the token is not entering in Ċ. Because C

is (C, Q,Q′, Q′′)-robust relative to all rewrite transitions, and Ġ1 and Ġ2 are

rooted, we have one of the following two situations corresponding to (II) and

(III) of Def. 4.3.11.

– There exists a stuck state Ṅ such that Ġ′1 →∗ Ṅ . The condition (I) of

Def. 4.4.1 is satisfied.

– There exist a quasi-C-specimen (Ṅ1, Ṅ2) of C up to (�̇Q′ , �̇Q′′), whose
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token is not a rewrite token, and two numbers k1, k2 ∈ N, such that

(1 + k1) Q k2, Ġ′1 →k1 Ṅ1, and Ġ2 →k2 Ṅ2. We have the following

situation, namely the black part of the diagram below. Showing the

magenta part confirms that the condition (II) of Def. 4.4.1 is fulfilled.

Ġ1=Ċ[ ~H1] //

CC (1+k1)Qk2

Ġ′1
k1// Ṅ1

�̇Q′◦C
C◦�̇Q′′

Ġ2=Ċ[ ~H2]
k2// Ṅ2

Because (Ṅ1, Ṅ2) is a quasi-C-specimen of C up to (�̇Q′ , �̇Q′′), and states

Ṅ1 and Ṅ2 are rooted, there exists a C-specimen (Ċ ′; ~H ′1; ~H ′2) of C with

a non-rewrite token, such that Ċ ′[ ~H ′1] and Ċ ′[ ~H ′2] are also rooted, Ṅ1 �̇Q′

Ċ ′[ ~H ′1], and Ċ ′[ ~H ′2] �̇Q′′ Ṅ2. This means Ċ ′[ ~H ′1] CC Ċ ′[ ~H ′2], and hence:

Ṅ1 �̇Q′ Ċ ′[ ~H ′1] CC Ċ ′[ ~H ′2] �̇Q′′ Ṅ2.

Proof of the point (2). It suffices to check the reverse of conditions (A) and (B) of

Def. 4.4.1 for the states Ġ2 (CC)−1 Ġ1, namely the following conditions (A’) and

(B’).

(A’) If Ġ2 is final, Ġ1 is also final.

(B’) If there exists a state Ġ′2 such that Ġ2 → Ġ′2, one of the following (I’) and

(II’) holds.

(I’) There exists a stuck state Ġ′′2 such that Ġ′2 →∗ Ġ′′2.

(II’) There exist two states Ṅ2 and Ṅ1, and numbers k2, k1 ∈ N, such that

Ṅ2 (�̇Q′ ◦ (CC)−1 ◦ �̇Q′) Ṅ1, (1 + k2) Q k1, Ġ′2 →k2 Ṅ2, and Ġ1 →k1 Ṅ1.

The proof is mostly symmetric to the point (1). Note that there is a one-to-one

correspondence between C-specimens of C and C-specimens of C−1; any C-specimen

(Ċ0; ~H01; ~H02) of C gives a C-specimen (Ċ0; ~H02; ~H01) of C−1. Because C is output-

closed, its converse C−1 is also output-closed.
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If Ġ2 is final, by Lem. 4.4.5(1), Ġ1 is also final. The condition (A’) is fulfilled.

If there exists a state Ġ′2 such that Ġ2 → Ġ′2, we show that one of the conditions

(I’) and (II’) above is fulfilled, by case analysis of the token in Ċ.

• When the token is a value token, or a search token that is not entering, by

Lem. 4.4.5(3), there exists a focussed context Ċ ′ with a remote token, such

that |Ċ ′| = |Ċ| and Ġp = Ċ[ ~Hp] → Ċ ′[ ~Hp] for each p ∈ {1, 2}. We have the

following situation, namely the black part of the diagram below. Showing the

magenta part confirms that the condition (II’) is fulfilled.

Ġ2=Ċ[ ~H1] //

(CC)−1 1Q 1

Ċ′[ ~H2] = Ġ′2

(CC)−1

Ġ1=Ċ[ ~H1] // Ċ′[ ~H1]

By the determinism, Ċ ′[ ~H2] = Ġ′2. Because (Q,Q′, Q′′) is a reasonable triple, Q

is a preorder and 1 Q 1. The context Ċ ′ satisfies |Ċ ′| = |Ċ| ∈ C, so (Ċ ′; ~H2; ~H1)

is a C-specimen of C−1. The context Ċ ′ has a remote token, and the states

Ċ ′[ ~H1] and Ċ ′[ ~H2] are both rooted. Therefore, we have Ċ ′[ ~H2] (CC)−1 Ċ ′[ ~H1].

• When the token is a search token that is entering in Ċ, becauseC is (C, Q−1, Q′)-

input-safe, we have one of the following three situations corresponding to (I),

(II) and (III) of Def. 4.3.7.

– There exist two stuck states Ṅ1 and Ṅ2 such that Ġp →∗ Ṅp for each

p ∈ {1, 2}. By the determinism of transitions, we have Ġ2 → Ġ′2 →∗ Ṅ2,

which means the condition (I’) is satisfied.

– There exist a C-specimen (Ċ ′; ~H ′1; ~H ′2) of C and two numbers k1, k2 ∈

N, such that the token of Ċ ′ is not a rewrite token and not entering,

(1 + k1) Q
−1 k2, Ċ[ ~H1] →1+k1 Ċ ′[ ~H ′1], and Ċ[ ~H2] →k2 Ċ ′[ ~H ′2]. We have
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the following situation, namely the black part of the diagram below.

Ġ2=Ċ[ ~H2]
k2//

(CC)−1 k2Q (1+k1)

Ċ′[ ~H′2]

(CC)−1

Ġ1=Ċ[ ~H1]
1+k1// Ċ′[ ~H′1]

The magenta part holds, because the token of Ċ ′ is not a rewrite token

and not entering, and because states Ċ ′[ ~H ′1] and Ċ ′[ ~H ′2] are rooted. We

check the condition (II’) by case analysis on the number k2.

∗ When k2 > 0, by the determinism of transitions, we have the follow-

ing diagram, which means the condition (II’) is fulfilled.

Ġ2=Ċ[ ~H2] //

(CC)−1 k2Q (1+k1)

Ġ′2
k2−1// Ċ′[ ~H′2]

(CC)−1

Ġ1=Ċ[ ~H1]
1+k1// Ċ′[ ~H′1]

∗ When k2 = 0, Ġ2 = Ċ[ ~H2] = Ċ ′[ ~H ′2], and we have the following

situation, namely the black part of the diagram below.

Ġ2=Ċ[ ~H2]
0//

(CC)−1 0Q (1+k1)

Ġ2=Ċ′[ ~H′2] //

(CC)−1 1Q 1

Ġ′2=Ċ′′[ ~H′1]

(CC)−1

Ġ1=Ċ[ ~H1]
1+k1// Ċ′[ ~H′1] // Ċ′′[ ~H′1]

Because Ġ2 → Ġ′2, and the token of Ċ ′ is a value token, or a non-

entering search token, by Lem. 4.4.5(3), there exists a focussed con-

text Ċ ′′ with a remote token, such that |Ċ ′′| = |Ċ ′| and Ċ ′[ ~H ′p] →

Ċ ′′[ ~H ′p] for each p ∈ {1, 2}. By the determinism of transitions,

Ġ′2 = Ċ ′′[ ~H ′1]. Because (Q,Q′, Q′′) is a reasonable triple, Q is a

preorder and 1 Q 1. The context Ċ ′′ satisfies |Ċ ′′| = |Ċ ′| ∈ C, so

(Ċ ′′; ~H ′2; ~H ′1) is a C-specimen of C−1. The context Ċ ′′ has a remote

token, and the states Ċ ′′[ ~H ′1] and Ċ ′′[ ~H ′2] are both rooted. Therefore,

we have Ċ ′′[ ~H ′2] (CC)−1 Ċ ′′[ ~H ′1]. Finally, because (Q,Q′, Q′′) is a rea-
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sonable triple, Q is closed under addition, and hence 1 Q (2 + k1).

The condition (II’) is fulfilled.

– There exist a quasi-C-specimen (Ṅ1, Ṅ2) of C up to ('̇Q′ , '̇Q′), whose

token is not a rewrite token, and two numbers k1, k2 ∈ N, such that

(1 + k1) Q
−1 (1 + k2), Ċ[ ~H1] →1+k1 Ṅ1, and Ċ[ ~H2] →1+k2 Ṅ2. By the

determinism of transitions, we have the following situation, namely the

black part of the diagram below. Showing the magenta part confirms

that the condition (II’) is fulfilled.

Ġ2=Ċ[ ~H2] //

(CC)−1 (1+k2)Q (1+k1)

Ġ′2
k2// Ṅ2

�̇Q′◦(C
C)−1◦�̇Q′′

Ġ1=Ċ[ ~H1]
1+k1// Ṅ1

Because (Ṅ1, Ṅ2) is a quasi-C-specimen of C up to ('̇Q′ , '̇Q′), and states

Ṅ1 and Ṅ2 are rooted, there exists a C-specimen (Ċ ′; ~H ′1; ~H ′2) of C with

a non-rewrite token, such that Ċ ′[ ~H ′1] and Ċ ′[ ~H ′2] are also rooted, Ṅ1 '̇Q′

Ċ ′[ ~H ′1], and Ċ ′[ ~H ′2] '̇Q′ Ṅ2. Because (Q,Q′, Q′′) is a reasonable triple,

Q′ ⊆ Q′′, and hence '̇Q′ ⊆ '̇Q′′ . Therefore, we have:

Ṅ2 �̇Q′ Ċ ′[ ~H ′2] (CC)−1 Ċ ′[ ~H ′1] �̇Q′′ Ṅ1.

• When the token is a rewrite token, Ġ2 → Ġ′2 is a rewrite transition, and by

definition of contextual lifting, the token is not entering in Ċ. Because C−1

is (C, Q,Q′, Q′′)-robust relative to all rewrite transitions, and Ġ1 and Ġ2 are

rooted, we have one of the following two situations corresponding to (II) and

(III) of Def. 4.3.11.

– There exists a stuck state Ṅ such that Ġ′2 →∗ Ṅ . The condition (I’) is

satisfied.

– There exist a quasi-C-specimen (Ṅ2, Ṅ1) of C−1 up to (�̇Q′ , �̇Q′′), whose
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token is not a rewrite token, and two numbers k2, k1 ∈ N, such that

(1 + k2) Q k1, Ġ′2 →k2 Ṅ2, and Ġ1 →k1 Ṅ1. We have the following

situation, namely the black part of the diagram below. Showing the

magenta part confirms that the condition (II’) is fulfilled.

Ġ2=Ċ[ ~H2] //

(CC)−1 (1+k2)Qk1

Ġ′2
k2// Ṅ2

�̇Q′◦(C
C)−1◦�̇Q′′

Ġ1=Ċ[ ~H1]
k1// Ṅ1

Because (Ṅ2, Ṅ1) is a quasi-C-specimen of C−1 up to (�̇Q′ , �̇Q′′), and

states Ṅ2 and Ṅ1 are rooted, there exists a C-specimen (Ċ ′; ~H ′2; ~H ′1)

of C−1 with a non-rewrite token, such that Ċ ′[ ~H ′2] and Ċ ′[ ~H ′1] are also

rooted, Ṅ2 �̇Q′ Ċ ′[ ~H ′2], and Ċ ′[ ~H ′1] �̇Q′′ Ṅ1. This means Ċ ′[ ~H ′2] C−1C

Ċ ′[ ~H ′1], and hence:

Ṅ2 �̇Q′ Ċ ′[ ~H ′2] (CC)−1 Ċ ′[ ~H ′1] �̇Q′′ Ṅ1.

4.5 Applications of the characterisation theorem

This section shows applications of Thm. 4.3.14, with respect to an instantiation

U(Oex, BOex) of the universal abstract machine. We start by defining the specific op-

eration set Oex and its behaviour BOex in Sec. 4.5.1, which are informally introduced

in Sec. 3.4.2, and proceed to illustrate proofs of the observational equivalences listed

in Sec. 3.4. Necessary templates and their robustness are discussed in Sec. 4.5.2, and

Sec. 4.5.3 describes how these templates can be combined to prove the observational

equivalences. Finally, Sec. 4.5.4 and Sec. 4.5.5 give further details of the reasoning

about templates and their robustness.
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4.5.1 Properties of compute transitions

The operation set Oex = Oex
X ] Oex

 we use here is taken from those discussed in

Sec. 3.4.2. It is namely given by passive operations Oex
X = Z ∪ {λ, (), tt, ff}, where

Z is the set of integers, and active operations Oex
 = {

→
@, ref,=, :=, !,+,−,−1}.

The behaviour BOex , namely compute transitions for the active operations Oex
 ,

are all defined locally via rewrite rules; for function application in Fig. 3.7, reference

manipulation in Fig. 3.9 and Fig. 3.10, and arithmetic in Fig. 3.8 (showing just ad-

dition, but other operators can be similarly added). In these rules, the hypernet GS

is additionally required to be stable.

Determinism and refocusing of the particular machine U(Oex, BOex) boils down

to determinism and preservation of the rooted property of compute transitions.

Compute transitions of operations {
→
@, ref,+,−,−1} are deterministic, because

at most one rewrite rule can be applied to each state. In particular, the stable

hypernet GS in the figures is uniquely determined (by Lem. A.4.1(3)).

As discussed in Sec. 3.5, copy transitions are all deterministic, because any pos-

sible application of a contraction rule results in the same state. Compute transitions

of name-accessing operations {=, :=, !} are deterministic for the same reason.

Compute transitions of all the operations Oex
 are stationary, and hence they

preserve the rooted property. The stationary property can be checked using local

rewrite rules. Namely, in each rewrite rule Ḣ 7→ Ḣ ′ of the operations, only one

input of |Ḣ| has type ?, and Ḣ =  ; |Ḣ| and Ḣ ′ = ?; |Ḣ ′|. Moreover, any output of

|Ḣ| with type ? is a target of an atom edge or a box edge (by definition of stable

hypernets), which implies |Ḣ| is one-way.

Because any initial state is rooted, given that all transitions preserve the rooted

property, we can safely assume that any state that arises in an execution is rooted.

This means that the additional specification on stable hypernets in local rewrite rules

is in fact guaranteed to be satisfied in any execution (by Lem. A.3.5, Lem. A.4.6
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Figure 4.1: Structural pre-templates (C : ε⇒ ? is a contraction tree, H is a copyable
hypernet, G is a hypernet, (ρ, ρ′) is a box-permutation pair)

and Lem. A.4.4).

4.5.2 Example templates

Now we enumerate pre-templates that we will use to prove the equivalences listed

in Sec. 3.4. We use the following auxiliary definition to specify one of these pre-

templates (namely CBPerm in Fig. 4.1).

Definition 4.5.1 (Box-permutation pair). For any n, k, h ∈ N, let ρ and ρ′ be

bijections on sets {1, . . . , n+k+h} and {1, . . . , k+h}, respectively. These bijections

form a box-permutation pair (ρ, ρ′) if, for each i ∈ {1, . . . , n + k + h}, the following

holds:

(A) ρ(i) = i if 1 ≤ i ≤ n,

(B) ρ(i) = ρ′(i− n) if n < i ≤ n+ k + h,

(C) 1 ≤ ρ′(i− n) ≤ k if n < i ≤ n+ k,

(D) k < ρ′(i− n) ≤ k + h if n+ k < i ≤ n+ k + h.

The pre-templates we use are classified into three: structural pre-templates, op-

erational pre-templates, and name-exhaustive pre-templates. While the structural

laws in Sec. 3.4.1 can be proved using only structural pre-templates, the beta laws
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and stateful laws in Sec. 3.4.2 require operational and name-exhaustive pre-templates

as well as structural pre-templates.

Fig. 4.1 shows all the structural pre-templates but the one derived from con-

traction rules: namely, |Ġ1| C⊗ |Ġ2| whenever Ġ1 7→ Ġ2 is a contraction rule. The

structural pre-templates primarily concern contraction edges, weakening edges and

box edges. Contextual equivalences implied by C⊗Assoc, C⊗Comm and C⊗Idem enable

the so-called idempotent completion (aka. Karoubi envelope or Cauchy completion)

on contractions and weakenings. This means that contraction trees with the same

type can be identified, so long as they contain at least one weakening edge.

We use two operational pre-templates, which are directly derived from some local

rewrite rules of active operations. Namely, |Ġ1| C
→
@ |Ġ2| if Ġ1 7→ Ġ2 is a beta rewrite

rule (Fig. 3.7); and |Ġ1| Cref |Ġ2| if Ġ1 7→ Ġ2 is a reference-creation rewrite rule

(Fig. 3.9). Note that we keep the additional specification that GS in these figures

are stable hypernets.

