
Compiling Effectful
Terms to Transducers

Prototype Implementation of
Memoryful Geometry of Interaction

LOLA (Vienna), July 13, 2014

Koko Muroya
Toshiki Kataoka

Ichiro Hasuo
(Dept. CS, Univ. Tokyo)

Naohiko Hoshino
(RIMS, Kyoto Univ.)

Compiling Effectful
Terms to Transducers

Prototype Implementation of
Memoryful Geometry of Interaction

LOLA (Vienna), July 13, 2014

Koko Muroya
Toshiki Kataoka

Ichiro Hasuo
(Dept. CS, Univ. Tokyo)

Naohiko Hoshino
(RIMS, Kyoto Univ.)

TtT!
(“Terms to Transducers”)

Muroya (U. Tokyo)

Our Tool TtT

2

TtT Compiler

TtT Simulator

“Terms to Transducers”

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

net equipped with memories: TtT Simulator records every move-
ment of a token on it, together with the change of memories (from
x 2 X to x

0) caused by the visit of the token. Examples of simula-
tion results are shown shortly.

TtT Compiler is parametric in the choice of a monad T and al-
gebraic operations, exploiting Haskell’s support of computational
effects as monads. TtT Simulator, however, is necessarily monad-
specific; currently it supports the powerset monad (nondetermin-
ism) and the distribution monad (probability).

TtT as a Prototype We emphasize that what our tool TtT cur-
rently does is of no practical use whatsoever: after all it trans-
lates an effectful �-term—that may well be simply expressed as
a Haskell program—to another Haskell program that is way more
complicated and runs more slowly. Nevertheless we believe this is
a worthwhile venture, for the following three reasons.

The first reason is theoretical: our memoryful GoI framework
in [8] seems to be a useful theoretical tool that gives us in-
sights into higher-order computation with effects. Automating the
translation—that is painfully complicated when done by hand—
will hence meet some theoreticians’ needs.

The second reason is speculative but practical: we wish to fol-
low the path of [3, 4, 10, 11] and use memoryful GoI as a compila-
tion technique to hardware. In our case this will specifically mean
to take hardware that natively supports the effect T , and compiling
�-terms with T -algebraic effects to it. Doing so for emerging com-
puting paradigms like probabilistic and quantum programming will
have big practical impacts—not only because programs will exe-
cute faster (see e.g. [5]), but also because the compilation (based
on denotational semantics) is correct by construction. The current
toy tool of TtT will then form a basis of such practical compilers.

The third reason is: it’s simply a lot of fun to see higher-order
effectful computation in action—or GoI at work. We hope the
reader will be convinced by the following examples.

Transducers, Derived and Executed Consider the term P in (1)
with nondeterministic choice t in it. Its translation to a (three-state,
nondeterministic) transducer LPM : 3⇥ N ! P(3⇥ N), after some
manual simplifications, is depicted below (manually).

LPM =

�

h sum cpy

�

L3M�N,NL5M

. (3)

The figure is a string diagram in the traced monoidal category of
resumptions; the box L3M�N,NL5M in (3) is the (equivalence class of)
the transducer (2), after suitably encoding messages like q or 3 as
natural numbers. The diagram (3) can be identified with a proof net
via the “Int construction.” Specifically: notice a horizontal axis of
symmetry; folding the diagram on the axis then gives a proof net,
where the four � and nodes get identified and yield two nodes
that are understood as ` or ⌦ links in the proof net.

The tool TtT generates the transducer LPM inductively by the
derivation of the type of P. The outcome is a Haskell program
of type Td [] x Int Int where: Td is as defined before; [] is
the list monad; and x is a type that stands for a three-element set.
Presenting it graphically as in (3) seems to take a lot of efforts and
is left as future work.

Instead of pictorial presentation, we “execute” the transducer
with TtT Simulator and observe its dynamic behaviors. The simu-
lation result of LPM for P in (1) consists of 741 lines and it yields 6
and 10 as possible outcomes, successfully excluding 8. Similarly,
for the term (�f. f 0+f 1) (�x. 3t5) we have a simulation result

of 4526 lines that yields 6, 8, 8, 10 as possible outcomes (duplica-
tion of 8 is due to different final states of the transducer).

Simulation Results We present actual simulation results for sim-
pler terms: 3t5, written as 3|_|5 in Fig. 1; and (�x. x) 1 in Fig. 2.

1 . ---- dd<42,137> --->

2 | Query:[[3|_|5] @ Nothing]

3 +-. ---- dd<42,137> --->

4 | | Query:[[3]|_|5 @ *]

5 | | h; k_3; h

6 | | [[3]|_|5 @ *]:Answer

7 | | ---- dd<42,3> --->

8 | | [[3|_|5] @ Just (Left (*))]:Answer

9 | | ---- dd<42,3> --->

10 | Result: 3 / State: Just (Left (*))

11 ‘-. ---- dd<42,137> --->

12 | Query:[3|_|[5] @ *]

13 | h; k_5; h

14 | [3|_|[5] @ *]:Answer

15 | ---- dd<42,5> --->

16 | [[3|_|5] @ Just (Right (*))]:Answer

17 | ---- dd<42,5> --->

18 Result: 5 / State: Just (Right (*))

Figure 1. Simulation Result for 3 t 5

The convention is as follows. A token carries a natural number n
around—or more precisely, an edge e.g. in (3) consists of |N|-many
“pipes” and a token goes through the n-th—and this is denoted by
---- n --->. Therefore expressions like dd<42,137> in Fig. 1
stand for a certain natural number. We however chose to supple-
mentarily use the dynamic algebra notation (g for left and d for
right, in French, see e.g. [9, 11]), for readability and efficiency.

In Fig. 1, between movements ---- n ---> of the token are
expressions like Query:[[3|_|5] @ Nothing] and h; k_3; h.
The ones like the former stand for the token’s entrance to and exit
from a transducer. Specifically, p:[t@x]—with a subterm t

0 of t

designated by [t

0
]—means: the token entered to (a copy of) the

transducer Lt0M, whose current state is x, at its port p. Typical ports
include: Query (a top-level query) and Answer x (an answer to
the previous query on x; see Fig. 2, lines 24 and 44). Similarly,
[t@x]:p means the token departed from the port p.

The latter class of expressions like h; k_3; h on Fig. 1, line
5 and phi on Fig. 2, line 3 are referred to as bookkeeping. For
example, h; k_3; h means the token traversed an h node, a k3

node and then an h node. The definition of these nodes (as pure
functions like h : N + N ! N + N) is found in [8]. As we noted
before, these bookkeeping nodes correspond to logical connectives
in a proof net; therefore they change the number carried by the
token. From line 1 to 4 in Fig. 2, g is added by phi i.e. `; this is
much like in the dynamic algebra presentation [9].