Fig. 4.2 shows the last class of pre-templates, namely four name-exhaustive pre-

templates. They are specific to the four stateful laws in Desiderata 3.4.5, and they

analyse possible usages of a single name of interest.

Output-closure of all the pre-templates can be easily checked, typically by spot-

ting that an input or an output, of type ?, is a source or a target of a contraction,

atom or box edge.

Table. 4.1 outlines the way we will use Thm. 4.3.14 on all the pre-templates.

For example, C⊗ is a (COex ,≥N,=N)-template, as shown in the “template” column,

and both itself and its converse are (COex ,=N,=N,=N)-robust relative to all rewrite

transitions, as shown in the “robustness” columns. Thanks to the monotonicity

(Remark 4.3.15), we can use Thm. 4.3.14(1) with a reasonable triple (≥N,=N,=N),

and Thm. 4.3.14(2) with a reasonable triple (≤N,=N,=N). Consequently, H1 C⊗ H2

implies H1 �COex

≥N H2 and H2 �COex

≤N H1, which is shown in the “implication of H1 C

H2” column.
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Figure 4.2: Name-exhaustive pre-templates (C is a contraction tree)
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template robustness implication

(input-safety) of C of C−1 dependency of H1 C H2

C⊗Assoc COex ,=,= COex ,=,=,= COex ,=,=,= — H1 '
COex
=N H2

C⊗Comm COex ,=,= COex ,=,=,= COex ,=,=,= — H1 '
COex
=N H2

C⊗Idem �,�,� COex ,=,=,= COex ,=,=,= — H1 '
COex
=N H2

C⊗ COex ,≥,= COex ,=,=,= COex ,=,=,=
C⊗Assoc

C⊗Comm
H1 �

COex

≥N
H2,

H2 �
COex

≤N
H1

CGC �,�,� COex ,=,=,= COex ,=,=,= — H1 '
COex
=N H2

CBPerm �,�,� COex ,=,=,= COex ,=,=,= — H1 '
COex
=N H2

CBPullC �,�,� COex ,=,=,= COex ,=,=,=

C⊗Assoc

C⊗Comm

C⊗Idem

H1 '
COex
=N H2

CBPullW �,�,� COex ,=,=,= COex ,=,=,= C⊗Idem H1 '
COex
=N H2

CBPullD �,�,� COex ,=,=,≤ COex ,=,≥,=
C⊗Assoc

C⊗Comm
H1 �

COex

≤N
H2,

COex ,≤,=,≤ COex ,≥,≥,≥

C⊗Idem

C⊗

CGC

H2 �
COex

≥N
H1

C
→
@ COex ,≥,= COex-bf ,=,=,= COex-bf ,=,=,=

—
H1 �

COex-bf

≥N
H2,

COex-bf ,≥,= H2 �
COex-bf

≤N
H1

Cref COex ,≥,= COex-bf ,=,=,= COex-bf ,=,=,=
—

H1 �
COex-bf

≥N
H2,

COex-bf ,≥,= H2 �
COex-bf

≤N
H1

CNE1 COex ,=,= COex ,≥,=,= —

C⊗Assoc

C⊗Idem

CGC

H1 �
COex

≥N
H2

CNE2 �,�,� COex ,=,=,= COex ,=,=,= — H1 '
COex
=N H2

CNE3 COex ,=,= COex ,≤,≥,≤ COex ,≥,≥,≤
C⊗Assoc

C⊗Idem
H1 '

COex

N×N H2

COex ,N× N,≥,N× N COex ,N× N,≥,N× N
C⊗

CGC

CNE4 COex ,=,= COex ,≥,≥,= COex ,≤,=,≤
C⊗Assoc

C⊗Idem
H1 �

COex

≥N
H2

COex ,≥,≥,≥
C⊗

CGC
H2 �

COex

≤N
H1

Table 4.1: Templates, with their robustness and implied contextual refinements/e-
quivalences (� denotes anything)
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Pre-templates that relate hypernets with no input of type ? are trivially a

(C, Q,Q′)-template for any C, Q and Q′. The table uses ‘�,�,�’ to represent

this situation.

For many pre-templates, a reasonable triple can be found by selecting bigger

parameters from those of input-safety and robustness, thanks to the monotonic-

ity. However, pre-templates CBPullD, CNE3 and CNE4 require non-trivial use of the

monotonicity. For each of these pre-templates, an upper row shows a parameter

(C, Q1, Q
′
1, Q

′′
1) that makes it (or its converse) robust, and a lower row shows a

parameter (C, Q2, Q
′
2, Q

′′
2) to which Thm. 4.3.14 can be applied.

In the table, cyan symbols indicate where a proof of input-safety or robust-

ness relies on contextual refinement. The “dependency” column indicates which

pre-templates can be used to prove the necessary contextual refinement, given that

these pre-templates imply contextual refinement as shown elsewhere in the table.

This reliance specifically happens in finding a quasi-specimen, using contextual re-

finements/equivalences via Lem. 4.3.19. In the case of C⊗, its input-safety and

robustness are proved under the assumption that C⊗Assoc and C⊗Comm imply con-

textual equivalence 'COex

=N .

The restriction to binding-free contexts plays a crucial role only in robustness

regarding the operational pre-templates C
→
@ and Cref. In fact, these pre-templates

are input-safe with respect to both COex and COex-bf . This gap reflects duplication

behaviour on atom edges, which is only encountered in a proof of robustness. A

shallow atom edge is never duplicated, whereas a deep one can be duplicated as part

of a box (which represents a thunk).

Finally, the pre-template CNE1 is the only example whose converse is not robust.

This is because the equality operation ‘=’ is only defined on names, whereas it is

possible in Spartan to give values, other than names, as arguments of the equality

operation.

The key part of proving input-safety or robustness of a pre-template is to analyse
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⊗
A
ss
o
c

⊗
C
o
m
m

⊗
Id
em

⊗ G
C

B
P
er
m

B
P
u
ll
C

B
P
u
ll
W

B
P
u
ll
D

→ @ r
e
f

N
E
i

Weakening ◦ ◦
Exchange ◦

Struct. (3.3) (3.4) ◦ ◦ ◦, (W) (Ex) (W)
Struct. (3.5) (3.6) ◦ ◦ ◦, (W) (W)

Aux. Copy ◦ ◦ ◦ ◦ ◦
Aux. Subst. • • • • • ◦ ◦ ◦ ◦
Struct. (3.7) ◦ ◦ ◦, (W) ◦ ◦ (W)
Struct. (3.8) ◦ ◦ ◦, (W) ◦ ◦ ◦, (Ex) ◦ ◦, (W) ◦
Micro beta ◦ (Ex) ◦
Freshness ◦ ◦ ◦, (W) • ◦ ◦ ◦, (W) ◦ ◦ 1
Locality ◦ ◦ ◦, (W) (W) ◦ ◦ 2
Param. 1 ◦ ◦ ◦, (W) • • ◦ ◦ ◦, (W) ◦ ◦ 3
Param. 2 ◦ ◦ ◦, (W) • • ◦ ◦ ◦, (W) ◦ ◦ 4

Table 4.2: Dependency of contextual refinements/equivalences on templates

how a rewrite transition involves edges (at any depth) of a state that are contributed

by the pre-template. Given that all rewrite transitions (including copy transitions)

are specified by local rewrite rules, the analysis boils down to checking possible

overlaps between a local rule and the pre-template. A typical situation is where

a local rule simply preserves or duplicates edges contributed by a pre-template,

without breaking them. Lem. 4.5.2 in Sec. 4.5.4 identifies two such situations: when

the overlaps are all about deep edges, and when the pre-template relates contraction

trees only.

4.5.3 Combining templates

Each law in Sec. 3.4 can be proved for the operation sets Oex
X = Z∪{λ, (), tt, ff} and

Oex
 = {

→
@, ref,=, :=, !,+,−,−1} by combining the pre-templates. The assumption

here is that the pre-templates imply contextual refinement as listed in Table 4.1.

We describe below how each law depends on pre-templates, using Table 4.2. The

(full) Beta law is simply the combination of the Micro Beta law and the substitution

law (3.8), so it is omitted in the table.

The table includes some extra laws that are useful to prove the laws in Sec. 3.4.

These laws are namely: Weakening, Exchange, Auxiliary Copy and Auxiliary Sub-

stitution; and shown in Fig. 4.3. When a law can be proved using the Weakening
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(d) Auxiliary Substitution (t is non-
generative)

Figure 4.3: Auxiliary laws

or Exchange law, it is indicated by (W) or (E), respectively, in the table. The Aux-

iliary Copy law is used to prove both the Structural laws (3.7) and (3.8), while the

Auxiliary Substitution law is used to prove the Structural law (3.8).

The symbol ‘◦’ indicates direct dependency on pre-templates, in the sense that

a law can be proved by combining contextual refinements implied by these pre-

templates. For these pre-templates to imply contextual refinements, some other

pre-templates may need to imply contextual refinements; these other pre-templates

are indirectly depended by the law. The indirect dependency is indicated by the
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symbol ‘•’.

Thanks to the Weakening law, it suffices to check the minimum judgement to

prove an observational equivalence. This is the case for binding-free contexts, too,

because any context that consists of a hole with no target, and weakening edges, is

binding-free. For example, Fig. 4.4 illustrates a proof of the Parametricity 2 law in

the empty environment (− | − ` � : ?), and this proof is enough to show the law in

any environment (~x | ~a ` � : ?).

4.5.4 Local reasoning

For the particular operation set Oex, the following lemma identifies two typical

situations, where a local rule simply preserves or duplicates edges contributed by a

pre-template, without breaking them.

Lemma 4.5.2. Assume any C-specimen of an output-closed pre-template C that has

the form

(C1[~χ′, Ċ2[ ~χ′′]]; ~G′, ~G′′; ~H ′, ~H ′′),

and any focussed hypernet Ṅ , such that C1[ ~G′, Ċ2[ ~G′′]] and C1[ ~H ′, Ċ2[ ~H ′′]] are states,

and Ċ2[ ~G′′] 7→ Ṅ is a contraction rule or a local rewrite rule of an operation of

Oex
 = {

→
@, ref,=, :=, !,+,−,−1}.

1. If all holes of Ċ2 are deep, then there exist a focussed context Ċ ′2 and two

sequences ~G′′′ and ~H ′′′ of focus-free hypernets, such that Ċ2[ ~G′′] 7→ Ċ ′2[ ~G′′′] = Ṅ ,

Ċ2[ ~H ′′] 7→ Ċ ′2[ ~H ′′′], and G′′′i C H ′′′i for each index i.

2. In the situation of (1), if additionally both states C1[ ~G′, Ċ2[ ~G′′]] and C1[ ~H ′, Ċ2[ ~H ′′]]

are rooted, and |C1[~χ′, Ċ2[ ~χ′′]]| is binding-free, then Ċ ′2 can be taken so that

|C1[~χ′, Ċ ′2[ ~χ′′′]]| is also binding-free.

3. If the pre-template C is a relation on contraction trees, then there exist a

focussed context Ċ ′2 and two sequences ~G′′′ and ~H ′′′ of focus-free hypernets,
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Figure 4.4: A proof outline of the Parametricity 2 law, in the empty environment
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such that Ċ2[ ~G′′] 7→ Ċ ′2[ ~G′′′] = Ṅ , Ċ2[ ~H ′′] 7→ Ċ ′2[ ~H ′′′], and G′′′i C H ′′′i for each

index i.

Proof of the point (1). The proof is by case analysis on the local rule Ċ2[ ~G′′] 7→ Ṅ .

• When the rule is a contraction rule, the rule simply duplicates all box edges

without changing any deep edges. Because all holes of Ċ2 are deep, there exists

a focussed context Ċ ′2, whose holes are all deep, such that Ċ2[ ~G′′] 7→ Ċ ′2[ ~G′′, ~G′′]

is a contraction rule. Moreover, Ċ2[ ~H ′′] 7→ Ċ ′2[ ~H ′′, ~H ′′] is also a contraction

rule.

• When the rule is a beta rewrite rule, the rule replaces a box edge with the

hypernet that labels the box. Because all holes of Ċ2 are deep, there exists a

focussed context Ċ ′2 such that Ċ2[ ~G′′] 7→ Ċ ′2[ ~G′′] is a beta rewrite rule. Moreover,

Ċ2[ ~H ′′] 7→ Ċ ′2[ ~H ′′] is also a beta rewrite rule.

• Otherwise, the rule does not involve any deep edge. This means the focussed

context Ċ2 must have no hole, and the sequences ~G′′ and ~H ′′ must be empty.

We can take a focussed context Ċ ′2 with no hole, such that Ċ2[ ] 7→ Ċ ′2[ ].

Because contraction rules and local rewrite rules are all deterministic, Ċ ′2[ ~G′′′] = Ṅ

follows from Ċ2[ ~G′′] 7→ Ċ ′2[ ~G′′′].

Proof of the point (2). The proof is built on top of the proof of the point (1). In

particular, we assume that all holes of Ċ ′2 are deep in the case of contraction rules,

and Ċ ′2 has no hole in the case of local rules of Oex
 \{

→
@}. Under this assumption,

our goal is to prove that |C1[~χ′, Ċ ′2]| is binding-free.

Let C denote C1[~χ′, |Ċ2|] and C ′ denote C1[~χ′, |Ċ ′2|]. Because C = |C1[~χ′, Ċ2]| and

C ′ = |C1[~χ′, Ċ ′2]|, it suffices to prove that C ′ is binding-free, given that C is binding-

free.

Firstly, because C is binding-free, |Ċ2| is necessarily binding-free. By inspecting

the local rule Ċ2[ ~G′′] 7→ Ċ ′2[ ~G′′′], we check below that |Ċ ′2| is also binding-free.
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• When the rule is a contraction rule, or a beta rewrite rule, any path that makes

|Ċ ′2| not binding-free gives a path in |Ċ2|, which leads to a contradiction.

• Otherwise, |Ċ ′2| is trivially binding-free because it does not have any hole edges.

Now we prove that C ′ is binding-free by contradiction; we assume that there

exists a path P in C ′, from a source of a contraction, atom, box or hole edge e, to

a source of a hole edge e′. Let χ be the last hole label of C1 (i.e. C1[~χ′, χ]), and

eχ denote the hole edge of C1 labelled with χ. We derive a contradiction by case

analysis on the path P .

• When e′ comes from C1, and the path P consists of edges from C1 only, the

path P gives a path in C1. Because P does not contain eχ, it also gives a path

in C. This contradicts C being binding-free.

• When e′ comes from C1, and the path P contains an edge from C2, by finding

the last edge from C2 in P , we can take a suffix of P that gives a path P ′ from

a target of the hole edge eχ to a source of the hole edge e′, in C1. Because the

suffix path P ′ does not contain eχ, it gives a path in C. We inspect the local

rule Ċ2[ ~G′′] 7→ Ċ ′2[ ~G′′′] as follows.

– When the rule is a contraction rule, because each output of |Ċ2| is reach-

able from a source of a contraction edge, adding the contraction edge at

the beginning of P ′ gives a path in C from a source of the contraction edge

to a source of the hole edge e′. This contradicts C being binding-free.

– When the rule is a rewrite rule of operations {
→
@, ref,=, :=, !}, P ′ gives a

path in C to the hole edge e′, from either of the following: a target of an

atom or box edge; or a source of a contraction, atom or a box edge (by

typing). This contradicts C being binding-free.

– Otherwise, i.e. when the rule is a rewrite rule of operations {+,−,−1},

the hole edge eχ actually does not have any target. This contradicts, in
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the first place, the path P containing an edge from C2.

• When both e and e′ come from |Ċ ′2|, and the path P gives a path in |Ċ ′2|, this

contradicts |Ċ ′2| being binding-free.

• When both e and e′ come from |Ċ ′2|, and the path P does not give a single

path in |Ċ ′2|, we inspect the local rule Ċ2[ ~G′′] 7→ Ċ ′2[ ~G′′′] as follows.

– When the rule is a contraction rule, all holes of Ċ ′2 are deep. It is impos-

sible for P , which is to a target of a deep hole edge, not to give a path in

|Ċ ′2|. This is a contradiction.

– When the rule is a local rewrite rule of any operations but ‘
→
@’, Ċ ′2 actually

does not have any hole edge. It is impossible for the hole edge e′ to be

from |Ċ ′2|. This is a contradiction.

– When the rule is a beta rewrite rule, the hole edge eχ actually has only

one source. If P consists of edges from |Ċ ′2| only, the source must be also

a target of eχ; otherwise, P has a sub-sequence that gives a path in C1.

In either case, there exists a path P ′ from the source of eχ to the source

of eχ, i.e. a cycle around the source of eχ, in C1. This cycle gives a cycle

in C around the source of eχ.