Let us discuss effects. Branching occurred in Fig. 1, line 3,
as depicted by the lines on the left. As we discussed about the
term (1), different branches must result in different states x 2 X , or
“memories”; we see this is indeed the case in Fig. 1, lines 8 and 16,
hence eventually lines 10 and 18. The states Just (Left (*))

and Just (Right (*)) encode x

3

and x

5

in (2), respectively.
The indentation designates the depth of the subterm in focus. In

Fig. 2, we see a query on x raised on line 24. The token is returned
to shallower levels and is eventually passed on to the subterm 1 of
(�x. x) 1 (denoted by (\x.x) [1]) on line 33; and then the value
1 of x is obtained and carried by the token (in the form of 1 in
<42,1>) to the originator on line 44.

We note that a query to a natural number value must be a token
carrying a number dd<n,m>, where n and m are arbitrary (hence
42 and 137 in Fig. 1–2 are just arbitrary numbers). An answer to
this query, that the value is l, is given by a token carrying dd<n,l>.

terms

transducers

Muroya (U. Tokyo)

Overview

3

terms

transducers

simulation
result

TtT Compiler

TtT Simulator

← λ-terms with algebraic effects

← stream transducers

← memoryful GoI
 [Hoshino, —, Hasuo CSL-LICS ’14]

Muroya (U. Tokyo)

• semantics of linear logic proof [Girard ’89],
• semantics of functional programming

• token machine presentation [Mackie ’95]

!

• compilation techniques and implementations
• [Mackie ’95] [Pinto ’01] [Ghica ’07]

Geometry of Interaction (GoI)

4

“GoI implementation”

Muroya (U. Tokyo)

• token machine presentation [Mackie ’95]

Geometry of Interaction (GoI)

5

succ 0

0succ

cut

Muroya (U. Tokyo)

• token machine presentation [Mackie ’95]

Geometry of Interaction (GoI)

5

succ 0

0succ

cut

0succ

cut
q

0succ

cut
q

0succ

cut
q

0succ

cut
1

0succ

cut
0

0succ

cut
0

token machine semantics

Muroya (U. Tokyo)

• token machine presentation [Mackie ’95]

Geometry of Interaction (GoI)

6

0succ

cut

succ 0

proof net style

string diagram style
in traced monoidal category

Muroya (U. Tokyo)

• token machine presentation [Mackie ’95]

Geometry of Interaction (GoI)

6

0succ

cut

succ 0

proof net style

string diagram style
in traced monoidal category

q

Muroya (U. Tokyo)

• token machine presentation [Mackie ’95]

Geometry of Interaction (GoI)

6

0succ

cut

succ 0

proof net style

string diagram style
in traced monoidal category

q

Muroya (U. Tokyo)

• token machine presentation [Mackie ’95]

Geometry of Interaction (GoI)

6

0succ

cut

succ 0

proof net style

string diagram style
in traced monoidal category

０

Muroya (U. Tokyo)

• token machine presentation [Mackie ’95]

Geometry of Interaction (GoI)

6

0succ

cut

succ 0

proof net style

string diagram style
in traced monoidal category

１

Muroya (U. Tokyo)

• advantage: simplicity

• challenges

• additive connectives

• computational effects

GoI is “memoryless”

7

succ 0

&, �

Muroya (U. Tokyo)

• advantage: simplicity

• challenges

• additive connectives

• computational effects

GoI is “memoryless”

7

succ 0

&, � additive slices!
[Laurent ’01]

Muroya (U. Tokyo)

�x.x+ x

GoI is “memoryless”

• challenge: computational effects

8

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

3 t 5

Muroya (U. Tokyo)

�x.x+ x

�x.x+ x 3 t 5

GoI is “memoryless”

• challenge: computational effects

8

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

3 t 5

q

Muroya (U. Tokyo)

�x.x+ x

�x.x+ x 3 t 5

GoI is “memoryless”

• challenge: computational effects

8

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

3 t 5

ask (left) x
�x.x+ x 3 t 5

q

Muroya (U. Tokyo)

�x.x+ x

�x.x+ x 3 t 5

GoI is “memoryless”

• challenge: computational effects

8

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

3 t 5

ask (left) x
�x.x+ x 3 t 5

ask (left) x
answer 3

�x.x+ x 3 t 5
3

Muroya (U. Tokyo)

�x.x+ x

�x.x+ x 3 t 5

GoI is “memoryless”

• challenge: computational effects

8

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

3 t 5

ask (left) x
�x.x+ x 3 t 5

ask (left) x
answer 3

�x.x+ x 3 t 5

ask (left) x
answer 3

ask (right) x

�x.x+ x 3 t 5

q

Muroya (U. Tokyo)

�x.x+ x

�x.x+ x 3 t 5

GoI is “memoryless”

• challenge: computational effects

8

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

3 t 5

ask (left) x
�x.x+ x 3 t 5

ask (left) x
answer 3

�x.x+ x 3 t 5

ask (left) x
answer 3

ask (right) x

�x.x+ x 3 t 5

ask (left) x
answer 3

ask (right) x
answer 5

�x.x+ x 3 t 5

5

Muroya (U. Tokyo)

�x.x+ x

�x.x+ x 3 t 5

GoI is “memoryless”

• challenge: computational effects

8

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

3 t 5

ask (left) x
�x.x+ x 3 t 5

ask (left) x
answer 3

�x.x+ x 3 t 5

ask (left) x
answer 3

ask (right) x

�x.x+ x 3 t 5

ask (left) x
answer 3

ask (right) x
answer 5

�x.x+ x 3 t 5

ask (left) x
answer 3

ask (right) x
answer 5

answer 8

�x.x+ x 3 t 5

8

Muroya (U. Tokyo)

�x.x+ x

�x.x+ x 3 t 5

GoI is “memoryless”
memoryful GoI!
[Hoshino, —, Hasuo!

CSL-LICS ’14]
• challenge: computational effects

8

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

3 t 5

ask (left) x
�x.x+ x 3 t 5

ask (left) x
answer 3

�x.x+ x 3 t 5

ask (left) x
answer 3

ask (right) x

�x.x+ x 3 t 5

ask (left) x
answer 3

ask (right) x
answer 5

�x.x+ x 3 t 5

ask (left) x
answer 3

ask (right) x
answer 5

answer 8

�x.x+ x 3 t 5

8

Muroya (U. Tokyo)

�x.x+ x

�x.x+ x 3 t 5

GoI is “memoryless”
memoryful GoI!
[Hoshino, —, Hasuo!