In the case of a beta rewrite rule, outputs are all reachable from the input,

which coincides with the token source, in Ċ2[ ~χ′′]. Therefore, the cycle P ′

also gives a cycle in C1[~χ′, Ċ2[ ~χ′′]], around the token source. Because

(C1[~χ′, Ċ2[ ~χ′′]]; ~G′, ~G′′; ~H ′, ~H ′′) is a C-specimen of the output-closed pre-

template C, by Lem. A.3.7(3), at least one of the states C1[ ~G′, Ċ2[ ~G′′]]

and C1[ ~H ′, Ċ2[ ~H ′′]] is not rooted. This is a contradiction.

• When e comes from C1 and e′ comes from |Ċ ′2|, we inspect the local rule

Ċ2[ ~G′′] 7→ Ċ ′2[ ~G′′′] as follows.
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– When the rule is a contraction rule, by finding the last edge from C1 in P ,

we can take a suffix of P that gives a path P ′ from an input to a source

of the hole edge e′ in |Ċ ′2|. However, the path P ′ cannot exist because the

hole edge e′ is deep in |Ċ ′2|. This is a contradiction.

– When the rule is a local rewrite rule of any operations but ‘
→
@’, Ċ ′2 actually

does not have any hole edge. It is impossible for the hole edge e′ to be

from |Ċ ′2|. This is a contradiction.

– When the rule is a beta rewrite rule, by finding the first edge from |Ċ ′2|

in P , we can take a prefix of P that gives a path P ′ from a source of the

edge e to a source of the hole edge eχ, in C1. Because P does not contain

eχ, P ′ does not contain eχ either.

In the case of a beta rewrite rule, eχ has only one source, and the in-

put of Ċ2[ ~χ′′] coincides with the token source. Therefore, P ′ gives a

path from a source of e to the token source in C1[~χ′, Ċ2[ ~χ′′]], and this

path is not an operation path, because of its first edge e. Because

(C1[~χ′, Ċ2[ ~χ′′]]; ~G′, ~G′′; ~H ′, ~H ′′) is a C-specimen of the output-closed pre-

template C, by Lem. A.3.7(3), at least one of the states C1[ ~G′, Ċ2[ ~G′′]]

and C1[ ~H ′, Ċ2[ ~H ′′]] is not rooted. This is a contradiction.

Proof of the point (3). The proof is by case analysis on the local rule Ċ2[ ~G′′] 7→ Ṅ .

• When the rule is a contraction rule, the rule simply duplicates all box edges

without changing any deep edges, and does not change any existing shallow

contraction/weakening edges. Because C relates only contraction trees, deep

edges from ~G′′ are duplicated and shallow ones from ~G′′ are preserved, by the

rule. There exist a sequence ~G′′′ of contraction trees and a focussed context

Ċ ′2, such that ~G′′′ ⊆ ~G′′ (as sets) and Ċ2[ ~G′′] 7→ Ċ ′2[ ~G′′, ~G′′′] is a contraction

rule. Moreover, there exists a sequence ~H ′′′ of contraction trees that satisfies



4.5. APPLICATIONS OF THE CHARACTERISATION THEOREM 145

~H ′′′ ⊆ ~H ′′ (as sets) and corresponds to ~G′′′. Because C relates only contraction

trees, Ċ2[ ~H ′′] 7→ Ċ ′2[ ~H ′′, ~H ′′′] is also a contraction rule.

• When the rule is a beta rewrite rule, the rule involves no shallow contraction

trees. Because C relates only contraction trees, all holes of Ċ2 must be deep,

and the proof is reduced to the point (1).

• When the rule is a rewrite rule of name-accessing operations {=, :=, !}, the

rule preserves contraction trees at any depth. There exists a focussed context

Ċ ′2 such that Ċ2[ ~G′′] 7→ Ċ ′2[ ~G′′] is a local rewrite rule. Moreover, because C

relates only contraction trees, Ċ2[ ~H ′′] 7→ Ċ ′2[ ~H ′′] is also a local rewrite rule.

• Otherwise, the rule involves no contraction trees, which means the focussed

context Ċ2 must have no hole, and the sequences ~G′′ and ~H ′′ must be empty.

We can take a focussed context Ċ ′2 with no hole, such that Ċ2[ ] 7→ Ċ ′2[ ].

Because contraction rules and local rewrite rules are all deterministic, Ċ ′2[ ~G′′′] = Ṅ

follows from Ċ2[ ~G′′] 7→ Ċ ′2[ ~G′′′].

4.5.5 Details of input-safety and robustness proofs

In this section we give some details of proving input-safety and robustness of the

pre-templates.

Fig. 4.5 lists triggers that we use to prove some input-safety and robustness

of the pre-templates. Table 4.3 shows contextual refinements/equivalences implied

by these triggers, given that some pre-templates (shown in the “dependency” col-

umn) imply contextual refinement as shown in Table 4.1. All the implications can

be proved simply using the congruence property and transitivity of contextual re-

finement. Table 4.3 shows which pre-template requires each trigger in its proof of

input-safety or robustness (in the “used for” column). Note that the converse of any

trigger is again a trigger.
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Figure 4.5: Triggers (H is a copyable hypernet, and G is a hypernet)

dependency implication of H1 C H2 used for

C1 C⊗Assoc,C⊗Comm H1 'COex

=N H2 C⊗

C2 C⊗Assoc,C⊗Comm H1 'COex

=N H2 C⊗

C3 C⊗Assoc,C⊗Comm,C⊗Idem H1 'COex

=N H2 CBPullC

C4 C⊗Idem H1 'COex

=N H2 CBPullW,CNE3

C5 C⊗Assoc,C⊗Comm,C⊗Idem,
C⊗,CGC H1 �COex

≤N H2, H2 �COex

≥N H1 CBPullD

C6 C⊗Assoc,C⊗Idem,CGC H1 'COex

=N H2 CNE1,CNE4

C7 C⊗Idem,C⊗GC H1 'COex

=N H2 CNE1

C8 C⊗Assoc,C⊗Idem,CGC H1 'COex

=N H2 CNE3

C9 C⊗,CGC H1 �COex

≥N H2, H2 �COex

≤N H1 CNE3,CNE4

Table 4.3: Triggers and their implied contextual refinements/equivalences
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Recall that there may be a choice of local rewrite rules to achieve the same

copy transition, or the same compute transition of a name-accessing operation φ ∈

{=, :=, !}. This choice boils down to a choice of contraction trees. The minimum

choice is to collect only contraction edges whose target is reachable from the token

target. The maximum choice is to take the contraction tree(s) so that no contraction

or weakening edge is incoming to the unique hole edge in a context.

Pre-templates on contraction trees

First we check input-safety and robustness of C⊗Assoc, C⊗Comm and C⊗Idem, which

are all on contraction trees.

Input-safety of C⊗Assoc and C⊗Comm can be checked as follows. Given a COex-

specimen (Ċ; ~H1; ~H2) with an entering search token, because any input of a contrac-

tion tree is a source of a contraction edge, we have:

Ċ[ ~H1] •→ 〈Ċ[ ~H1]〉 /?, Ċ[ ~H2] •→ 〈Ċ[ ~H2]〉 /?.

It can be observed that a rewrite transition is possible in 〈Ċ[ ~H1]〉 /? if and only if a

rewrite transition is possible in 〈Ċ[ ~H2]〉 /?. When a rewrite transition is possible in

both states, we can use Lem. 4.5.2(3), by considering a maximal possible contraction

rule. The results of the rewrite transition can be given by a new quasi-COex-specimen

up to (=,=) (here = denotes equality on states). When no rewrite transition is

possible, both of the states are not final but stuck.

Robustness of the three pre-templates and their converse can also be proved using

Lem. 4.5.2(3), by considering a maximal possible local (contraction or rewrite) rule

in each case.
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Input-safety of pre-templates not on contraction trees

As mentioned in Sec. 4.5.2, pre-templates that relate hypernets with no input of type

? are trivially input-safe for any parameter (C, Q,Q′). This leaves us pre-templates

C⊗, C
→
@, Cref, CNE1, CNE3 and CNE4 to check.

As for C⊗, note that the pre-template C⊗ relates hypernets with at least one

input. Any COex-specimen of C⊗ with an entering search token can be turned into

the form (C[(?;j χ), ~χ];H1, ~H1;H2, ~H2) where j is a positive number. The proof is

by case analysis on the number j.

• When j = 1, we have:

C[(?;j H
1), ~H1] •→ C[( ;j H

1), ~H1]

→ C[(?;j H
2), ~H1].

We can take (C[(?;j H
2), ~χ]; ~H1; ~H2) as a COex-specimen, and the token in

C[(?;j H
2), ~χ] is not entering.

• When j > 1, the token target must be a source of a contraction edge. There

exist a focus-free context C ′[χ′], two focus-free hypernets H ′1 C⊗ H ′2 and a

focus-free hypernet G, such that

C[(?;j H
1), ~H1] •→ C[( ;j H

1), ~H1]

→ C[(?;j C ′[H ′1]), ~H1],

C[(?;j H
2), ~H2] •→ C[( ;j H

2), ~H2]

→ C[(?;j G), ~H2],

and C ′[H ′2] '̇=N G given by the trigger C1 via Lem. 4.3.19. The results of

these sequences give a quasi-COex-specimen up to (=, '̇=N).

A proof of input-safety of the operational pre-templates C
→
@ and Cref is a simpler
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version of that of C⊗, because the operational pre-templates relate hypernets with

only one input.

Let C be either COex or COex-bf . Any C-specimen of an operational pre-template

with an entering search token can be turned into the form (C[(?;χ), ~χ];H1, ~H1;

H2, ~H2). Note that the parameter j that we had for C⊗ is redundant in ?;χ. We

have:

C[(?;H1), ~H1] •→ C[( ;H1), ~H1]

→ C[(?;H2), ~H1].

We can take (C[(?;H2), ~χ]; ~H1; ~H2) as a COex-specimen, and the token in C[(?;j H
2), ~χ]

is not entering. This data gives a COex-bf-specimen when C = COex-bf , which follows

from the closedness of COex-bf with respect to plugging (Lem. A.5.1). Note that ?;H1

can be seen as a context with no holes, which is trivially binding-free.

Finally, we look at the name-exhaustive pre-templates CNE1, CNE3 and CNE4.

Any COex-specimen of one of these pre-templates, with an entering search token, can

be turned into the form (C[(?;j χ), ~χ];H1, ~H1;H2, ~H2) where j is a positive number.

The token target is a source of an edge labelled with λ ∈ Oex
X , so we have:

C[(?;j H
1), ~H1] •→ C[(X;j H

1), ~H1],

C[(?;j H
2), ~H2] •→ C[(X;j H

2), ~H2].

The results of these sequences give a quasi-COex-specimen up to (=,=).

Robustness of pre-templates not on contraction trees: a principle

Robustness can be checked by inspecting rewrite transition Ċ[ ~H1] → Ṅ ′ from the

state given by a specimen (Ċ; ~H1; ~H2) of a pre-template, where the token of Ċ is not

entering. We in particular consider the minimum local (contraction or rewrite) rule
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Ġ 7→ Ġ′ applied in this transition. This means that, in the hypernet Ġ, every vertex

is reachable from the token target.

The inspection boils down to analysing how the minimum local rule involves

edges that come from the hypernets ~H1. If all the involvement is deep, i.e. only

deep edges from ~H1 are involved in the local rule, these deep edges must come via

deep holes in the context Ċ. We can use Lem. 4.5.2(1).

If the minimum local rule involves shallow edges that are from ~H1, endpoints of

these edges are reachable from the token target. This means that, in the context

Ċ, some holes are shallow and their sources are reachable from the token target.

Moreover, given that the token is not entering in Ċ, the context has a path from the

token target to a source of a hole edge.

!

C
?

?

?⌦k0

 

?

⇥iBi

~̀?⌦k

Figure 4.6: A shallow overlap (C is a contraction tree, Bi are box edges)

For example, in checking robustness of CBPerm with respect to copy transitions,

one situation of shallow overlaps is when Ġ is in the form of Fig. 4.6, and some of

the box edges Bi are from ~H1. Taking the minimum contraction rule means that C

in the graph is a contraction tree that gives a path from the token target. This path

C followed by the operation edge φ corresponds to paths from the token target to

hole sources in the context Ċ.

So, if the minimum local rule involves shallow edges that are from ~H1, the context

Ċ necessarily has a path P from the token target to a hole source. The path becomes

a path in the state Ċ[ ~H1], from the token target to a source of an edge e that is from

~H1. The edge e is necessarily shallow, and also involved in the application of the

minimum local rule, because of the connectivity of Ġ. Moreover, a source of the edge
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e is an input, in the relevant hypernet of ~H1. By inspecting minimum local rules,

we can enumerate possible labelling of the path P and the edge e, as summarised in

Table 4.4. Explanation on the notation used in the table is to follow.

local rule labels of path P label of edge e

contraction (⊗?C)+ ·Oex box

(⊗?C)+ ⊗?C, I, Oex

→
@

→
@ · λ box

→
@ · (Oex

X )∗ Oex
X , I

ref ref · (Oex
X )∗ Oex

X , I

= = I

= · I · (⊗�C)∗ ⊗�C, ◦
:= := · (Oex

X )∗ · I · (⊗�C)∗ ⊗�C, ◦
:= · (Oex

X )∗ Oex
X , I

! ! I

! · I · (⊗�C)∗ ⊗�C, ◦
+ + Z
− − Z
−1 −1 Z

Table 4.4: Summary of paths that witness shallow overlaps

We use the regular-expression like notation in Table 4.4. For example, (⊗?C)+ ·

Oex represents finite sequences of edge labels, where more than one occurrences of

the label ⊗?C is followed by one operation φ ∈ Oex. This characterises paths that

inhabit the overlap shown in Fig. 4.6, i.e. the contraction tree C followed by the

operation edge φ. Note that this regular-expression like notation is not a proper

regular expression, because it is over the infinite alphabet MOex , the edge label set,

and it accordingly admits infinite alternation (aka. union) implicitly.

To wrap up, checking robustness of each pre-template (that are not on contrac-

tion trees) boils down to using Lem. 4.5.2(1) and/or analysing the cases enumerated

in Table 4.4.
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χ

?
C

?⌦k

?

~̀

?⌦k1 ?⌦k2

Figure 4.7: A focussed context (C is a contraction tree)

Robustness of C⊗ and its converse

Robustness check of the pre-template C⊗ with respect to copy transitions has two

cases. The first case is when one shallow overlap is caused by a path characterised by

(⊗?C)+, and the second case is when no shallow overlaps are present and Lem. 4.5.2(1)

can be used.

In the first case, namely, a COex-specimen with a non-entering rewrite token can

be turned into the form (C[Ċ ′[χ′], ~χ];H1, ~H1;H2, ~H2) where j is a positive number,

and Ċ ′ is a focussed context in the form of Fig. 4.7. A rewrite transition is possible

on both states given by the specimen, in which a contraction rule is applied to Ċ ′[H1]

and Ċ ′[H2]. Results of the rewrite transition give a new quasi-COex-specimen. When

k1 = 0, this quasi-specimen is up to (=, '̇=N), using the trigger C2. When k1 > 0,

the quasi-specimen is also up to (=, '̇=N), but using the trigger C1.

Robustness check of the pre-template C⊗ with respect to rewrite transitions

always boils down to Lem. 4.5.2(1). This is intuitively because no local rewrite rule

of operations involves any shallow contraction edge of type ?.

Robustness of (C⊗)−1 can be checked in a similar manner. Namely, using Ta-

ble 4.4, shallow overlaps are caused by paths:

(⊗?C)+, =, +,

→
@ · (Oex

X )∗, := · (Oex
X )∗, −,

ref · (Oex
X )∗, !, −1
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from the token target. All paths but (⊗?C)+ give rise to a state that is not rooted,

which can be checked using Lem. 4.3.17. This reduces the robustness check of (C⊗)−1

to that of C⊗.

Robustness of CGC and CNE2, and their converse

These four pre-templates both relate hypernets with no inputs. Proofs of robustness

of them and their converse always boils down to the use of Lem. 4.5.2(1), following

the discussion in Sec. 4.5.5. Namely, it is impossible to find the path P in the context

Ċ from the token target to a hole source.

Robustness of CBPerm, CBPullC, CBPullW and CBPullD, and their converse

These eight pre-templates all concern boxes. Using Table 4.4, shallow overlaps are

caused by paths (⊗?C)+ ·Oex and
→
@ · λ from the token target.

Robustness check with respect to compute transitions of operations Oex
 \{

→
@}

always boil down to Lem. 4.5.2(1).

As for compute transitions of the operation ‘
→
@’, either one path

→
@ · λ causes

one shallow overlap, or all overlaps are deep. The latter situation boils down to

Lem. 4.5.2(1). In the former situation, a beta rule involves one box that is con-

tributed by a pre-template, and states given by a COex-specimen are turned into a

quasi-COex-specimen up to (=,=), by one rewrite transition.

As for copy transitions, there are two possible situations.

• Paths (⊗?C)+ ·Oex cause some shallow overlaps and there are some deep overlaps

too.

• All overlaps are deep, which boils down to Lem. 4.5.2(1).

In the first situation, some of the shallow boxes duplicated by a contraction rule

are contributed by a pre-template, and other duplicated boxes may have deep edges

contributed by the pre-template. By tracking these shallow and deep contributions
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in a contraction rule, it can be checked that one rewrite transition turns states given

by a COex-specimen into a quasi-COex-specimen. This quasi-specimen is up to the

following, depending on pre-templates:

• (=,=) for CBPerm and its converse,

• (=, '̇=N) for CBPullC, and ('̇=N ,=) for its converse, using the trigger C3,

• (=, '̇=N) for CBPullW, and ('̇=N ,=) for its converse, using the trigger C4, and

• (=, �̇≤N) for CBPullD, and (�̇≥N ,=, ) for its converse, using the trigger C5.

Robustness of operational pre-templates and their converse

For the operational pre-templates and their converse, we use the class COex-bf of

binding-free contexts. This restriction is crucial to rule out some shallow overlaps.

Using Table 4.4, shallow overlaps with the operational pre-templates C
→
@ and

Cref are caused by paths (⊗?C)+ from the token context. However, the restriction to

binding-free contexts makes this situation impossible, which means the robustness

check always boils down to Lem. 4.5.2(1) and Lem. 4.5.2(2).

In checking robustness of the converse (C
→
@)−1 and (Cref)−1, shallow overlaps are

caused by paths:

(⊗?C)+, =, +,

→
@ · (Oex

X )∗, := · (Oex
X )∗, −,

ref · (Oex
X )∗, !, −1

from the token target. Like the case of (C⊗)−1, all paths but (⊗?C)+ give rise to a

state that is not rooted, which can be checked using Lem. 4.3.17. The paths (⊗?C)+

are impossible because of the binding-free restriction. As a result, this robustness

check also boils down to Lem. 4.5.2(1) and Lem. 4.5.2(2).
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Robustness of name-exhaustive pre-templates on lambda-abstractions,

and their converse

We here look at the three name-exhaustive pre-templates CNE1, CNE3 and CNE4, and

their converse. All these six pre-templates concern lambda-abstractions and their

different use of a name. The pre-templates CNE1, CNE4 and their converse compare

lambda-abstractions that all refer to a single name, with lambda-abstractions that

instantly return a value without using the name at all. The pre-template CNE3 and

its converse compare lambda-abstractions that increment a number associated with

a name, with lambda-abstractions that decrement the number. The latter lambda-

abstractions additionally flip the sign of the number after dereferencing the name.

As a result, all the six pre-templates give rather rare examples of robustness check

where we compare different numbers of computation steps, i.e. transitions.

Using Table 4.4, shallow overlaps with these pre-templates are caused by paths:

(⊗?C)+,
→
@ · (Oex

X )∗,

ref · (Oex
X )∗, := · (Oex

X )∗

from the token target.

As for compute transitions of operations Oex
 \{

→
@}, there are two possible situa-

tions.

• Shallow overlaps are caused by paths ref · (Oex
X )∗ or := · (Oex

X )∗.

• There is no overlap at all, which boils down to Lem. 4.5.2(1).

In the first situation, a stable hypernet GS of a local rewrite rule (see e.g. Fig. 3.9)

contains shallow edges, labelled with λ ∈ Oex
X , that are contributed by a pre-

template. The overlapped shallow contributions are not modified at all by the rewrite

rule, and consequently, one rewrite transition results in a quasi-COex-specimen up to

(=,=).
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As for copy transitions, either one path (⊗?C)+ causes one shallow overlap, or

all overlaps are deep. The latter situation boils down to Lem. 4.5.2(1). In the

former situation, one lambda-abstraction contributed by a pre-template gets dupli-

cated. Namely, a COex-specimen with a non-entering rewrite token can be turned

into the form (C[Ċ ′[χ′], ~χ];H1, ~H1;H2, ~H2) where Ċ ′ is a focussed context in the form

of Fig. 4.7. There exist a focussed context Ċ ′′ and two hypernets G1 CNE1 G2 such

that:

C[Ċ ′[H1], ~H1]→ C[Ċ ′′[G1], ~H1],

C[Ċ ′[H2], ~H2]→ C[Ċ ′′[G2], ~H2].

Results of these rewrite transitions give a new quasi-COex-specimen up to (=,=).

As for compute transitions of the operation ‘
→
@’, there are two possible situations.

• One path
→
@ causes a shallow overlap of the edge that has label λ and gets

eliminated by a beta rewrite rule, and possibly some other paths
→
@ · (Oex

X )∗

cause shallow overlaps in the stable hypernet GS (see Fig. 3.7).

• There are possibly deep overlaps, and paths
→
@ · (Oex

X )∗ may cause shallow

overlaps in the stable hypernet GS.

In the second situation, all overlaps are not modified at all by the beta rewrite

rule, except for some deep overlaps turned shallow. Consequently, one rewrite tran-

sition results in a quasi-COex-specimen up to (=,=).

In the first situation, one lambda-abstraction contributed by the pre-template

is modified, while all the other shallow overlaps (if any) are not. We can focus on

the lambda-abstraction. The beta rewrite acts on the lambda-abstraction, an edge

labelled with ‘
→
@’, and the stable hypernet GS.

In the case of CNE1, application of the beta rule is followed by a few more

transitions. When GS is not an instance edge, we can prove that a token eventually
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gets stuck, failing to apply a rewrite rule of the equality operation ‘=’. When GS

is simply an instance edge, a token may still get stuck for the same reason, but if

there is an applicable rewrite rule of the equality operation ‘=’, we obtain a quasi-

COex-specimen up to ('̇=N , '̇=N), using triggers C6 and C7 on the left, and CGC on

the right.

The case of CNE3 and CNE4, and their converse, is similar. The only difference

is the triggers used to find a quasi-specimen, as summarised in Table 4.3.
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Chapter 5

Discussion

5.1 Linear-logic concepts, from the DGoIM to the

UAM

While the DGoIM is proposed as a framework for execution cost analysis, the concept

of locality it offers leads to the development of the UAM, the machine for direct

equational reasoning. Concepts taken from linear logic [Girard, 1987], namely the !-

box structure and generalised contractions, are essential for the rewrites-first DGoIM

to achieve time efficiency. Based on the rewrites-first DGoIM, the UAM also benefits

from these concepts, but not necessarily in the same way.

5.1.1 Box structures

The DGoIM uses a box structure to represent lambda-abstractions, which are the

only values of the pure lambda-calculus, via the so-called call-by-value translation

of linear logic to intuitionistic logic (e.g. [Maraist et al., 1999]). In the lambda-

calculus with the call-by-need or call-by-value evaluation, which the DGoIM aims

at in Chap. 2, lambda-abstractions serve as the unit of duplication and delay; each

function body gets copied as a whole, and never gets evaluated until an argument

is provided by function application. The boxes hence indicate values, computation

159
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to be duplicated, and computation to be delayed.

The UAM employs a box structure for a restricted purpose. Boxes used by the

UAM correspond not to values but thunks, which are identified as the unit of delay in

the language Spartan. Thunks do not themselves become a unit of duplication, but

they provide enough information to determine which sub-graphs to duplicate. The

UAM does not rely on boxes to determine and trace values during execution. Values

are instead characterised by passive operations, which never trigger any rewrite.

5.1.2 Generalised contractions as optimisation

Time efficiency of the rewrites-first DGoIM crucially relies on the translation of

terms to graphs that introduces exactly one generalised contraction per variable

(see Fig. 2.11). In comparison, the UAM takes a more primitive approach. Multiple

occurrences of a single variable in Spartan is represented by a combination of binary

contractions and weakenings as in proof nets [Girard, 1987].

This deviation is because of the different purposes these machines have. The

UAM together with the core language Spartan provides a rather primitive frame-

work, in which observational equivalence can be proved and sophistication of lan-

guage features can be justified using the equivalence. In a language as flexible as

Spartan, observational equivalences are not guaranteed to hold in any settings.

The rewrites-first DGoIM is implicitly optimised to achieve time efficiency, whose

safety could be justified by the UAM in terms of observational equivalence. Indeed,

equivalences implied by some templates in Sec. 4.5.2 seem to be helpful in justifying

the optimisation. The equivalences implied by templates CAssoc, CComm and CIdem

enable us to identify certain contraction trees of the same number of inputs, and

hence to think of one generalised contraction to denote these all. Additionally, the

equivalences implied by templates CBPullC and CBPullW would enable us to merge

generalised contractions across the boundary of the box structure, and hence to

introduce only one generalised contraction to represent a single variable.
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5.1.3 Interaction with contractions

Contractions, whether generalised or not, are used to represent multiple occurrences

of a variable, and to graphically connect the occurrences to computation associated

with the variable. For example, the following graph represents a term x ∗ x whose

variable x is associated with computation 1 + 2, using an idealised contraction •:

∗

+

1 2

From the perspective of the DGoIM, the idealised contraction • denotes a generalised

contraction, and the graph represents a term (x∗x)[x← 1+2]. From the perspective

of the UAM, the idealised contraction • denotes a contraction tree, and the graph

represents a term bind x→ 1 + 2 in x ∗ x.

In strategical graph rewriting, there is a choice of the way the token interacts with

contractions. This affects evaluation of computation associated with a variable, in

other words, computation shared via a variable. The two abstract machines DGoIM

and UAM, in fact, support different interactions between the token and contractions.

In the following, the difference is informally illustrated using the above example

graph. The token position is depicted as a thick arrow, the token data is mostly

omitted, and possibly multiple transitions are represented by  .

In the rewrites-first DGoIM, the token passes through the contraction •, visits

and reduces the sub-graph representing 1 + 2, and then duplicates the result:

∗

+

1 2

 

∗

+

1 2

 
∗

3

 ∗

3 3

 · · ·
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When the token passes through the contraction •, it remembers its old position, as

indicated by a dashed line. This record is necessary to determine a token position

after the duplication. In the rewrites-first DGoIM, the record of previous positions

is the only part of the token data that depends on underlying graphs, namely a box

stack (see Def. 2.3.1).

On the other hand, in the UAM, the token never passes through the contrac-

tion •, which is a contraction tree, but instead immediately triggers duplication.

The duplication starts with ‘+’, and as the token continues travelling, the whole

sub-graph representing 1 + 2 is eventually duplicated:

∗

+

1 2

 

∗

+

1 2

 

∗

+ +

1 2

 
∗

+ +

1 2 1 2

 · · ·

The token then proceeds to reduce each copy of 1 + 2 separately, which means

repeated evaluation of the computation 1 + 2 that was originally shared. Despite

the inefficiency of repeated evaluation, the immediate trigger of duplication leads to

simpler token data. The token does not need to record any previous position, and

as a result, the token data of the UAM is completely independent from underlying

graphs.

To summarise, the rewrites-first DGoIM takes a reduction-oriented approach,

the UAM takes a duplication-oriented approach, and these approaches are governed

by the way the token interacts with contractions.

The reduction-oriented approach avoids repeated evaluation, which is essential

for the rewrites-first DGoIM to implement the call-by-need evaluation efficiently. On

the other hand, the UAM benefits from simpler token data, which is made possible

by the duplication-oriented approach. The token data of the UAM is as simple

as an edge label (?, X or  ), which is independent from underlying graphs. This

independence greatly simplifies the local, case-by-case, inspection of token moves
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and triggered rewrites, which is at the core of observational equivalence proofs.

Recall that the duplication-oriented approach is at the cost of repeated evalua-

tion. This results in the call-by-name binding, instead of the call-by-need binding,

native to Spartan and the UAM. Unlike the call-by-need binding, the call-by-name

binding may enable contexts to distinguish computation from values. The restric-

tion of contexts to binding-free contexts (Def. 4.2.3, with syntactical explanation in

Sec. 4.2.1) provides a way to avoid this extra distinguishing power from invalidating

some observational equivalences, such as the call-by-value beta law.

5.2 Case study: data-flow networks

The DGoIM is introduced as a framework that combines token passing with graph

rewriting in a flexible and disciplined way. It turns out that this combination can

naturally model unconventional but increasingly significant paradigms of program-

ming, namely programming with data-flow networks. In addition to conventional

computation, such a style of programming involves construction, manipulation and

observation of data-flow networks. This section briefly explains a case study on

accommodating the data-flow networks in the context of token-guided graph rewrit-

ing [Cheung et al., 2018, Muroya et al., 2018].

5.2.1 TensorFlow networks

TensorFlow, a machine-learning library developed by Google1, is a successful

example in which machine-learning models are managed as parametrised data-flow

networks. A constructed model has input, output, and additionally, parameters. It

can be used in two ways: for training, where parameters get updated so that the

model better describe given knowledge about input and output; and for prediction,

where the output is computed with respect to the current parameters and given

1https://www.tensorflow.org/

https://www.tensorflow.org/
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input. This dual usage of the model can be understood in terms of manipulation

and observation of the corresponding network.

Informally, a linear regression model f(x) = a ∗x+ b with two parameters a and

b can be represented as a network on the left below, where the input x is denoted

by a rectangle and the parameters are denoted by diamonds. Computation on these

elements is graphically described with the two circle nodes that denote operations

∗ and +. Training this model results in updating the two parameters a and b (to,

say, a′ and b′), and this update can be seen as the following simple manipulation of

the network:

a

∗

x

+

b

99K

a′

∗

x

+

b′

Given parameters a and b, and actual input data x0, predicting output amounts to

observation following subtle manipulation. The subtle manipulation is the replace-

ment of the rectangle node that denotes the input with a circle node that denotes

the actual value x0, as depicted below. After this, the output data f(x0) = a∗x0 + b

can be read back from the network on the right, by an in-order traversal of the graph

as indicated by a thick grey arrow:

a

∗

x

+

b

99K

a

∗

x0

+

b

TensorFlow, as an embedded domain specific language, provides a syntactical

interface to construct and use the data-flow networks. The key idea that underlies

these networks is the classification of nodes into three, as described above: com-

putation nodes (circles) that denote operations and constant values, which can be

multi-dimensional arrays; input nodes (rectangles) that are to be replaced with val-

ues; and parameter nodes (diamonds) that can be updated in place and also observed
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as values. In the TensorFlow terminology, input nodes are referred to as place-

holders and parameter nodes as variables. The following code, written in a simplified

form of the Python binding of TensorFlow, describes the linear regression model

f(x) = a ∗ x + b that is constructed with initial parameters a = 1 and b = 0, used

once for prediction, trained, and used again for prediction with given input x = 10:

1 import t en so r f l ow as t f
2 # c o n s t r u c t the model
3 x = t f . p l a c eho ld e r ( t f . f l o a t 3 2 ) # input ‘ x ’
4 a = t f . Var iab le (1) # parameter ‘ a ’
5 b = t f . Var iab le (0) # parameter ‘ b ’
6 y = a ∗ x + b
7 with t f . S e s s i on () as s:
8 # i n i t i a l i s e parameters, us ing ‘ i n i t ’ d e f i n e d e l s e w h e r e
9 s . run( i n i t )

10 # t r a i n the model, us ing ‘ t r a i n ’ d e f i n e d e l s e w h e r e
11 s . run( t r a i n )

12 # p r e d i c t output wi th the updated model
13 y 0 = s . run(y, f e e d d i c t ={x: 10})

Parameter nodes are updated in-place in line 11, whose result is used in line 13

for prediction. Also in line 13, an input value 10 is associated with the input node

‘x’ using ‘ feed dict ’. Note that all these manipulation and observation are done

single-handedly by calling ‘run’ within what is called session.

5.2.2 Parametrised networks in the DGoIM style

The construction, manipulation and observation of parametrised data-flow networks

can be understood as combination of token passing and graph rewriting, from the

perspective of the DGoIM that models the lambda-calculus. In collaboration with

Steven W. T. Cheung, Victor Darvariu, Dan R. Ghica and Reuben N. S. Rowe,

we formalise this as a token-guided graph-rewriting abstract machine à la DGoIM,

which models an extension of the simply-typed lambda calculus Cheung et al. [2018],

Muroya et al. [2018].

The extended calculus is dubbed Idealised TensorFlow (ITF). It has two novel

language features, namely parameters and graph abstraction, to express the computa-
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tion with parametrised data-flow networks. Its semantics, a variation of the DGoIM,

accordingly has extra nodes that represent parameters, and an extra rewriting rule

of graph abstraction. These extra features altogether model the behaviour of the

parameter nodes in TensorFlow network, in a functional way. The rest of this

section gives an informal description using a simplified style of the DGoIM graphs,

deliberately ignoring their box structure, and making the token implicit in rewriting

rules.