CSL-LICS ’14]
• challenge: computational effects

8

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

Thu., July 17
11:45 -

3 t 5

ask (left) x
�x.x+ x 3 t 5

ask (left) x
answer 3

�x.x+ x 3 t 5

ask (left) x
answer 3

ask (right) x

�x.x+ x 3 t 5

ask (left) x
answer 3

ask (right) x
answer 5

�x.x+ x 3 t 5

ask (left) x
answer 3

ask (right) x
answer 5

answer 8

�x.x+ x 3 t 5

8

Muroya (U. Tokyo)

�x.x+ x

�x.x+ x 3 t 5

GoI is “memoryless”
memoryful GoI!
[Hoshino, —, Hasuo!

CSL-LICS ’14]
• challenge: computational effects

8

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

Thu., July 17
11:45 -

3 t 5

ask (left) x
�x.x+ x 3 t 5

idea: equip each node with
“memory”

ask (left) x
answer 3

�x.x+ x 3 t 5

ask (left) x
answer 3

ask (right) x

�x.x+ x 3 t 5

ask (left) x
answer 3

ask (right) x
answer 5

�x.x+ x 3 t 5

ask (left) x
answer 3

ask (right) x
answer 5

answer 8

�x.x+ x 3 t 5

8

Muroya (U. Tokyo)

Memoryful GoI — Input

9

terms

transducers

λ-terms with algebraic effects

algebraic operations [Plotkin, Power ’03]
!
• nondeterministic choice
• probabilistic choice
• action on global state

Muroya (U. Tokyo)

Memoryful GoI — Output

10

terms

transducers

stream transducers (Mealy machines)

automaton style

string diagram style

C = (X,X ⇥A

c�! T (X ⇥B), x0 2 X)

x0

x1 x2

a0/b1 a0/b2

c

A

B x0

a0

(T = P)

Muroya (U. Tokyo)

Memoryful GoI — Output

10

terms

transducers

stream transducers (Mealy machines)

automaton style

string diagram style

C = (X,X ⇥A

c�! T (X ⇥B), x0 2 X)

x0

x1 x2

a0/b1 a0/b2

c

A

B x0

a0
proof net style

c
x0

a0

(T = P)

Muroya (U. Tokyo)

Memoryful GoI — Output

11

terms

transducers

stream transducers (Mealy machines)

C = (X,X ⇥A

c�! T (X ⇥B), x0 2 X)

x0

x1 x2

a0/b1 a0/b2

T = P (x0, a0) 7�! {(x1, b1), (x2, b2)}

nondeterministic!
computation

x0

x1 x2

a0/b1 a0/b2 probabilistic!
computation

(x0, a0) 7�!

(x1, b1) 7! 1/4,
(x2, b2) 7! 3/4,

�
T = D

1

4

3

4

Muroya (U. Tokyo)

• idea: resumptions + categorical GoI
• [Abramsky, Haghverdi, Scott ’02]

• use coalgebraic component calculus!
 [Barbosa ’03] [Hasuo, Jacobs ’11]

Memoryful GoI — Translation

12

terms

transducers

• composition operations for software components!
• (many-sorted) process calculus

Muroya (U. Tokyo)

1. introduce component calculus over transducers
!

!

2. define interpretation inductively
!

!

3. prove soundness of interpretation

Memoryful GoI — Translation

13

L� ` t : ⌧M

L� ` t : ⌧M

L� ` t s : ⌧M
= L� ` t : �) ⌧M • L� ` s : �M

Muroya (U. Tokyo)

Memoryful GoI — Translation

14

Def. (component calculus)

C �D C �D Tr(C) F(C) ↵({Ci}i2I)

c

A

B

C

d

c

A

B D

C

d c

A

B

C

cc

A

B

c

· · ·

A

B
ci

A

B
↵
· · · · · ·· · · cj

A

B

(↵: I-ary algebraic operation)

Muroya (U. Tokyo)

Memoryful GoI — Translation

15

Def. (component calculus)

C �D C �D
0

@
Y,

Y ⇥B

d�! T (Y ⇥ C),
y0 2 Y

1

A �

0

@
X,

X ⇥A

c�! T (X ⇥B),
x0 2 X

1

A =

0

@
X ⇥ Y,

· · ·
(x0, y0) 2 X ⇥ Y

1

A

0

@
X,

X ⇥A

c�! T (X ⇥B),
x0 2 X

1

A�

0

@
Y,

Y ⇥ C

d�! T (Y ⇥D),
y0 2 Y

1

A =

0

@
X ⇥ Y,

· · ·
(x0, y0) 2 X ⇥ Y

1

A

(x0, y0)

(x1, y1) (x2, y2)

a1/c1 a2/c2

c

A

B

C

d

c

A

B D

C

d
(x0, y0)

a1/b1 c1/d1

(x1, y0) (x0, y1)
x0

y0

x0 y0

sequential
composition

parallel
composition

Muroya (U. Tokyo)

Memoryful GoI — Translation

16

Def. (component calculus)

Tr(C) F(C) ↵({Ci}i2I)

c

A

B

C

cc

A

B

c

· · · A

B
ci

A

B
↵
· · · · · ·· · · cj

A

Bc

A

B

C

C

((Tr c

A

B

((F

= =

(↵: I-ary algebraic operation)

application

algebraic
effect!-modality

Muroya (U. Tokyo)

1. introduce component calculus over transducers
!

!

2. define interpretation inductively
!

!

3. prove soundness of interpretation

Memoryful GoI — Translation

17

L� ` t : ⌧M

L� ` t : ⌧M

L� ` t s : ⌧M
= L� ` t : �) ⌧M • L� ` s : �M

c

A

B

C

d

c

A

B D

C

d c

A

B

C

cc

A

B

c

· · ·

A

B
ci

A

B
↵
· · · · · ·· · · cj

A

B

Muroya (U. Tokyo)

For a type judgement ,

we inductively define

!

!

 .

Memoryful GoI — Translation

18

Def. (interpretation)L� ` t : ⌧M
� ` t : ⌧ (� = x1 : ⌧1, . . . , xn : ⌧n)

L� ` t : ⌧M =

N

N
L� ` t : ⌧M
N

N

N

N

· · ·

· · ·

{ n

Muroya (U. Tokyo)

intuitionistic logic

 linear logic

Memoryful GoI — Translation

19

Def. (interpretation)L� ` t : ⌧M

7.2 Memoryful GoI Interpretation of Global State
GoI interpretation of the computational lambda calculus (i.e. call-
by-value calculus) in Section 7.2 and Section 7.3 follows from the
general scheme that we developed in this paper. In this section, we
present GoI interpretation of the computational lambda calculus ex-
tended with global states. We have a countably infinite set Loc of
location names, and each location stores a natural number. Exis-
tence of global states enables us to fetch a natural number stored at
a location ` 2 Loc and update a value stored at a location `:

! ` : nat, ` := 3 : unit.