The starting point is to get rid of one of the three classes of nodes in the Ten-

sorFlow network, namely input nodes. They can be replaced with the nodes

for lambda-abstraction and function application à la DGoIM. The linear regres-

sion model f(x) = a ∗ x + b can be represented as a lambda-abstraction with two

parameter nodes:

a

∗

+

λ

b

The subtle manipulation required by prediction, which was to replace the input node

with a value node x0, can be simply modelled by graphical beta reduction:

a

∗

+

λ

@

x0

b

99K

a

∗

x0

+

b

Observation of the resulting network, which involves parameter nodes, can be

achieved solely by token passing. The output data a ∗ x0 + b can be obtained by

letting the token travel through the network from the bottom, as indicated by a

thick gray arrow:
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a

∗

x0

+

b

? a ∗ x0 + b

Values in gray (‘?’ and ‘a ∗ x0 + b’) represents token data, enriched to record values;

recall that the token uses its data to determine routing and control rewriting in the

DGoIM. The token can itself read back a value from the network, if it can record a

value of a node and perform an operation denoted by a node as it travels through

the network.

The main manipulation of parametrised data-flow networks is to update param-

eter nodes. This can be modelled as a combination of graphical beta reduction and

graph abstraction, a new graph-rewriting rule. Graph abstraction “abstracts away”

all the parameters of a network, and turns the parametrised network into an ordi-

nary network that represents a function on vectors. As a side product, it creates

a value node that represents a vector whose elements are the current values of the

parameters. The rewriting rule is formalised using two additional nodes: the node

‘A’ dedicated to trigger the rewrite, and a node ‘P’ that denotes projections of a

vector. When applied to the linear regression model, the rule looks like below:

a

∗

+

λ

A

b

99K
∗

+

λ

λ

P

(a, b)

Graph abstraction is not a local rewriting rule, because it extracts all parameters

in a network, which are not necessarily neighbours of the triggering node ‘A’. Pa-

rameters are extracted altogether as a function argument, so that parameter update

can be completed with graphical beta reduction. This deviates from the in-place

update of TensorFlow. Once a new parameter vector (a′, b′) is computed, pre-
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diction with the updated model f(x) = a′ ∗x+ b′ using input data x0 can be started

with two steps of graphical beta reduction:

∗

+

λ

λ

P

(a′, b′)

@ x0

@

99K
∗

+

λ

P

(a′, b′)

@

x0

99K

∗

P

(a′, b′)

x0

+

This will be followed by projections of the new parameter vector into each element.

The calculus ITF is proposed as an extension of the simply-typed lambda-

calculus, in which the computation described above can be expressed with two extra

language features: parameters and graph abstraction. The TensorFlow code in

Sec. 5.2.1 corresponds to the following program in ITF, using the OCaml-like con-

vention:

1 ; ; c o n s t r u c t the model as a f u n c t i o n wi th two parameters
2 let a = {1} in

3 let b = {0} in

4 let y = fun x -> a ∗ x + b in

5 ; ; turn the model i n t o a f u n c t i o n and a parameter v e c t o r
6 let (model,p) = abs y in

7 ; ; update the parameter v e c t o r wi th ‘ t ra in ’ d e f i n e d e l s e w h e r e
8 let q = t r a i n model p in

9 ; ; p r e d i c t output wi th the updated model
10 let y 0 = model q 10 in

11 y 0

The parameters, indicated by {−}, enable users to construct a model without

explicitly declaring which parameters are involved in each model. This convenient

style of construction is taken from TensorFlow. What used to be in-place up-

date of parameters in TensorFlow is now decomposed through graph abstraction,

which can be accessed by programmers using the operation ‘abs’ (line 6).

As a final remark, the idea of local reasoning, which is extensively investigated

in Chap. 4, was initially tried out with ITF and its DGoIM-style model. Although
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ITF term using parameters Spartan term using names

let a = {1} in
new a( 1 in λx. !a× x+ !a

(fun x -> a ∗ x + a)
fun x -> {1} ∗ x + {0} new a( 1 in new b( 0 in λx. !a× x+ !b

λx. (new a( 1 in new b( 0 in !a× x+ !b)

Table 5.1: Parameters, and their possible representation with name binding

the model is a variation of the DGoIM, it is not as tuned for efficiency as the

DGoIM in the way discussed in Sec. 5.1.2. The model is rather used to prove

soundness of ITF programs (recall that ITF is simply-typed) and some observational

equivalence, namely garbage collection and a restricted form of the beta law. The

proof technique introduced for observational equivalence on ITF programs is based

around the concept of local reasoning, which inspired the development of the UAM

and the characterisation theorem (Thm. 4.3.14).

It would be interesting to reformulate ITF and its semantics using Spartan and

the UAM, which seems possible but not straightforward. Graph abstraction could

be modelled as an extrinsic operation of Spartan that has global behaviour, i.e. a

behaviour that cannot be specified by a local rewrite rule. It is tempting to represent

parameters of ITF in Spartan using name binding and the extrinsic operation for

dereferencing. However, it seems that the representation should be a non-trivial,

global, one. Table 5.1 shows some illustrating examples.

The first ITF term in Table 5.1 represents a model with one parameter that

is named ‘a’ and used twice. The multiple occurrences of the name do not mean

duplication of the parameter ‘{1}’ itself, which matches the sharing behaviour of

name binding in Spartan. The ITF term therefore seems to correspond to the

similar Spartan term (namely, the first Spartan term in Table 5.1) that introduces

the bound name a and dereferences it twice.

However, parameters can also be introduced and used anonymously in ITF, like

the second ITF term in Table 5.1. Anonymous parameters could be represented

in Spartan by introducing fresh name bindings, but there is not a single way to
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do so. The table shows two possible ways: introducing name bindings outside the

lambda-abstraction, and inside the lambda-abstraction. These two representations

have different behaviours in Spartan, because the sharing behaviour of name bind-

ing varies according to where the name binding is placed, as explained in Sec. 3.2.2.

It is in fact the first representation, which places fresh name bindings all outside

the lambda-abstraction, that achieves the same behaviour as the original ITF term.

This suggests that it would require some global perspective to appropriately intro-

duce name bindings, so that ITF parameters, especially anonymous parameters, are

properly represented in Spartan.



Chapter 6

Related and future work

6.1 Environments in abstract machines

In an abstract machine of any functional programming language, computations as-

signed to variables have to be stored for later use. This storage, often called en-

vironment, is expanded when the abstract machine encounters a new variable, and

referred to when the machine encounters a known variable. The environment needs

to be carefully managed throughout program execution, so that each variable is

associated with unique computation in the environment, otherwise there would be

conflicting results of looking up a variable.

However, naive management of the environment would generate such conflicting

entities. For example, executing a functional program (λf. (f 0)+(f 1)) (λx. x) would

apply the identity function λx. x twice with different arguments 0 and 1. This means

that, naively, both these arguments would be associated with the same variable x

in the environment.

Different solutions to this conflict lead to different representations of the en-

vironment, some of which are examined by Accattoli and Barras [2017] from the

perspective of time-cost analysis. A few solutions seem relevant to token-guided

graph rewriting.

One solution is to allow at most one assignment to each variable. This is typi-

171
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cally achieved by renaming bound variables during execution, possibly symbolically.

Examples for call-by-need evaluation are Sestoft’s abstract machines [Sestoft, 1997],

and the storeless and store-based abstract machines studied by Danvy and Zerny

[2013]. The graph-rewriting abstract machines presented in this thesis give another

example. This is shown, in the case of the rewrites-first DGoIM, by the simulation of

the sub-machine semantics that resembles the storeless abstract machine mentioned

above. Variable renaming is trivial in both the DGoIM and the UAM, thanks to the

use of graphs, in which variables are represented anonymously by mere edges.

Another solution is to allow multiple assignments to a variable, with restricted

visibility. The common approach is to pair a sub-term with its own localised environ-

ment that maps its free variables to their assigned computations, forming a so-called

closure. Conflicting assignments are distributed to distinct localised environments.

Examples include Cregut’s lazy variant [Crégut, 2007] of Krivine’s abstract machine

for call-by-need evaluation, and the SECD machine of Landin [1964] for call-by-value

evaluation. Fernández and Siafakas [2009] refine this approach for call-by-name

and call-by-value evaluations, based on closed reduction [Fernández et al., 2005],

which restricts beta-reduction to closed function arguments. This suggests that

the approach with localised environments can be modelled with token-guided graph

rewriting by implementing closed reduction. The implementation would require the

ability to manipulate boxes, especially to merge them.

Finally, Fernández and Siafakas [2009] propose another approach to multiple

assignments, in which multiple assignments are augmented with binary strings so

that each occurrence of a variable can only refer to one of them. This approach

is inspired by the token-passing GoI, namely a token-passing abstract machine for

call-by-value evaluation, designed by Fernández and Mackie [2002]. The augmenting

binary strings come from paths of trees of binary contractions, which are used by

the token-passing machine, as well as the UAM, to represent shared assignments.
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6.2 Graph rewriting with boxes and token

The box structures used by the DGoIM and the UAM are inspired by the exponential

boxes of proof nets, a graphical representation of linear logic proofs [Girard, 1987].

In the framework of proof nets, and an established graph-rewriting framework of

interaction nets [Lafont, 1990] that subsume proof nets, several graphical represen-

tations of exponential boxes have been proposed. Lafont [1995] formalises boxes

by parametrising an agent (which corresponds to an edge of hypernets) by another

net, and Mackie [1998] introduces coordinated agents that altogether represent a

boundary of a box. Accattoli and Guerrini [2009] proposes a box structure that is

represented by extra edges. Each of these approaches is relevant to the DGoIM or

the UAM.

In the rewrites-first DGoIM, boxes are formalised by coordinating nodes labelled

with ‘!’ and ‘?’, which resembles Mackie’s approach. However, cost analysis of the

DGoIM in Sec. 2.5 adopts the view of boxes as extra edges to achieve efficiency,

sharing the idea with the approach of Accattoli and Guerrini.

Boxes of the UAM, on the other hand, are closely related to Lafont’s exponential

boxes. In comparison with exponential boxes, the boxes of hypernets, namely box

edges, have flexibility regarding types of a box edge itself and its content (i.e. the

hypernet that labels it). Each box edge represents a thunk, and it can have less

targets than outputs of its contents, reflecting the number of bound variables the

thunk has.

The idea of using the token as a guide of graph rewriting was also proposed

by Sinot [2005, 2006] for interaction nets. He shows how using a token can make the

interaction-net rewriting system implement the call-by-name, call-by-need and call-

by-value evaluation strategies. The rewrites-first DGoIM can be seen as a realisation

of the rewriting system as an abstract machine, in particular with explicit control

over copying sub-graphs. As a revision of the rewrites-first DGoIM, the UAM could
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possibly be formalised with interaction nets. However, local reasoning does not seem

as easy in interaction-net rewriting as in the UAM, because of technical subtleties

observed in loc. cit. Namely, a status of evaluation is remembered by not only the

token but also some other agents around an interaction net, which blurs locality of

information.

A similar structure to the box structure of the UAM is studied by Drewes et al.

[2002] as hierarchical graphs, in the context of double-pushout graph transforma-

tion [Rozenberg, 1997], a well-established algebraic approach to graph rewriting.

Investigating local reasoning in this context is an important future direction.

The double-pushout approach has been used to rewrite string diagrams [Kissinger,

2012, Bonchi et al., 2016], which provide graphical representation that can accommo-

date some built-in equations. The graphs used by the DGoIM and the UAM could

also perhaps be formalised as string diagrams, with boxes modelled as functorial

boxes [Melliès, 2006]. Nevertheless, local reasoning rather aims at discovering such

built-in equations on graphs that represent programs, because it is not clear what

should be, or can be, such a built-in equation in the presence of arbitrary language

features.

6.3 Extrinsic operations

Extrinsic operations of Spartan are greatly inspired by algebraic operations [Plotkin

and Power, 2001, 2003]. Algebraic operations are introduced as a syntactic interface

to computational effects, such as non-determinism, I/O, exception and state. In the

most general form, algebraic operations do have eager arguments, as well as deferred

arguments with bound variables. They use eager arguments to determine effectful

behaviour, and then continue computation with deferred arguments.

Algebraic operations provide a view of language features, namely effects, as be-

haviour of operations. This is in contrast to the view of language features as encoding
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into the host language, that is to say, features of a language are described within

the language. In the case of computational effects, this means encoding effects into

a pure language, which can be achieved via monads [Moggi, 1988].

Spartan takes the behavioural view to the extreme, to the level that only bind-

ing of variables and names, and thunking, are intrinsic. Everything else becomes

extrinsic operations, which have the same form as algebraic operations, and extrinsic

operations are specified in terms of behaviour. The behaviour is represented as ex-

trinsic transitions of the UAM, which are focussed graph-rewriting rule. The UAM

benefits its “universality” from this extreme behavioural view of language features.

It can model language features in a uniform way, whether they are effectful or pure,

whether they are encoded or native.

6.4 Observations of program execution

Although the UAM itself can accommodate computational effects by means of ex-

trinsic operations, its local reasoning principle was formalised in Chap. 4 for only

the UAM that is deterministic. This restriction was primarily to keep the techni-

cal development relatively simple, in particular the notion of contextual refinement

presented in Sec. 4.2 and step-wise reasoning presented in Sec. 4.4.

It is important future work to broaden the scope of local reasoning, by lifting the

current restriction to sequential and deterministic computation. This would require

an expanded model of program execution, and more significantly, a new definition

of observational equivalence. The principle of local reasoning is expected to be still

valid, but its details, such as the variant of simulation (Def. 4.4.1), would require a

minor adaptation.

Parallelism and concurrency can be modelled with multiple tokens, which are

travelling around a graph at the same time, as shown by Dal Lago et al. [2017]

in the case of token-passing GoI. Non-deterministic computation, or computation
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with probability or I/O, would require a minor extension of the UAM to be a non-

deterministic and labelled transition system.

A significant modification required by these computations would rather be on a

definition of observational equivalence, because these computations enrich observa-

tion of program executions with probability, input/output sequences, etc. Such a

definition is studied by Johann et al. [2010] for algebraic effects, which include these

computations.

6.5 Time and space efficiency

Cost analysis of the rewrites-first DGoIM, carried out in Chap. 2, primarily focussed

on time efficiency. This is to complement existing work on operational semantics

given by token-passing GoI, which usually achieves space efficiency, and also to

confirm that introduction of graph rewriting to token passing does not bring in any

hidden inefficiencies.

Only the rewrites-first and passes-only interleaving of graph rewriting with token

passing have been studied, and flexible interleaving is yet to be explored. For in-

stance, the DGoIM could choose between token passing and graph rewriting at each

step of execution, taking its resource usage into account. One possible interleaving

strategy would be to choose graph rewriting, in particular duplication of sub-graphs,

as long as there is enough space left. It is future work to study the DGoIM with

flexible interleaving, as a model of program execution under various time and space

constraints.

Moreover, interleaving is not the only source of flexibility for the DGoIM. Each

of its components, token passing and graph rewriting, could be adapted to serve par-

ticular objectives in the trade-off between time and space efficiency. As discussed in

Sec. 5.1.3, different approaches to token passing, with respect to contractions, lead

to different evaluation strategies regarding variable binding. Accommodation of call-
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by-need variable binding in the UAM and Spartan is an interesting topic. Graph

rewriting could also be refined, in terms of management of boxes for instance, to

serve further objectives such as: full lazy evaluation, whose implementation with in-

teraction nets and the token is studied by Sinot [2005]; and optimal reduction [Lévy,

1980, Lamping, 1990], whose relation to GoI is studied by Gonthier et al. [1992].

6.6 Improvement and optimisation

Although the UAM was not designed to study cost of program execution, one can

think of a cost model of the machine in a similar way as the DGoIM. Additionally,

the indexing of observational equivalence with a preorder that represents the number

of execution steps paves the way for comparison between programs, with respect to

execution result and also execution cost. An observational equivalence indexed by

the “greater-than-or-equal” preorder ≥ can indeed state that replacing a program

fragment with another always requires fewer steps in execution of the whole program.

By combining the indexed observational equivalence with a cost model of the UAM,

one could hopefully prove improvement [Moran and Sands, 1999], which integrates

the idea of reduction of execution cost with observational equivalence.

As a related matter, Sec. 5.1.2 discussed a view of the rewrites-first DGoIM as

an optimised variant of the UAM. Another future work is to formalise the idea of

optimising the UAM, possibly with the notion of improvement. Optimisation of the

UAM could give another avenue for exploring the time-space efficiency trade-off of

program execution.

6.7 Further directions

Universality of the UAM The UAM presented in Chap. 3 is dubbed universal

in the sense of universal algebras. Like universal algebras are parametrised by a

set of operations and their equational theory, the UAM is parametrised by a set of
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operations and their behaviour, which is given in terms of focussed graph rewriting.

One could ask if the UAM is universal also in the sense of universal Turing machines,

which can simulate arbitrary Turing machines. It would be interesting to see how

the UAM can be instantiated to simulate known abstract machines, such as Landin’s

SECD machine [Landin, 1964] for the lambda-calculus.

Local-reasoning assistant Chap. 4 formulated the proof methodology of obser-

vational equivalence that exploits locality. An equivalence proof is boiled down to

elementary case-by-case analysis of interference between sub-graphs, formalised as

the notions of input-safety and robustness. Although analysis of each case is ar-

guably elementary, the main challenge, which can be observed in Sec. 4.5.5, is to

identify all possible interference between particular sub-graphs. An approach taken

in Sec. 4.5.5 was to focus on paths and labels, as summarised in Table 4.6. In-

vestigating this approach, and in general, approaches to detecting interference, is

important future work, which would be an essential aid to local reasoning.

Type system Another direction of further research is to equip Spartan with a

more expressive type system, compared with the current one which merely ensures

that terms are formed correctly. More powerful type systems could be used to ensure

safety of program execution, by disproving an error state, or to statically trace and

analyse behaviour of certain operations, like with type and effect systems [Nielson

and Nielson, 1999]. Although these type systems are not necessary for the UAM and

its proof methodology of observational equivalence, which can be seen as a strength

of the UAM, it would be interesting to study how the notion of typing in Spartan

can benefit local reasoning.



Chapter A

Technical appendix for Chap. 3

A.1 Equivalent definitions of hypernets

Informally, hypernets are nested hypergraphs, and one hypernet can contain nested

hypergraphs up to different depths. This intuition is reflected by Def. 3.3.5 of hy-

pernets, in particular the big union in Hk+1(L,M) = H
(
L,M ∪⋃i≤kHi(L,M)

)
. In

fact, the definition can be replaced by a simpler, but possibly less intuitive, definition

below that does not explicitly deal with the different depths of nesting.

Definition A.1.1. Given sets L and M , a set H′k(L,M) is defined by induction on

k ∈ N:

H′0(L,M) := H(L,M)

H′k+1(L,M) := H
(
L,M ∪H′k(L,M)

)

and hence a set H′ω(L,M) :=
⋃
i∈NH′i(L,M).

Lemma A.1.2. Given arbitrary sets L and M , any two numbers k, k′ ∈ N satisfy

H′k(L,M) ⊆ H′k+k′(L,M).

Proof. If k′ = 0, the inclusion trivially holds. If not, i.e. k′ > 0, it can be proved

by induction on k ∈ N. The key reasoning principle we use is that M ⊆M ′ implies

H(L,M) ⊆ H(L,M ′).

179
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In the base case, when k = 0 (and k′ > 0), we have

H′0(L,M) = H(L,M)

⊆ H
(
L,M ∪H′k′−1(L,M)

)
= H′k′(L,M).

In the inductive case, when k > 0 (and k′ > 0), we have

H′k(L,M) = H
(
L,M ∪H′k−1(L,M)

)

⊆ H
(
L,M ∪H′k−1+k′(L,M)

)
= H′k+k′(L,M)

where the inclusion is by induction hypothesis on k − 1.

Proposition A.1.3. Any sets L and M satisfy Hk(L,M) = H′k(L,M) for any

k ∈ N, and hence Hω(L,M) = H′ω(L,M).

Proof. We first prove Hk(L,M) ⊆ H′k(L,M) by induction on k ∈ N. The base case,

when k = 0, is trivial. In the inductive case, when k > 0, we have

Hk(L,M) = H
(
L,M ∪

⋃

i≤k−1

Hi(L,M)
)

⊆ H
(
L,M ∪

⋃

i≤k−1

H′i(L,M)
)

(by I.H.)

= H
(
L,M ∪H′k−1(L,M)

)
(by Lem. A.1.2)

= H′k(L,M).

The other direction, i.e. H′k(L,M) ⊆ Hk(L,M), can be also proved by induction

on k ∈ N. The base case, when k = 0, is again trivial. In the inductive case, we
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have

H′k(L,M) = H
(
L,M ∪H′k−1(L,M)

)

⊆ H
(
L,M ∪Hk−1(L,M)

)
(by I.H.)

⊆ H
(
L,M ∪

⋃

i≤k−1

Hi(L,M)
)

= Hk(L,M).

Given a hypernet G, by Lem. A.1.2 and Prop. A.1.3, there exists a minimum

number k such that G ∈ H′k(L,M), which we call the minimum level of G.

Lemma A.1.4. Any hypernet has a finite number of shallow edges, and a finite

number of deep edges.

Proof. Any hypernet has a finite number of shallow edges by definition. We prove

that any hypernet G has a finite number of deep edges, by induction on minimum

level k of the hypernet.

When k = 0, the hypernet has ho deep edges.

When k > 0, each hypernet H that labels a shallow edge of G belongs to

H′k−1(L,M), and therefore its minimum level is less than k. By induction hypoth-

esis, the labelling hypernet H has a finite number of deep edges, and also a finite

number of shallow edges. Deep edges of G are given by edges, at any depth, of

any hypernet that labels a shallow edge of G. Because there is a finite number of

the hypernets that label the shallow edges of G, the number of deep edges of G is

finite.
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A.2 Plugging

An interfaced labelled monoidal hypergraph can be given by data of the following

form: ((V ] I ]O,E), (S, T ), (fV, fE)) where I is the input list, O is the output list,

V is the set of all the other vertices, E is the set of edges, (S, T ) defines source and

target lists, and (fV, fE) is labelling functions.

Definition A.2.1 (Plugging). Let C[ ~χ1, χ, ~χ2] = ((V ] I ] O,E), (S, T ), (fV, fE))

and C ′[ ~χ3] = ((V ′ ] I ′ ] O′, E ′), (S ′, T ′), (f ′V, f ′E)) be contexts, such that the hole χ

and the latter context C ′ have the same type and ~χ1 ∩ ~χ2 ∩ ~χ3 = ∅. The plugging

C[ ~χ1, C ′, ~χ2] is a hypernet given by data ((V̂ , Ê), (Ŝ, T̂ ), (f̂V, f̂E)) such that:

V̂ = V ] V ′ ] I ]O

Ê = (E\{eχ}) ] E ′

Ŝ(e) =





S(e) (if e ∈ E\{eχ})

g∗(S ′(e)) (if e ∈ E ′)

T̂ (e) =





T (e) (if e ∈ E\{eχ})

g∗(T ′(e)) (if e ∈ E ′)

g(v) =





v (if v ∈ V ′)

(S(eχ))i (if v = (I ′)i)

(T (eχ))i (if v = (O′)i)

f̂V(v) =





fV(v) (if v ∈ V )

f ′V(v) (if v ∈ V ′)

f̂E(e) =





fE(e) (if e ∈ E\{eχ})

f ′E(e) (if e ∈ E ′)
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where eχ ∈ E is the hole edge labelled with χ, and (−)i denotes the i-th element of

a list.

In the resulting context C[~χ′, C ′, ~χ′′], each edge comes from either C or C ′. If a

path in C does not contain the hole edge eχ, the path gives a path in C[~χ′, C ′, ~χ′′].

Conversely, if a path in C[~χ′, C ′, ~χ′′] consists of edges from C only, the path gives a

path in C.

Any path in C ′ gives a path in C[~χ′, C ′, ~χ′′]. However, if a path in C[~χ′, C ′, ~χ′′]

consists of edges from C ′ only, the path does not necessarily give a path in C ′. The

path indeed gives a path in C ′, if sources and targets of the hole edge eχ are distinct

in C (i.e. the hole edge eχ is not a self-loop).

A.3 Rooted states

Lemma A.3.1. Let (X,_) is an abstract rewriting system that is deterministic.

1. For any x, y, y′ ∈ X such that y and y′ are normal forms, and for any k, h ∈ N,

if there exist two sequences x _k y and x _h y′, then these sequences are

exactly the same.

2. For any x, y ∈ X such that y is a normal form, and for any i, j, k ∈ N such

that i 6= j and i, j ∈ {1, . . . , k}, if there exists a sequence x_k y, then its i-th

rewrite z _ z′ and j-th rewrite w _ w′ satisfy z 6= w.

Proof. The point (1) is proved by induction on k + h ∈ N. In the base case, when

k + h = 0 (i.e. k = h = 0), the two sequences are both the empty sequence, and

x = y = y′. The inductive case, when k + h > 0, falls into one of the following

two situations. The first situation, where k = 0 or h = 0, boils down to the base

case, because x must be a normal form itself, which means k = h = 0. In the

second situation, where k > 0 and h > 0, there exist elements z, z′ ∈ X such that

x _ z _k−1 y and x _ z′ _h−1 y′. Because _ is deterministic, z = z′ follows,
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and hence by induction hypothesis on (k− 1) + (h− 1), these two sequences are the

same.

The point (2) is proved by contradiction. The sequence x _k y from x to the

normal form y is unique, by the point (1). If its i-th rewrite z _ z′ and j-th rewrite

w _ w′ satisfy z = w, determinism of the system implies that these two rewrites

are the same. This means that the sequence x_k y has a cyclic sub-sequence, and

by repeating the cycle different times, one can yield different sequences of rewrites

x _∗ y from x to y. This contradicts the uniqueness of the original sequence

x_k y.

Lemma A.3.2. If a state Ġ is rooted, a search sequence ?; |Ġ| •→∗ Ġ from the initial

state ?; |Ġ| to the state Ġ is unique. Moreover, for any i-th search transition and

j-th search transition in the sequence such that i 6= j, these transitions do not result

in the same state.

Proof. Let X be the set of states with search or value token. We can define an

abstract rewriting system (X,_) of “reverse search” by: Ḣ _ Ḣ ′ if Ḣ ′ •→ Ḣ. Any

search sequence corresponds to a sequence of rewrites in this rewriting system.

The rewriting system is deterministic, i.e. if Ḣ ′ •→ Ḣ and Ḣ ′′ •→ Ḣ then Ḣ ′ = Ḣ ′′,

because the inverse 7→−1 of the interaction rules (Fig. 3.5) is deterministic.

If a search transition changes a token to a search token, the resulting search

token always has an incoming operation edge. This means that, in the rewriting

system (X,_), initial states are normal forms. Therefore, by Lem. A.3.1(1), if there

exist two search sequences from the initial state ?; |Ġ| to the state Ġ, these search

sequences are exactly the same. The rest is a consequence of Lem. A.3.1(2).

Lemma A.3.3. For any hypernet N , if there exists an operation path from an input

to a vertex, the path is unique. Moreover, no edge appears twice in the operation

path.

Proof. Given the hypernet N whose set of (shallow) vertices is X, we can define an
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abstract rewriting system (X,_) of “reverse connection” by: v _ v′ if there exists

an operation edge whose unique source is v′ and targets include v. Any operation

path from an input to a vertex in N corresponds to a sequence of rewrites in this

rewriting system.

This rewriting system is deterministic, because each vertex can have at most one

incoming edge in a hypergraph (Def. 3.3.2) and each operation edge has exactly one

source. Because inputs of the hypernet N have no incoming edges, they are normal

forms in this rewriting system. Therefore, by Lem. A.3.1(1), an operation path from

any input to any vertex is unique.

The rest is proved by contradiction. We assume that, in an operation path P

from an input to a vertex, the same operation edge e appears twice. The edge e has

one source, which either is an input of the hypernet N or has an incoming edge. In

the former case, the edge e can only appear as the first edge of the operation path

P , which is a contradiction. In the latter case, the operation edge e has exactly one

incoming edge e′ in the hypernet N . In the operation path P , each appearance of

the operation edge e must be preceded by this edge e′ via the same vertex. This

contradicts Lem. A.3.1(2).

Lemma A.3.4. For any rooted state Ġ, if its token source (i.e. the source of the

token) does not coincide with the unique input, then there exists an operation path

from the input to the token source.

Proof. By Lem. A.3.2, the rooted state Ġ has a unique search sequence ?; |Ġ| •→∗ Ġ.

The proof is by the length k of this sequence.

In the base case, where k = 0, the state Ġ itself is an initial state, which means

the input and token source coincide in Ġ.

In the inductive case, where k > 0, there exists a state Ġ′ such that ?; |Ġ| •→k−1

Ġ′ •→ Ġ. The proof here is by case analysis on the interaction rule used in Ġ′ •→ Ġ.

• When the interaction rules (1a), (1b), (2) or (5b) is used (see Fig. 3.5), the
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transition Ġ′ •→ Ġ only changes a token label.

• When the interaction rule (3) is used, the transition Ġ′ •→ Ġ turns the token

and its outgoing operation edge eG′ into an operation edge eG and its outgoing

token. By induction hypothesis on Ġ′, the token source coincides with its

input, or there exists an operation path from the input to the token source, in

Ġ′.

In the former case, in Ġ, the source of the operation edge eG coincides with

the input. The edge eG itself gives the desired operation path in Ġ.

In the latter case, the operation path PG′ from the input to the token source

in Ġ′ does not contain the outgoing operation edge eG′ of the token; otherwise,

the edge eG′ must be preceded by the token edge in the operation path PG′ ,

which is a contradiction. Therefore, the operation path PG′ in Ġ′ is inherited in

Ġ, becoming a path PG from the input to the source of the incoming operation

edge eG of the token. In the state Ġ, the path PG followed by the edge eG

yields the desired operation path.

• When the interaction rule (4) is used, the transition Ġ′ •→ Ġ changes the token

from a (k+1)-th outgoing edge of an operation edge e to a (k+2)-th outgoing

edge of the same operation edge e, for some k ∈ N. In Ġ′, the token source is

not an input, and therefore, there exists an operation path PG′ from the input

to the token source, by induction hypothesis.

The operation path PG′ ends with the operation edge e, and no outgoing edge of

the edge e is involved in the path PG′ ; otherwise, the edge e must appear more

than once in the path PG′ , which is a contradiction by Lem. A.3.3. Therefore,

the path PG′ is inherited exactly as it is in Ġ, and it gives the desired operation

path.

• When the interaction rule (5a) is used, by the same reasoning as in the case
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of rule (4), Ġ′ has an operation path PG′ from the input to the token source,

where the incoming operation edge eG′ of the token appears exactly once, at

the end. Removing the edge eG′ from the path PG′ yields another operation

path P from the input in Ġ′, and it also gives an operation path from the

input to the token source in Ġ.

Lemma A.3.5. For any state Ġ with a t-token such that t 6= ?, if Ġ is rooted, then

there exists a search sequence ?; |Ġ| •→∗ 〈Ġ〉?/t •→+
Ġ.

Proof. By Lem. A.3.2, the rooted state Ġ has a unique search sequence ?; |Ġ| •→∗ Ġ.

The proof is to show that a transition from the state 〈Ġ〉?/t appears in this search

seqeunce, and it is by the length k of the search sequence.

Because Ġ does not have a search token, k = 0 is impossible, and therefore the

base case is when k = 1. The search transition ?; |Ġ| •→ Ġ must use one of the

interaction rules (1a), (1b), (2) and (5b). This means ?; |Ġ| = 〈Ġ〉?/t.

In the inductive case, where k > 0, there exists a state Ġ′ such that ?; |Ġ| •→k−1

Ġ′ •→ Ġ. The proof here is by case analysis on the interaction rule used in Ġ′ •→ Ġ.

• When the interaction rule (1a), (1b), (2) or (5b) is used, ?; |Ġ| = 〈Ġ〉?/t.

• Because Ġ does not have a search token, the interaction rules (3) and (4) can

be never used in Ġ′ •→ Ġ.

• When the interaction rule (5a) is used, Ġ′ has a value token, which is a (k+1)-

th outgoing edge of an operation edge e, for some k ∈ N. The operation edge

e becomes the outgoing edge of the token in Ġ. By induction hypothesis on

Ġ′, we have

?; |Ġ| •→∗ 〈Ġ′〉?/X •→+
Ġ′ •→ Ġ. (A)

If k = 0, in Ġ′, the token is the only outgoing edge of the operation edge e.

Because 〈Ġ′〉?/X is not an initial state, it must be a result of the interaction
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rule (3), which means the search sequence (A) is factored through as:

?; |Ġ| •→∗ 〈Ġ〉?/t •→ 〈Ġ′〉?/X •→+
Ġ′ •→ Ġ.

If k > 0, for each m ∈ {0, . . . , k}, let Ṅm be a state with a search token, such

that |Ṅm| = |Ġ′| and the token is an (m+1)-th outgoing edge of the operation

edge e. This means Ṅk = 〈Ġ′〉?/X. The proof concludes by combining the

following internal lemma with (A), taking k as m.