We extract GoI interpretation of global states from the categorical
interpretation in Per(S)

�

where � is the monad in Theorem 6.1
for T = S given by SA = (1 + A ⇥ NLoc

)

NLoc

. This is a
global state monad in Example 4.4 where V = N and L =

Loc. In this section and the next section, we often confuse a map
f : N ! N with a T -transducer J

0

f : N _ N and a Set
T

-
morphism g : N !

T

N with a T -transducer Jg : N _ N.

GoI Interpretation of core fragment For a type judgment

� ` t : ⌧ (� = x
1

: ⌧
1

, · · · , x
n

: ⌧
n

),

we inductively define an S-transducer

L� ` t : ⌧M : N⌦(n+1) _ N⌦(n+1)

where N⌦(n+1) is the (n+1)-fold tensor product of N, i.e., (n+1)-
fold direct sum of N. First, we give GoI interpretation of constants,
variables, the term application and the lambda abstraction. We
interpret natural numbers, summation and variables as follows:

h kn

w w

w

0
w

0

···

···

L� ` n : natM =

h sum

w

w

0

w

w

0

···

···

L�, x : nat, y : nat ` x+ y : natM =

L� ` t+ s : natM = L� ` (�xy : nat. x+ y) t s : natM

w

w

0

w

w

0

w

w

0

w

w

0
h ···

···

···
i�1

···

···

···

Lx
1

: ⌧
1

, · · · , x
n

: ⌧
n

` x

i

: ⌧
i

M =

where w0
: N !S ; and w : ; !S N are unique SetS -morphisms,

and h : N+N ! N+N is �h ��. Here h is from Section 6, and
w and w0 are from weakening of the GoI situation in Section 4.2.4.
The combinator h corresponds to the unit of the monad �.

For � ` t : ⌧) � and � ` s : ⌧ , we define L� ` t s : �M by

�

�

e

e

0

�

c

c

0

c

c

0

L�`t:⌧)�M L�`s:⌧M

···

···

···

···
L� ` t s : �M =

where we write e for u � (
1

⇥ N), e0 for (>N ⇥ N) � v, c for
u� (�⇥N)� (v+v) and c0 for (u+u)� (⇥N)�v. Here we omit
some obvious bijections like N ⇥ (N + N) ⇠

=

N ⇥ N + N ⇥ N.
These S-transducers are from dereliction and contraction of the
GoI situation given in Section 4.2.4. We note that the component
cpy consists of c and c0.

For �, x : ⌧ ` t : �, we define L� ` �x : ⌧. t : ⌧) �M by

d

d

0

d

d

0

h

�

···

···

···

···

L�,x:⌧`t:�ML� ` �x : ⌧. t : ⌧) �M =

where d and d0 are S-transducers from N to N given by d =

u � (u⇥N) �Fv � v and d0 = u �Fu � (v⇥N) � v. They are from
digging of the GoI situation in Section 4.2.4. The dashed line box
is an application of the “strong monoidal” F given in Section 4.2.4
followed by composition of the following isomorphism

F (N⌦ · · ·⌦ N)
⇠
=�! FN⌦ · · ·⌦ FN u⌦···⌦u�! N⌦ · · ·⌦ N.

GoI interpretation of algebraic effects Let Per(T)-objects L
and N be countably infinite coproducts of terminal object 1. The
algebraic operations in Example 4.7 induce algebraic operations
on �, which induce the following Per(S)

�

-morphisms

drf : L !
�

N asg : L⇥N !
�

1

called generic effects in [28]. Interpretation of dereferencing ! ` and
assignment ` := n are derived from drf and asg respectively. For
simplicity, we give GoI interpretation of ! ` and ` := n for a fixed
location ` and a fixed value n.

We interpret � ` ! ` : nat by an S-transducer

drf
`

= ({x
`

, x
1

, x
2

, · · · }, c, x
`

) : N _ N

where the SetS -morphism c on {x
`

, x
1

, x
2

, · · · }⇥ N is given by

(c(x
`

, n))(s) = (x
s(`)

, Ls(`)M(n), s),
(c(x

m

, n))(s) = (x
m

, LmM(n), s).

Initially, the S-transducer drf
`

looks up the global state s and be-
haves as an S-transducer Ls(`)M. At the same time, the S-transducer
drf

`

stores the value s(`) locally using its internal state. Thereafter,
drf

`

looks up its internal state: if an internal state is x
n

, then drf
`

behaves following LnM without referring to global states.
We interpret � ` ` := n : unit by an S-transducer

asg
`,n

= ({x
run

, x
done

}, c0, x
run

) : N _ N

where the SetS -morphism c0 on {x
run

, x
done

}⇥ N is given by

(c0(x
run

,m))(s) = (x
done

, L1M(m), s[n/`])

(c0(x
done

,m))(s) = (x
done

, L1M(m), s).

Initially, ({x
run

, x
done

}, c0, x
run

) updates a global state, and there-
after, ({x

run

, x
done

}, c0, x
run

) does nothing. We note that L1M in
the right hand side can be any GoI interpretation of a constant.

For example, the GoI interpretation of the following program

Q = (�x : nat. x+ (` := 3); x) (! `) : nat

7.2 Memoryful GoI Interpretation of Global State
GoI interpretation of the computational lambda calculus (i.e. call-
by-value calculus) in Section 7.2 and Section 7.3 follows from the
general scheme that we developed in this paper. In this section, we
present GoI interpretation of the computational lambda calculus ex-
tended with global states. We have a countably infinite set Loc of
location names, and each location stores a natural number. Exis-
tence of global states enables us to fetch a natural number stored at
a location ` 2 Loc and update a value stored at a location `:

! ` : nat, ` := 3 : unit.

We extract GoI interpretation of global states from the categorical
interpretation in Per(S)

�

where � is the monad in Theorem 6.1
for T = S given by SA = (1 + A ⇥ NLoc

)

NLoc

. This is a
global state monad in Example 4.4 where V = N and L =

Loc. In this section and the next section, we often confuse a map
f : N ! N with a T -transducer J

0

f : N _ N and a Set
T

-
morphism g : N !

T

N with a T -transducer Jg : N _ N.

GoI Interpretation of core fragment For a type judgment

� ` t : ⌧ (� = x
1

: ⌧
1

, · · · , x
n

: ⌧
n

),

we inductively define an S-transducer

L� ` t : ⌧M : N⌦(n+1) _ N⌦(n+1)

where N⌦(n+1) is the (n+1)-fold tensor product of N, i.e., (n+1)-
fold direct sum of N. First, we give GoI interpretation of constants,
variables, the term application and the lambda abstraction. We
interpret natural numbers, summation and variables as follows:

h kn

w w

w

0
w

0

···

···

L� ` n : natM =

h sum

w

w

0

w

w

0

···

···

L�, x : nat, y : nat ` x+ y : natM =

L� ` t+ s : natM = L� ` (�xy : nat. x+ y) t s : natM

w

w

0

w

w

0

w

w

0

w

w

0
h ···

···

···
i�1

···

···

···

Lx
1

: ⌧
1

, · · · , x
n

: ⌧
n

` x

i

: ⌧
i

M =

where w0
: N !S ; and w : ; !S N are unique SetS -morphisms,

and h : N+N ! N+N is �h ��. Here h is from Section 6, and
w and w0 are from weakening of the GoI situation in Section 4.2.4.
The combinator h corresponds to the unit of the monad �.