Lemma A.3.6. For any m ∈ {0, . . . , k}, if there exists h < k such that

?; |Ġ| •→h
Ṅm, then it is factored through as ?; |Ġ| •→∗ 〈Ġ〉?/t •→+

Ṅm.

Proof. By induction on m. In the base case, when m = 0, the token of Ṅm is

the first outgoing edge of the operation edge e. This state is not initial, and

therefore must be a result of the interaction rule (3), which means

?; |Ġ| •→∗ 〈Ġ〉?/t •→ Ṅm.

In the inductive case, when m > 0, the state Ṅm is not an initial state and

must be a result of the interaction rule (4), which means

?; |Ġ| •→∗ 〈 ˙Nm−1〉X/? •→ Ṅm.

The first half of this search sequence, namely ?; |Ġ| •→∗ 〈 ˙Nm−1〉X/?, consists of

h− 1 < k transitions. Therefore, by (outer) induction hypothesis on h− 1, we

have

?; |Ġ| •→∗ ˙Nm−1
•→+ 〈 ˙Nm−1〉X/? •→ Ṅm.

The first part, namely ?; |Ġ| •→∗ ˙Nm−1, consists of less than k transitions.
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Therefore, by (inner) induction hypothesis on m− 1, we have

?; |Ġ| •→∗ 〈Ġ〉?/t •→+ ˙Nm−1
•→+ 〈 ˙Nm−1〉X/? •→ Ṅm.

Lemma A.3.7.

1. For any state Ṅ , if it has a path to the token source that is not an operation

path, then it is not rooted.

2. For any focus-free hypernet H and any focussed context Ċ[χ] with one hole

edge, such that Ċ[H] is a state, if the hypernet H is one-way and the context

Ċ has a path to the token source that is not an operation path, then the state

Ċ[H] is not rooted.

3. For any C-specimen (Ċ[~χ]; ~G; ~H) of an output-closed pre-tepmlate C, if the

context Ċ[~χ] has a path to the token source that is not an operation path, then

at least one of the states Ċ[~G] and Ċ[ ~H] is not rooted.

Proof of the point (1). Let P be the path in Ṅ to the token source that is not an

operation path. The proof is by contradiction; we assume that Ṅ is a rooted state.

Because of P , the token source is not an input. Therefore by Lem. A.3.4, the

state Ṅ has an operation path from its unique input to the token source. This

operation path contradicts the path P , which is not an operation path, because

each operation edge has only one source and each vertex has at most one incoming

edge.

Proof of the point (2). Let P be the path in Ċ to the token source that is not an

operation path.
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If the path P contains no hole edge, it gives a path in the state Ċ[H] to the token

source that is not an operation path. By the point (1), the state is not rooted.

Otherwise, i.e. if the path P contains a hole edge, we give a proof by contradic-

tion; we assume that the state Ċ[H] is rooted. We can take a suffix of the path P ,

so that it gives a path from a target of a hole edge to the token source in Ċ, and

moreover, gives a path P ′ from a source of an edge from H to the token source in

Ċ[H]. This implies the token source is not an input, and therefore by Lem. A.3.4,

the state Ċ[H] has an operation path from its unique input to the token source.

This operation path must have P ′ has a suffix, meaning P ′ is also an operation

path, because each operation edge has only one source and each vertex has at most

one incoming edge. Moreover, H must have an operation path from an input to an

output, such that the input and the output have type ? and the path ends with the

first edge of the path P ′. This contradicts H being one-way.

Proof of the point (3). Let P be the path in Ċ to the token source that is not an

operation path.

If the path P contains no hole edge, it gives a path in the states Ċ[~G] and Ċ[ ~H]

to the token source that is not an operation path. By the point (1), the states are

not rooted.

Otherwise, i.e. if the path P contains a hole edge, we can take a suffix of P that

gives a path P ′ from a source of a hole edge e to the token source in Ċ, so that

the path P ′ does not contain any hole edge. We can assume that the hole edge e is

labelled with χ1, without loss of generality. The path P ′ gives paths P ′G and P ′H to

the token source, in contexts Ċ[χ1, ~G\{G1}] and Ċ[χ1, ~H\{H1}], respectively. The

paths P ′G and P ′H are not an operation path, because they start with the hole edge

e labelled with χ1.

Because C is output-closed, G1 or H1 is one-way. By the point (2), at least one

of the states Ċ[~G] and Ċ[ ~H] is not rooted.
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Lemma A.3.8. If a rewrite transition Ġ→ Ġ′ is stationary, it preserves the rooted

property, i.e. Ġ being rooted implies Ġ′ is also rooted.

Proof. The stationary rewrite transition Ġ → Ġ′ is in the form of C[ ;iH] →

C[?;iH
′], where C is a focus-free simple context, H is a focus-free one-way hypernet,

H ′ is a focus-free hypernet and i ∈ N. We assume C[ ;iH] is rooted, and prove that

C[?;iH
′] is rooted, i.e. ?; C[H ′] •→∗ C[?;iH

′]. By Lem. A.3.5, there exists a number

k ∈ N such that:

?; C[H] •→k C[?;iH] •→+ C[ ;iH].

The rest of the proof is by case analysis on the number k.

• When k = 0, i.e. ?; C[H] = C[?;iH], the unique input and the i-th source of the

hole coincide in the simple context C. Therefore, ?; C[H ′] = C[?;iH
′], which

means C[?;iH
′] is rooted.

• When k > 0, there exists a state Ṅ such that ?; C[H] •→k−1
Ṅ •→ C[?;iH].

By the following internal lemma (Lem. A.3.9), there exists a focussed simple

context ˙CN , whose token is not entering nor exiting, and we have two search

sequences:

?; C[H] •→k−1 ˙CN [H] •→ C[?;iH],

?; C[H ′] •→k−1 ˙CN [H ′].

The last search transition ˙CN [H] •→ C[?;iH], which yields a search token, must

use the interaction rule (3) or (4). Because the token is not entering nor exiting

in the simple context ˙CN , either of the two interaction rules acts on the token

and an edge of the context. This means that the same interaction is possible

in the state ˙CN [H ′], yielding:

?; C[H ′] •→k−1 ˙CN [H ′] •→ C[?;iH
′],
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which means C[?;iH
′] is rooted.

Lemma A.3.9. For any m ∈ {0, . . . , k − 1} and any state Ṅ such that

?; C[H] •→m
Ṅ •→k−m C[?;iH], the following holds.

(A) If there exists a focussed simple context ˙CN such that Ṅ = ˙CN [H], the

token of the context ˙CN is not entering.

(B) If there exists a focussed simple context ˙CN such that Ṅ = ˙CN [H], the

token of the context ˙CN is not exiting.

(C) There exists a focussed simple context ˙CN such that Ṅ = ˙CN [H], and

?; C[H ′] •→m ˙CN [H ′] holds.

Proof. Firstly, because search transitions do not change an underlying hyper-

net, if there exists a focussed simple context ˙CN such that Ṅ = ˙CN [H], | ˙CN | = C

necessarily holds.

The point (A) is proved by contradiction; we assume that the context ˙CN has

an entering token. This means that there exist a number p ∈ N and a token

label t ∈ {?,X, } such that ˙CN = C[t;pH]. By Lem. A.3.5, there exists a

number h such that h ≤ m and:

?; C[H] •→h C[?;pH] •→k−h C[?;iH]. ($)

We derive a contradiction by case analysis on the numbers p and h.

– If p = i and h = 0, the state C[?;iH] must be initial, but it is a result of

a search transition because k − h > 0. This is a contradiction.

– If p = i and h > 0, two different transitions in the search sequence ($)

result in the same state, because of h > 0 and k−h > 0, which contradicts

Lem. A.3.2.
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– If p 6= i, by Def. 4.3.2, there exists a state Ṅ ′ with a rewrite token such

that C[?;pH] •→ Ṅ ′. This contradicts the search sequence ($), because

k − h > 0 and search transitions are deterministic.

The point (B) follows from the contraposition of Lem. A.3.7(2), because H is

one-way and Ṅ is rooted. The rooted property of Ṅ follows from the fact that

search transitions do not change underlying hypernets.

The point (C) is proved by induction on m ∈ {0, . . . , k− 1}. In the base case,

when m = 0, we have ?; C[H] = Ṅ , and therefore the context ?; C can be taken

as ˙CN . This means ?; C[H ′] = ˙CN [H ′].

In the inductive case, when m > 0, there exists a state Ṅ ′ such that

?; C[H] •→m−1
Ṅ ′ •→ Ṅ •→k−m C[?;iH].

By the induction hypothesis, there exists a focussed simple context ˙CN ′ such

that Ṅ ′ = ˙CN ′ [H] and

?; C[H] •→m−1 ˙CN ′ [H] •→ Ṅ •→k−m C[?;iH],

?; C[H ′] •→m−1 ˙CN ′ [H ′].

Our goal here is to find a focussed simple context ˙CN , such that Ṅ = ˙CN [H]

and ˙CN ′ [H ′] •→ ˙CN [H ′].

In the search transition ˙CN ′ [H] •→ Ṅ , the only change happens to the token

and its incoming or outgoing edge e in the state ˙CN ′ [H]. By the points (A)

and (B), the token is not entering nor exiting in the context ˙CN ′ , which means

the edge e must be from the context, not from H.

Now that no edge from H is changed in ˙CN ′ [H] •→ Ṅ , there exists a focussed

simple context ˙CN such that Ṅ = ˙CN [H], and moreover, ˙CN ′ [H ′] •→ ˙CN [H ′].
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A.4 Accessible paths and stable hypernets

A stable hypernet always has at least one edge, and any non-output vertex is labelled

with ?. It has a tree-like shape.

Lemma A.4.1 (Shape of Stable Hypernets).

1. In any stable hypernet, if a vertex v′ is reachable from another vertex v such

that v 6= v′, there exists a unique path from the vertex v to the vertex v′.

2. Any stable hypernet has no cyclic path, i.e. a path from a vertex to itself.

3. Let C : ? ⇒ ⊗mi=1`i be a simple context such that: its hole has one source and

at least one outgoing edge; and its unique input is the hole’s source. There are

no two stable hypernets G and G′ that satisfy G = C[G′].

Proof. To prove the point (1), assume there are two different paths from the vertex

v to the vertex v′. These paths, i.e. non-empty sequences of edges, have to involve an

edge with more than one source, or two different edges that share the same target.

However, neither of these is possible in a stable hypernet, because both a passive

operation edge and an instance edge have only one source and vertices can have at

most one incoming edge. The point (1) follows from this by contradiction.

If a stable hypernet has a cyclic path from a vertex v to itself, there must be

infinitely many paths from the input to the vertex v, depending on how many times

the cycle is included. This contradicts the point (1).

The point (3) is also proved by contradiction. Assume that there exist two stable

hypernets G and G′ that satisfy G = C[G′] for the simple context C. In the stable

hypernet G, a vertex is always labelled with ? if it is not an output. However, in the

simple context C, there exists at least one target of the hole that is not an output
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of the context but not labelled with ? either. This contradicts C[G′] being a stable

hypernet.

A stable hypernet can be found as a part of representation of a value.

Lemma A.4.2. Let ~x be a sequence of k variables and ~a be a sequence of h atoms.

For any derivable type judgement ~x | ~a ` v : ? where v is a value, its representation

can be decomposed as (~x | ~a ` v : ?)† = C[G] using a stable hypernet G : ?⇒ ⊗mi=1`i

and a simple context C : ?⇒ ?⊗k⊗�⊗h whose unique input coincides with a (unique)

source of its hole.

Proof. By induction on the definition of value.

When the value v is an atom, in the representation (~x | ~a ` v : ?)†, only an

instance edge can comprise a stable hypernet.

When the value is v ≡ φX(v1, . . . , vm;~s), by induction hypothesis, a stable hyper-

net Gi can be extracted from (a bottom part of) representation of each eager argu-

ment vi. The stable hypernet G that decomposes the representation (~x | ~a ` v : ?)†

can be given by all these stable hypernets G1, . . . , Gm together with the passive

operation edge φX that is introduced in the representation.

When the value is v ≡ bind x → t in v′, or v ≡ new a( t in v′, by induction

hypothesis, representation of the value v′ includes a stable hypernet G′. The stable

hypernet itself decomposes the representation (~x | ~a ` v : ?)† in the required way.

Lemma A.4.3. For any state Ṅ , and its vertex v, such that the vertex v is not a

target of an instance edge or a passive operation edge, if an accessible path from the

vertex v is stable or active, then the path has no multiple occurences of a single edge.

Proof. Any stable or active path consists of edges that has only one source. As a

consequence, except for the first edge, no edge appears twice in the stable path. If

the stable path is from the vertex v, its first edge also does not appear twice, because

v is not a target of an instance edge or a passive operation edge.
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Lemma A.4.4. For any state Ṅ , and its vertex v, such that the vertex v is not a

target of an instance edge or a passive operation edge, the following are equivalent.

(A) There exist a focussed simple context Ċ[χ] and a stable hypernet G, such that

Ṅ = Ċ[G], where the vertex v of Ṅ corresponds to a unique source of the hole edge

in Ċ.

(B) Any accessible path from the vertex v in Ṅ is a stable path.

Proof of (A) ⇒ (B). Because no output of a stable hypernet has type ?, any path

from the vertex v in Ċ[G] gives a path from the unique input in G. In the stable

hypernet G, any path from the unique input is a stable path.

Proof of (B) ⇒ (A). In the state Ṅ , the token target has to be a source of an edge,

which forms an accessible path itself. By Lem. A.4.3, in the state Ṅ , we can take

maximal stable paths from the vertex v, in the sense that appending any edge to

these paths, if possible, does not give a stable path.

If any of these maximal stable paths is to some vertex, the vertex does not have

type ?; this can be confirmed as follows. If the vertex has type ?, it is not an output,

so it is a source of an instance, token, operation or contraction edge. The case of

an instance or passive operation edge contradicts the maximality. The other case

yields a non-stable accessible path that contradicts the assumption (B).

Collecting all edges contained by the maximal stable paths, therefore, gives the

desired hypernet G. These edges are necessarily all shallow, because of the vertex v

of Ṅ . The focussed context Ċ[χ], whose hole is shallow, can be made of all the other

edges (at any depth) of the state Ṅ .

Lemma A.4.5. Let Ṅ be a state, where the token is an incoming edge of an op-

eration edge e, whose label φ takes at least one eager arguments. Let k denote the

number of eager arguments of φ.

For each i ∈ {1, . . . , k}, let sw i(Ṅ) be a state such that: both states sw i(Ṅ) and

Ṅ have the same token label and the same underlying hypernet, and the token in
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sw i(Ṅ) is the i-th outgoing edge of the operation edge e.

For each i ∈ {1, . . . , k}, the following are equivalent.

(A) In Ṅ , any accessible path from an i-th target of the operation edge e is a

stable (resp. active) path.

(B) In sw i(Ṅ), any accessible path from the token target is a stable (resp. active)

path.

Proof. The only difference between Ṅ and sw i(Ṅ) is the swap of the token with

the operation edge e, and these two edges form an accessible path in the states Ṅ

and sw i(Ṅ), individually or together (in an appropriate order). Therefore, there is

one-to-one correspondence between accessible paths from an i-th target of the edge

e in Ṅ , and accessible paths from the token target in sw i(Ṅ).

When (A) is the case, in Ṅ , any accessible paths from an i-th target of the

edge e does not contain the token nor the edge e; otherwise there would be an

accessible path that contains the token and hence not stable nor active, which is

a contradiction. This means that, in sw i(Ṅ), any accessible path from the token

target also does not contain the token nor the edge e, and the path must be a stable

(resp. active) path.

When (B) is the case, the proof takes the same reasoning in the reverse way.

Lemma A.4.6. Let Ṅ be a rooted state with a search token, such that the token is

not an incoming edge of a contraction edge.

1. Ṅ •→+ 〈Ṅ〉X/?, if and only if any accessible path from the token target in Ṅ is

a stable path.

2. Ṅ •→+ 〈Ṅ〉 /?, if and only if any accessible path from the token target in Ṅ is

an active path.

Proof of the forward direction. Let t be either ‘X’ or ‘ ’. The assumption is Ṅ •→∗

〈Ṅ〉t/?. We prove the following, by induction on the length n of this search sequence:
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• any accessible path from the token target in Ṅ is a stable path, when t = X,

and

• any accessible path from the token target in Ṅ is an active path, when t =  .

In the base case, where n = 1, because the token is not an incoming edge of a

contraction edge, the token target is a source of an instance edge, or an operation

edge labelled with φ ∈ Ot that takes no eager argument. In either situation, the

outgoing edge of the token gives the only possible accessible path from the token

target. The path is stable when t = X, and active when t =  .