For � ` t : ⌧) � and � ` s : ⌧ , we define L� ` t s : �M by

�

�

e

e

0

�

c

c

0

c

c

0

L�`t:⌧)�M L�`s:⌧M

···

···

···

···
L� ` t s : �M =

where we write e for u � (
1

⇥ N), e0 for (>N ⇥ N) � v, c for
u� (�⇥N)� (v+v) and c0 for (u+u)� (⇥N)�v. Here we omit
some obvious bijections like N ⇥ (N + N) ⇠

=

N ⇥ N + N ⇥ N.
These S-transducers are from dereliction and contraction of the
GoI situation given in Section 4.2.4. We note that the component
cpy consists of c and c0.

For �, x : ⌧ ` t : �, we define L� ` �x : ⌧. t : ⌧) �M by

d

d

0

d

d

0

h

�

···

···

···

···

L�,x:⌧`t:�ML� ` �x : ⌧. t : ⌧) �M =

where d and d0 are S-transducers from N to N given by d =

u � (u⇥N) �Fv � v and d0 = u �Fu � (v⇥N) � v. They are from
digging of the GoI situation in Section 4.2.4. The dashed line box
is an application of the “strong monoidal” F given in Section 4.2.4
followed by composition of the following isomorphism

F (N⌦ · · ·⌦ N)
⇠
=�! FN⌦ · · ·⌦ FN u⌦···⌦u�! N⌦ · · ·⌦ N.

GoI interpretation of algebraic effects Let Per(T)-objects L
and N be countably infinite coproducts of terminal object 1. The
algebraic operations in Example 4.7 induce algebraic operations
on �, which induce the following Per(S)

�

-morphisms

drf : L !
�

N asg : L⇥N !
�

1

called generic effects in [28]. Interpretation of dereferencing ! ` and
assignment ` := n are derived from drf and asg respectively. For
simplicity, we give GoI interpretation of ! ` and ` := n for a fixed
location ` and a fixed value n.

We interpret � ` ! ` : nat by an S-transducer

drf
`

= ({x
`

, x
1

, x
2

, · · · }, c, x
`

) : N _ N

where the SetS -morphism c on {x
`

, x
1

, x
2

, · · · }⇥ N is given by

(c(x
`

, n))(s) = (x
s(`)

, Ls(`)M(n), s),
(c(x

m

, n))(s) = (x
m

, LmM(n), s).

Initially, the S-transducer drf
`

looks up the global state s and be-
haves as an S-transducer Ls(`)M. At the same time, the S-transducer
drf

`

stores the value s(`) locally using its internal state. Thereafter,
drf

`

looks up its internal state: if an internal state is x
n

, then drf
`

behaves following LnM without referring to global states.
We interpret � ` ` := n : unit by an S-transducer

asg
`,n

= ({x
run

, x
done

}, c0, x
run

) : N _ N

where the SetS -morphism c0 on {x
run

, x
done

}⇥ N is given by

(c0(x
run

,m))(s) = (x
done

, L1M(m), s[n/`])

(c0(x
done

,m))(s) = (x
done

, L1M(m), s).

Initially, ({x
run

, x
done

}, c0, x
run

) updates a global state, and there-
after, ({x

run

, x
done

}, c0, x
run

) does nothing. We note that L1M in
the right hand side can be any GoI interpretation of a constant.

For example, the GoI interpretation of the following program

Q = (�x : nat. x+ (` := 3); x) (! `) : nat

Semantics of Higher-Order Quantum Computation via Geometry of Interaction 15

reason for this difference will be explained in §3.3, as well as the design choices that we
share with (Selinger and Valiron, 2009).

In this section we first introduce the syntax (including the type system) of Hoq in §3.1,
followed by the operational semantics (§3.2). Then in §3.3 we discuss our design choices,
especially the reason for the difference from the calculus in (Selinger and Valiron, 2009).
In §3.4 we establish some properties on Hoq, including some safety properties such as
substitution, subject reduction and progress.

3.1. Syntax

Definition 3.1 (Types of Hoq). The types of Hoq are:

A,B ::= n-qbit | !A | A ! B | ⊤ | A"B | A+B ,

with conventions qbit :≡ 1-qbit and bit :≡ ⊤+⊤ .
(9)

Here n ∈ N is a natural number.

Definition 3.2 (Terms of Hoq). The terms of Hoq are:

M,N,P ::= x | λxA.M | MN |
⟨M,N⟩ | let ⟨xA, yB⟩ = M inN |
∗ | let ∗ = M inN |
injBℓ M | injAr M | matchP with (xA '→ M | yB '→ N) |
letrec fAx = M inN |
new | measn+1

i | U | cmpm,n ,

with conventions tt :≡ inj⊤ℓ (∗) and ff :≡ inj⊤r (∗) .

(10)

Here m,n ∈ N and i ∈ [1, n+ 1] are natural numbers; U is a 2k × 2k unitary matrix, for
some k ∈ N; and A and B are type labels. The terms are almost the same as in (Selinger
and Valiron, 2009): new tt designates preparation of the qubit |0⟩; new ff is for |1⟩. The
additional composition operator cmp will have the type m-qbit"n-qbit ! (m+n)-qbit
and embed nonentangled states as possibly entangled states. For measurements we have
operators meas11, meas

2
1, meas

2
2, . . . ; meas

n+1
i takes an (n+ 1)-qubit system, measures its

i-th qubit, and returns the outcome (in the bit type) as well as the remaining quantum
state that consists of n qubits.

The set FV(M) of free variables in M is defined in the usual manner.

Definition 3.3 (Subtype relation <: in Hoq). For typing in Hoq we employ the
same subtype relation <: as in (Selinger and Valiron, 2009) and implicitly track the !

A) B

!

Muroya (U. Tokyo)

Memoryful GoI — Translation

20

Def. (interpretation)L� ` t : ⌧M

7.2 Memoryful GoI Interpretation of Global State
GoI interpretation of the computational lambda calculus (i.e. call-
by-value calculus) in Section 7.2 and Section 7.3 follows from the
general scheme that we developed in this paper. In this section, we
present GoI interpretation of the computational lambda calculus ex-
tended with global states. We have a countably infinite set Loc of
location names, and each location stores a natural number. Exis-
tence of global states enables us to fetch a natural number stored at
a location ` 2 Loc and update a value stored at a location `:

! ` : nat, ` := 3 : unit.

We extract GoI interpretation of global states from the categorical
interpretation in Per(S)

�

where � is the monad in Theorem 6.1
for T = S given by SA = (1 + A ⇥ NLoc

)

NLoc

. This is a
global state monad in Example 4.4 where V = N and L =

Loc. In this section and the next section, we often confuse a map
f : N ! N with a T -transducer J

0

f : N _ N and a Set
T

-
morphism g : N !

T

N with a T -transducer Jg : N _ N.

GoI Interpretation of core fragment For a type judgment

� ` t : ⌧ (� = x
1

: ⌧
1

, · · · , x
n

: ⌧
n

),

we inductively define an S-transducer

L� ` t : ⌧M : N⌦(n+1) _ N⌦(n+1)

where N⌦(n+1) is the (n+1)-fold tensor product of N, i.e., (n+1)-
fold direct sum of N. First, we give GoI interpretation of constants,
variables, the term application and the lambda abstraction. We
interpret natural numbers, summation and variables as follows:

h kn

w w

w

0
w

0

···

···

L� ` n : natM =

h sum

w

w

0

w

w

0

···

···

L�, x : nat, y : nat ` x+ y : natM =

L� ` t+ s : natM = L� ` (�xy : nat. x+ y) t s : natM

w

w

0

w

w

0

w

w

0

w

w

0
h ···

···

···
i�1

···

···

···

Lx
1

: ⌧
1

, · · · , x
n

: ⌧
n

` x

i

: ⌧
i

M =

where w0
: N !S ; and w : ; !S N are unique SetS -morphisms,

and h : N+N ! N+N is �h ��. Here h is from Section 6, and
w and w0 are from weakening of the GoI situation in Section 4.2.4.
The combinator h corresponds to the unit of the monad �.

For � ` t : ⌧) � and � ` s : ⌧ , we define L� ` t s : �M by

�

�

e

e

0

�

c

c

0

c

c

0

L�`t:⌧)�M L�`s:⌧M

···

···

···

···
L� ` t s : �M =

where we write e for u � (
1

⇥ N), e0 for (>N ⇥ N) � v, c for
u� (�⇥N)� (v+v) and c0 for (u+u)� (⇥N)�v. Here we omit
some obvious bijections like N ⇥ (N + N) ⇠

=

N ⇥ N + N ⇥ N.
These S-transducers are from dereliction and contraction of the
GoI situation given in Section 4.2.4. We note that the component
cpy consists of c and c0.

For �, x : ⌧ ` t : �, we define L� ` �x : ⌧. t : ⌧) �M by

d

d

0

d

d

0

h

�

···

···

···

···

L�,x:⌧`t:�ML� ` �x : ⌧. t : ⌧) �M =

where d and d0 are S-transducers from N to N given by d =

u � (u⇥N) �Fv � v and d0 = u �Fu � (v⇥N) � v. They are from
digging of the GoI situation in Section 4.2.4. The dashed line box
is an application of the “strong monoidal” F given in Section 4.2.4
followed by composition of the following isomorphism

F (N⌦ · · ·⌦ N)
⇠
=�! FN⌦ · · ·⌦ FN u⌦···⌦u�! N⌦ · · ·⌦ N.

GoI interpretation of algebraic effects Let Per(T)-objects L
and N be countably infinite coproducts of terminal object 1. The
algebraic operations in Example 4.7 induce algebraic operations
on �, which induce the following Per(S)

�

-morphisms

drf : L !
�

N asg : L⇥N !
�

1

called generic effects in [28]. Interpretation of dereferencing ! ` and
assignment ` := n are derived from drf and asg respectively. For
simplicity, we give GoI interpretation of ! ` and ` := n for a fixed
location ` and a fixed value n.

We interpret � ` ! ` : nat by an S-transducer

drf
`

= ({x
`

, x
1

, x
2

, · · · }, c, x
`

) : N _ N

where the SetS -morphism c on {x
`

, x
1

, x
2

, · · · }⇥ N is given by

(c(x
`

, n))(s) = (x
s(`)

, Ls(`)M(n), s),
(c(x

m

, n))(s) = (x
m

, LmM(n), s).

Initially, the S-transducer drf
`

looks up the global state s and be-
haves as an S-transducer Ls(`)M. At the same time, the S-transducer
drf

`

stores the value s(`) locally using its internal state. Thereafter,
drf

`

looks up its internal state: if an internal state is x
n

, then drf
`

behaves following LnM without referring to global states.
We interpret � ` ` := n : unit by an S-transducer

asg
`,n

= ({x
run

, x
done

}, c0, x
run

) : N _ N

where the SetS -morphism c0 on {x
run

, x
done

}⇥ N is given by

(c0(x
run

,m))(s) = (x
done

, L1M(m), s[n/`])

(c0(x
done

,m))(s) = (x
done

, L1M(m), s).

Initially, ({x
run

, x
done

}, c0, x
run

) updates a global state, and there-
after, ({x

run

, x
done

}, c0, x
run

) does nothing. We note that L1M in
the right hand side can be any GoI interpretation of a constant.

For example, the GoI interpretation of the following program

Q = (�x : nat. x+ (` := 3); x) (! `) : nat

Muroya (U. Tokyo)

1. introduce component calculus over transducers
!

!

2. define interpretation inductively
!

!

3. prove soundness of interpretation

Memoryful GoI — Translation

21

L� ` t : ⌧M

L� ` t : ⌧M

c

A

B

C

d

c

A

B D

C

d c

A

B

C

cc

A

B

c

· · ·

A

B
ci

A

B
↵
· · · · · ·· · · cj

A

B

L� ` t : ⌧M =

N

N
L� ` t : ⌧M
N

N

N

N

· · ·

· · ·

{ n

Muroya (U. Tokyo)

Memoryful GoI — Translation

22

Thm. (soundness)

6. Realizability and Categorical Models
In the next section, we exemplify GoI interpretation of algebraic
effects. The purpose of this section is to sketch how to derive them:
we use realizability technique. For details of arguments and proofs
in this section are deferred to an extended version.

From the SK-algebra (Res(T)(N,N), •), we can utilize the
realizability construction and constructs a cartesian closed category
Per(T) consisting of partial equivalence relations on the SK-
algebra Res(T)(N,N) and realizable maps. See [17] for a precise
definition of the category of partial equivalence relations. Since
the category Per(T) has countable products, we can consider
algebraic operations with countable arities on monads on Per(T).

The next theorem is our main theorem, from which soundness
of GoI interpretation that we are going to give follows.

Theorem 6.1. The cartesian closed category Per(T) has a strong
monad � and an identity-on-object countable-product-preserving
faithful functor (�)

†
: AlgOp

T

! AlgOp
�

.