In the inductive case, where n > 1, the token target is a source of an operation

edge eφ labelled with an operation φ ∈ Ot that takes at least one eager argument.

Let k denote the number of eager arguments of φt, and i be an arbitrary number

in {1, . . . , k}. Let sw i(Ṅ) be the state as defined in Lem. A.4.5. Because Ṅ is

rooted, by Lem. A.3.5, the given search sequence gives the following search sequence

(proof by induction on k − i):

?; |Ṅ | •→∗ Ṅ •→+
sw i(Ṅ) •→+ 〈sw i(Ṅ)〉X/? •→+ 〈Ṅ〉t/?.

By induction hypothesis on the intermediate sequence sw i(Ṅ) •→+ 〈sw i(Ṅ)〉X/?, any

accessible path from the token target in sw i(Ṅ) is a stable path. By Lem. A.4.5,

any accessible path from an i-th target of the operation edge eφ in Ṅ is a stable

path.

In Ṅ , any accessible path from the token target is given by the operation edge

eφ followed by an accessible path, which is proved to be stable above, from a target

of eφ. Any accessible path from the token target is therefore stable when t = X, and

active when t =  .

Proof of the backward direction. Let t be either ‘X’ or ‘ ’. The assumption is the

following:
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• any accessible path from the token target in Ṅ is a stable path, when t = X,

and

• any accessible path from the token target in Ṅ is an active path, when t =  .

Our goal is to show Ṅ •→∗ 〈Ṅ〉t/?.

In the state Ṅ , the token target has to be a source of an edge, which forms an

accessible path itself. By Lem. A.4.3, we can define r(Ṅ) by the maximum length of

stable paths from the token target. This number r(Ṅ) is well-defined and positive.

We prove Ṅ •→∗ 〈Ṅ〉t/? by induction on r(Ṅ).

In the base case, where r(Ṅ) = 1, the outgoing edge of the token is the only

possible accessible path from the token target. The outgoing edge is not a contraction

edge by the assumption, and hence it is an instance edge, or an operation edge

labelled with φ ∈ Ot that takes no eager argument. We have Ṅ •→ 〈Ṅ〉t/?.

In the inductive case, where r(Ṅ) > 1, the outgoing edge of the token is an

operation edge eφ labelled with φ ∈ Ot that takes at least one eager argument. Any

accessible path from the token target in Ṅ is given by the edge eφ followed by a

stable path from a target of eφ.

Let k denote the number of eager arguments of φt, and i be an arbitrary number

in {1, . . . , k}. Let sw i(Ṅ) be the state as defined in Lem. A.4.5.

By the assumption, any accessible path from an i-th target of the operation edge

eφ in Ṅ is a stable path. Therefore by Lem. A.4.5, in sw i(Ṅ), any accessible path

from the token target is a stable path. Moreover, these paths in Ṅ and sw i(Ṅ)

correspond to each other. By Lem. A.4.3, we can define r(sw i(Ṅ)) by the maximum

length of stable paths from the token target. This number r(sw i(Ṅ)) is well-defined,

and satisfies r(sw i(Ṅ)) < r(Ṅ). By induction hypothesis on this number, we have:

sw i(Ṅ) •→∗ 〈sw i(Ṅ)〉X/?.

Combining this search sequence with the following possible search transitions con-



200 APPENDIX A. TECHNICAL APPENDIX FOR CHAP. 3

cludes the proof:

Ṅ •→ sw 1(Ṅ),

〈sw i(Ṅ)〉X/? •→ sw i+1(Ṅ),

(when k 6= 1 and i < k)

〈swk(Ṅ)〉X/? •→ 〈Ṅ〉t/?.

A.5 Parametrised (contextual) refinement and

equivalence

Lemma A.5.1. For any focus-free contexts C1[~χ′, χ, ~χ′′] and C2 such that C1[~χ′, C2, ~χ′′]

is defined, if both C1 and C2 are binding-free, then C1[~χ′, C2, ~χ′′] is also binding-free.

Proof. Let C denote C1[~χ′, C2, ~χ′′], and eχ denote the hole edge of C1 labelled with χ.

The proof is by contradiction. We assume that there exists a path P in C, from

a source of a contraction, atom, box or hole edge e, to a source of a hole edge e′.

We derive a contradiction by case analysis on the path P .

• When e′ comes from C1, and the path P consists of edges from C1 only, the

path P gives a path in C1 that contradicts C1 being binding-free.

• When e′ comes from C1, and the path P contains an edge from C2, by finding

the last edge from C2 in P , we can take a suffix of P that gives a path from

a target of the hole edge eχ to a source of a hole edge, in C1. Adding the

hole edge eχ at the beginning yields a path in C1 that contradicts C1 being

binding-free.

• When both e and e′ come from C2, and the path P gives a path in C2, this

contradicts C2 being binding-free.
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• When both e and e′ come from C2, and the path P does not give a single path

in C2, there exists a path from a source of the hole edge eχ to a source of the

hole edge eχ, in C1. This path contradicts C1 being binding-free.

• When e comes from C1 and e′ comes from C2, by finding the first edge from C2 in

P , we can take a prefix of P that gives a path from a source of a contraction,

atom, box or hole edge to a source of the hole edge eχ, in C1. This path

contradicts C1 being binding-free.

Lemma A.5.2. For any set C of contexts that is closed under plugging, and any

preorder Q on natural numbers, the following holds.

• �̇Q and �C
Q are reflexive.

• �̇Q and �C
Q are transitive.

• '̇Q and 'C
Q are equivalences.

Proof. Because '̇Q and 'C
Q are defined as a symmetric subset of �̇Q and �C

Q, re-

spectively, '̇Q and 'C
Q are equivalences if �̇Q and �C

Q are preorders.

Reflexivity and transitivity of �̇Q is a direct consequence of those of the preorder

Q.

For any focus-free hypernet H, and any focus-free context C[χ] ∈ C such that

?; C[H] is a state, ?; C[H] �̇Q ?; C[H] because of reflexivity of �̇Q.

For any focus-free hypernets H1, H2 and H3, and any focus-free context C[χ] ∈ C,

such that H1 �C
Q H2, H2 �C

Q H3, and both ?; C[H1] and ?; C[H3] are states, our goal is

to show ?; C[H1] �̇Q ?; C[H3]. Because H1 �C
Q H2 and H2 �C

Q H3, all three hypernets

H1, H2 and H3 have the same type, and hence ?; C[H2] is also a state. Therefore,

we have ?; C[H1] �̇Q ?; C[H2] and ?; C[H2] �̇Q ?; C[H3], and the transitivity of �̇Q
implies ?; C[H1] �̇Q ?; C[H3].
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Lemma A.5.3. For any set C of contexts that is closed under plugging, and any

preorder Q on natural numbers, the following holds.

1. For any hypernets H1 and H2, H1 'C
Q∩Q−1 H2 implies H1 'C

Q H2.

2. If all compute transitions are deterministic, for any hypernets H1 and H2,

H1 'C
Q H2 implies H1 'C

Q∩Q−1 H2.

Proof. Because (Q ∩ Q−1) ⊆ Q, the point (1) follows from the monotonicity of

contextual equivalence.

For the point (2), H1 'C
Q H2 means that any focus-free context C[χ] ∈ C, such

that ?; C[H1] and ?; C[H2] are states, yields ?; C[H1] �̇Q ?; C[H2] and ?; C[H2] �̇Q
?; C[H1]. If the state ?; C[H1] terminates at a final state after k1 transitions, there

exists k2 such that k1 Q k2 and the state ?; C[H2] terminates at a final state after

k2 transitions. Moreover, there exists k3 such that k2 Q k3 and the state ?; C[H1]

terminates at a final state after k3 transitions.

Because search transitions and copy transitions are deterministic, if all compute

transitions are deterministic, states and transitions comprise a deterministic abstract

rewriting system, in which final states are normal forms. By Lem. A.3.1, k1 = k3

must hold. This means k1 Q ∩Q−1 k2, and ?; C[H1] �̇Q∩Q−1 ?; C[H2]. Similarly, we

can infer ?; C[H2] �̇Q∩Q−1 ?; C[H1], and hence H1 'C
Q∩Q−1 H2.

A.6 Proof for Sec. 4.3.3

Lemma A.6.1. Let C be a set of contexts, and Q′ be a binary relation on N such

that, for any k0, k1, k2 ∈ N, (k0 + k1) Q
′ (k0 + k2) implies k1 Q

′ k2. Let C be a

pre-template that is a trigger and implies contextual refinement �C
Q′. For any single

C-specimen (Ċ[χ];H1;H2) of C, the following holds.

1. For any k ∈ N, ?; |Ċ|[H1] •→k Ċ[H1] if and only if ?; |Ċ|[H2] •→k Ċ[H2].
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2. If compute transitions are all deterministic, and one of states Ċ[H1] and Ċ[H2]

is rooted, then the other state is also rooted, and moreover, Ċ[H1] �̇Q′ Ċ[H2].

Proof of the point (1). Let (p, q) be an arbitrary element of a set {(1, 2), (2, 1)}. We

prove that, for any k ∈ N, ?; |Ċ|[Hp] •→k Ċ[Hp] implies ?; |Ċ|[Hq] •→k Ċ[Hq]. The

proof is by case analysis on the number k.

• When k = 0, Ċ[Hp] is initial, and by Lem. 4.4.5(1), Ċ[Hq] is also initial. Note

that C is a trigger and hence output-closed.

• When k > 0, by the following internal lemma, ?; |Ċ|[Hq] •→k Ċ[Hq] follows from

?; |Ċ|[Hp] •→k Ċ[Hp].

Lemma A.6.2. For any m ∈ {0, . . . , k}, there exists a focussed context Ċ ′[χ]

such that |Ċ ′| = |Ċ| and the following holds:

?; |Ċ|[Hp] •→m Ċ ′[Hp] •→k−m Ċ[Hp],

?; |Ċ|[Hq] •→m Ċ ′[Hq].

Proof. By induction on m. In the base case, when m = 0, we can take ?; |Ċ|

as Ċ ′.

In the inductive case, when m > 0, by induction hypothesis, there exists a

focussed context Ċ ′[χ] such that |Ċ ′| = |Ċ| and the following holds:

?; |Ċ|[Hp] •→m−1 Ċ ′[Hp] •→k−m+1 Ċ[Hp],

?; |Ċ|[Hq] •→m−1 Ċ ′[Hq].

Because |Ċ ′| = |Ċ| ∈ C, (Ċ ′;H1;H2) is a single C-specimen of C, which yields

rooted states. Because k −m + 1 > 0, Ċ ′ cannot have a rewrite token. The

rest of the proof is by case analysis on the token of Ċ ′.
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– When Ċ ′ has an entering search token, because C is a trigger, Ċ ′[Hr] →

〈Ċ ′[Hr]〉 /? for each r ∈ {p, q}. Because 〈Ċ ′[Hr]〉 /? = 〈Ċ ′〉 /?[Hr], and

search transitions are deterministic, we have the following:

?; |Ċ|[Hp] •→m−1 Ċ ′[Hp] •→ 〈Ċ ′〉 /?[Hp] •→k−m Ċ[Hp],

?; |Ċ|[Hq] •→m−1 Ċ ′[Hq] •→ 〈Ċ ′〉 /?[Hq].

We also have |〈Ċ ′〉 /?| = |Ċ ′| = |Ċ|.

– When Ċ ′ has a value token, or a non-entering search token, because C is

output-closed, by Lem. 4.4.5(3), there exists a focussed context Ċ ′′ such

that |Ċ ′′| = |Ċ ′| and Ċ ′[Hr] → Ċ ′′[Hr] for each r ∈ {p, q}. The transition

Ċ ′[Hr] → Ċ ′′[Hr], for each r ∈ {p, q}, is a search transition, and by the

determinism of search transitions, we have the following:

?; |Ċ|[Hp] •→m−1 Ċ ′[Hp] •→ Ċ ′′[Hp] •→k−m Ċ[Hp],

?; |Ċ|[Hq] •→m−1 Ċ ′[Hq] •→ Ċ ′′[Hq].

Proof of the point (2). If one of states Ċ[H1] and Ċ[H2] is rooted, by the point (1),

the other state is also rooted, and moreover, there exists k ∈ N such that ?; |Ċ|[Hr] •→k

Ċ[Hr] for each r ∈ {1, 2}.

Our goal is to prove that, for any k1 ∈ N and any final state Ṅ1 such that

Ċ[H1] →k1 Ṅ1, there exist k2 ∈ N and a final state Ṅ2 such that k1 Q
′ k2 and
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Ċ[H2]→k2 Ṅ2. Assuming Ċ[H1]→k1 Ṅ1, we have the following:

?; |Ċ|[H1] •→k Ċ[H1]→k1 Ṅ1,

?; |Ċ|[H2] •→k Ċ[H2].

Because C implies contextual refinement �C
Q′ , and |Ċ| ∈ C, we have state refine-

ment ?; |Ċ|[H1] �̇Q′?; |Ċ|[H2]. Therefore, there exist l2 ∈ N and a final state Ṅ2 such

that (k + k1) Q
′ l2 and ?; |Ċ|[H2]→l2 Ṅ2.

The assumption that compute transitions are all deterministic implies that all

transitions, including intrinsic ones, are deterministic. Following from this are l2 ≥ k

and the following:

?; |Ċ|[H1] •→k Ċ[H1]→k1 Ṅ1,

?; |Ċ|[H2] •→k Ċ[H2]→l2−k Ṅ2.

By the assumption on Q′, (k + k1) Q
′ l2 implies k1 Q

′ (l2 − k).
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G. Gonthier, M. Abadi, and J. Lévy. The geometry of optimal lambda reduction.

In POPL 1992, pages 15–26. ACM Press, 1992. doi: 10.1145/143165.143172.

(page 177).



212 BIBLIOGRAPHY

J. Hackett and G. Hutton. Worker/wrapper/makes it/faster. In ICFP 2014, pages

95–107. ACM, 2014. doi: 10.1145/2628136.2628142. (page 10).

J. Hackett and G. Hutton. Parametric polymorphism and operational improvement.

PACMPL, 2(ICFP):68:1–68:24, 2018. doi: 10.1145/3236763. (page 10).

N. Hoshino, K. Muroya, and I. Hasuo. Memoryful Geometry of Interaction: from

coalgebraic components to algebraic effects. In CSL-LICS 2014, pages 52:1–52:10.

ACM, 2014. doi: 10.1145/2603088.2603124. (page 60).

J. M. E. Hyland and C. L. Ong. On full abstraction for PCF: I, II, and III. Inf.

Comput., 163(2):285–408, 2000. doi: 10.1006/inco.2000.2917. (pages 6 and 8).

P. Johann, A. Simpson, and J. Voigtländer. A generic operational metatheory for

algebraic effects. In LICS 2010, pages 209–218. IEEE Computer Society, 2010.

doi: 10.1109/LICS.2010.29. (page 176).

A. Kissinger. Pictures of processes: automated graph rewriting for monoidal cate-

gories and applications to quantum computing. PhD thesis, University of Oxford,

2012. arXiv preprint arXiv:1203.0202. (pages 26, 35, and 174).

V. Koutavas and M. Wand. Small bisimulations for reasoning about higher-order

imperative programs. In POPL 2006, pages 141–152. ACM, 2006. doi: 10.1145/

1111037.1111050. (page 8).

V. Koutavas, P. Levy, and E. Sumii. From applicative to environmental bisimulation.

Elect. Notes in Theor. Comp. Sci., 276:215–235, 2011. doi: 10.1016/j.entcs.2011.

09.023. (page 9).

J. Krivine. A call-by-name lambda-calculus machine. Higher-Order and Symbolic

Computation, 20(3):199–207, 2007. doi: 10.1007/s10990-007-9018-9. (page 61).

Y. Lafont. Interaction nets. In POPL 1990, pages 95–108. ACM Press, 1990. doi:

10.1145/96709.96718. (page 173).



BIBLIOGRAPHY 213

Y. Lafont. From proof nets to interaction nets, page 225–248. London Mathematical

Society Lecture Note Series. Cambridge University Press, 1995. doi: 10.1017/

CBO9780511629150.012. (page 173).

J. Laird. Full abstraction for functional languages with control. In LICS 1997, pages

58–67. IEEE Computer Society, 1997. doi: 10.1109/LICS.1997.614931. (pages 8

and 9).

J. Lamping. An algorithm for optimal lambda calculus reduction. In POPL 1990,

pages 16–30. ACM Press, 1990. doi: 10.1145/96709.96711. (page 177).

P. Landin. The mechanical evaluation of expressions. The Comp. Journ., 6(4):

308–320, 1964. doi: 10.1093/comjnl/6.4.308. (pages 2, 172, and 178).
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