We only give a definition of �R for R in Per(T). Let h be a map
from N to N given by

��(�+N)�(N+ &)�(+N)� & �(�+N)�(N+ &)�(+N)�
where & : N + N ! N + N is the swapping. We derived h using
combinatory completeness: the map h represents a term �x.�k. k x
of the untyped linear lambda calculus [31]. We say that an object R
in Per(T) is closed when (↵N,N{ai

}
i2ary(↵)

,↵N,N{a0
i

}
i2ary(↵)

)

is in R for each {(a
i

, a0
i

) 2 R}
i2ary(↵)

and for each algebraic
operation ↵ on T . We define �R by

�R =

\
{S 2 Per(T) | R0 ✓ S and S is closed}

where R0
= {([J

0

h] • a, [J
0

h] • a0
) | (a, a0

) 2 R}.
By Theorem 6.1, the Kleisli category Per(T)

�

is a categor-
ical model of the computational lambda calculus, i.e., there is a
canonical interpretation of the computational lambda calculus in
Per(T)

�

. The interpretation, which we call categorical interpre-
tation, is sound with respect to the standard equational theory of
the computational lambda calculus [26]. We can interpret algebraic
effects using algebraic operations on � induced by algebraic opera-
tions on T via (�)

†. For example, when we need nondeterminism,
we can start from the powerset monad; when we need global states,
we can start from a global state monad.

We sketch extraction of GoI interpretation—i.e. extraction of
concrete T -transducers as realizers—from the categorical interpre-
tation of the computational lambda calculus extended with alge-
braic effects and a base type nat. For simplicity, we only consider
closed terms.

1. We choose a monad T on Set that satisfies Requirement 4.2.
2. We interpret the computational lambda calculus in the Kleisli

category Per(T)
�

as in [26, 28] where we interpret algebraic
effects by algebraic operations on � derived from algebraic
operations on T via (�)

†, and we interpret nat by a natural
number object of Per(T).

3. The categorical interpretation of a closed term t of a type ⌧ bi-
jectively corresponds to an equivalence class of a partial equiv-
alence relation �J⌧K where J⌧K is the categorical interpretation
of the type ⌧ . We choose a Res(T)-morphism on N that repre-
sents the equivalence class, and then, we extract a T -transducer
LtM : N _ N that represents the Res(T)-morphism on N.

We call the T -transducer LtM GoI interpretation of a term t.
We extracted GoI interpretation so that the next theorem holds.

Theorem 6.2 (Soundness). For closed terms t and s of type ⌧ ,
• If t ⇡ s, then ([LtM], [LsM]) 2 �J⌧K.

• If t ⇡ s and ⌧ is the base type nat, then LtM 'T

N,N LsM.

where [LtM] is the Res(T)-morphism represented by LtM, and we
write t ⇡ s when the equation holds in the extension of the
computational lambda calculus. For example, we have

v (3 t 5) ⇡ v 3 t v 5, 3 t 5 t 3 ⇡ 3 t 5 ⇡ 5 t 3

for any value v when the extension of the computational lambda
calculus has nondeterminism.

7. GoI Interpretation of Algebraic Effects
7.1 Memoryless GoI Interpretation
For comparison, we first present (memoryless) GoI interpretation
of the following programs:

(�xy : nat. x+ y) 5 3 (�x : nat. x+ x) 3.

We write g for � � inlN,N, d for � � inrN,N like [23] and hn,mi for
u(n,m). For i 2 N, we define a map k

i

: N ! N by

k
i

hm,ni = hm, ii,

and we define maps sum, cpy : N+ N+ N ! N+ N+ N by

sum(inj

1

(n)) = inj

2

(n)

sum(inj

2

(n)) = inj

3

hn, 0i
sum(inj

3

hhn,mi, li) = inj

1

hn,m+ li
cpy(inj

1

hn,mi) = inj

3

hgn,mi
cpy(inj

2

hn,mi) = inj

3

hdn,mi
cpy(inj

3

hgn,mi) = inj

1

hn,mi
cpy(inj

3

hdn,mi) = inj

2

hn,mi

where inj

i

: N ! N+N+N is the i-th injection. The map cpy is
from contraction in the GoI situation.

In (memoryless) GoI interpretation, we interpret a closed term
as a partial map from N to N. The following diagrams present GoI
interpretation of programs:

LnM = k
n

: N* N,

L(�xy : nat. x+ y) 5 3M = sum k
3

k
5

: N* N,

L(�x : nat. x+ x) 3M = sum cpy k
3

: N* N.

If we input hn,mi to L(�xy : nat. x + y) 5 3M, then we get an
output hn, 8i as a result of the following interactive computation
between sum, k

3

and k
5

.

1. sum receives an input hn,mi from the leftmost port and out-
puts hn,mi from the middle port to ask a value of x.

2. k
5

answers hn, 5i to sum.
3. sum receives an input hn, 5i from the middle port and outputs

hhn, 5i, 0i from the rightmost port to ask a value of y.
4. k

3

answers hhn, 5i, 3i to sum.
5. sum outputs hn, 8i from the leftmost port.

As a whole, GoI interpretation is sound with respect to �-equality:
L(�xy : nat. x + y) 5 3M is equal to k

8

. Similarly, we can check
that the GoI interpretation L(�x : nat. x+x) 3M is equal to k

6

. The
interactive computation illustrates how sum and cpy work: sum
computes sum, and cpy copies data.

6. Realizability and Categorical Models
In the next section, we exemplify GoI interpretation of algebraic
effects. The purpose of this section is to sketch how to derive them:
we use realizability technique. For details of arguments and proofs
in this section are deferred to an extended version.

From the SK-algebra (Res(T)(N,N), •), we can utilize the
realizability construction and constructs a cartesian closed category
Per(T) consisting of partial equivalence relations on the SK-
algebra Res(T)(N,N) and realizable maps. See [17] for a precise
definition of the category of partial equivalence relations. Since
the category Per(T) has countable products, we can consider
algebraic operations with countable arities on monads on Per(T).

The next theorem is our main theorem, from which soundness
of GoI interpretation that we are going to give follows.

Theorem 6.1. The cartesian closed category Per(T) has a strong
monad � and an identity-on-object countable-product-preserving
faithful functor (�)

†
: AlgOp

T

! AlgOp
�

.

We only give a definition of �R for R in Per(T). Let h be a map
from N to N given by

��(�+N)�(N+ &)�(+N)� & �(�+N)�(N+ &)�(+N)�
where & : N + N ! N + N is the swapping. We derived h using
combinatory completeness: the map h represents a term �x.�k. k x
of the untyped linear lambda calculus [31]. We say that an object R
in Per(T) is closed when (↵N,N{ai

}
i2ary(↵)

,↵N,N{a0
i

}
i2ary(↵)

)

is in R for each {(a
i

, a0
i

) 2 R}
i2ary(↵)

and for each algebraic
operation ↵ on T . We define �R by

�R =

\
{S 2 Per(T) | R0 ✓ S and S is closed}

where R0
= {([J

0

h] • a, [J
0

h] • a0
) | (a, a0

) 2 R}.
By Theorem 6.1, the Kleisli category Per(T)

�

is a categor-
ical model of the computational lambda calculus, i.e., there is a
canonical interpretation of the computational lambda calculus in
Per(T)

�

. The interpretation, which we call categorical interpre-
tation, is sound with respect to the standard equational theory of
the computational lambda calculus [26]. We can interpret algebraic
effects using algebraic operations on � induced by algebraic opera-
tions on T via (�)

†. For example, when we need nondeterminism,
we can start from the powerset monad; when we need global states,
we can start from a global state monad.

We sketch extraction of GoI interpretation—i.e. extraction of
concrete T -transducers as realizers—from the categorical interpre-
tation of the computational lambda calculus extended with alge-
braic effects and a base type nat. For simplicity, we only consider
closed terms.

1. We choose a monad T on Set that satisfies Requirement 4.2.
2. We interpret the computational lambda calculus in the Kleisli

category Per(T)
�

as in [26, 28] where we interpret algebraic
effects by algebraic operations on � derived from algebraic
operations on T via (�)

†, and we interpret nat by a natural
number object of Per(T).

3. The categorical interpretation of a closed term t of a type ⌧ bi-
jectively corresponds to an equivalence class of a partial equiv-
alence relation �J⌧K where J⌧K is the categorical interpretation
of the type ⌧ . We choose a Res(T)-morphism on N that repre-
sents the equivalence class, and then, we extract a T -transducer
LtM : N _ N that represents the Res(T)-morphism on N.

We call the T -transducer LtM GoI interpretation of a term t.
We extracted GoI interpretation so that the next theorem holds.

Theorem 6.2 (Soundness). For closed terms t and s of type ⌧ ,
• If t ⇡ s, then ([LtM], [LsM]) 2 �J⌧K.

• If t ⇡ s and ⌧ is the base type nat, then LtM 'T

N,N LsM.

where [LtM] is the Res(T)-morphism represented by LtM, and we
write t ⇡ s when the equation holds in the extension of the
computational lambda calculus. For example, we have

v (3 t 5) ⇡ v 3 t v 5, 3 t 5 t 3 ⇡ 3 t 5 ⇡ 5 t 3

for any value v when the extension of the computational lambda
calculus has nondeterminism.

7. GoI Interpretation of Algebraic Effects
7.1 Memoryless GoI Interpretation
For comparison, we first present (memoryless) GoI interpretation
of the following programs:

(�xy : nat. x+ y) 5 3 (�x : nat. x+ x) 3.

We write g for � � inlN,N, d for � � inrN,N like [23] and hn,mi for
u(n,m). For i 2 N, we define a map k

i

: N ! N by

k
i

hm,ni = hm, ii,

and we define maps sum, cpy : N+ N+ N ! N+ N+ N by

sum(inj

1

(n)) = inj

2

(n)

sum(inj

2

(n)) = inj

3

hn, 0i
sum(inj

3

hhn,mi, li) = inj

1

hn,m+ li
cpy(inj

1

hn,mi) = inj

3

hgn,mi
cpy(inj

2

hn,mi) = inj

3

hdn,mi
cpy(inj

3

hgn,mi) = inj

1

hn,mi
cpy(inj

3

hdn,mi) = inj

2

hn,mi

where inj

i

: N ! N+N+N is the i-th injection. The map cpy is
from contraction in the GoI situation.

In (memoryless) GoI interpretation, we interpret a closed term
as a partial map from N to N. The following diagrams present GoI
interpretation of programs:

LnM = k
n

: N* N,

L(�xy : nat. x+ y) 5 3M = sum k
3

k
5

: N* N,

L(�x : nat. x+ x) 3M = sum cpy k
3

: N* N.

If we input hn,mi to L(�xy : nat. x + y) 5 3M, then we get an
output hn, 8i as a result of the following interactive computation
between sum, k

3

and k
5

.

1. sum receives an input hn,mi from the leftmost port and out-
puts hn,mi from the middle port to ask a value of x.

2. k
5

answers hn, 5i to sum.
3. sum receives an input hn, 5i from the middle port and outputs

hhn, 5i, 0i from the rightmost port to ask a value of y.
4. k

3

answers hhn, 5i, 3i to sum.
5. sum outputs hn, 8i from the leftmost port.

As a whole, GoI interpretation is sound with respect to �-equality:
L(�xy : nat. x + y) 5 3M is equal to k

8

. Similarly, we can check
that the GoI interpretation L(�x : nat. x+x) 3M is equal to k

6

. The
interactive computation illustrates how sum and cpy work: sum
computes sum, and cpy copies data.

Muroya (U. Tokyo)

Memoryful GoI — Translation

23

proof (soundness)

transducers resumptions

c

A

B

c

A

B[[
behavioral!

equivalence

Muroya (U. Tokyo)

Memoryful GoI — Translation

23

proof (soundness)

transducers resumptions

c

A

B

c

A

B[[
behavioral!

equivalence

GoI situation
✓

(Res(T), ;,�,Tr),
F, J0�, J0 , J0u, J0v

◆

Muroya (U. Tokyo)

Memoryful GoI — Translation

23

proof (soundness)

transducers resumptions

c

A

B

c

A

B[[
behavioral!

equivalence

GoI situation
✓

(Res(T), ;,�,Tr),
F, J0�, J0 , J0u, J0v

◆
c

A

B

C

d

c

A

B D

C

d c

A

B

C

cc

A

B

c

· · ·
� : N+ N ⇠= N :

u : N⇥ N ⇠= N : v

Muroya (U. Tokyo)

Memoryful GoI — Translation

24

proof (soundness)

resumptions
partial equivalence relations (per’s)

on resumptions

GoI situation
✓

(Res(T), ;,�,Tr),
F, J0�, J0 , J0u, J0v

◆

categorical GoI!
 [Abramsky,!
 Haghverdi, Scott ’02]!
realizability

cartesian closed category Per(T)

Muroya (U. Tokyo)

Memoryful GoI — Translation

24

proof (soundness)

resumptions
partial equivalence relations (per’s)

on resumptions

GoI situation
✓

(Res(T), ;,�,Tr),
F, J0�, J0 , J0u, J0v

◆

categorical GoI!
 [Abramsky,!
 Haghverdi, Scott ’02]!
realizability

cartesian closed category Per(T)

monad on� Per(T)

Muroya (U. Tokyo)

Memoryful GoI — Translation

25

proof (soundness)

partial equivalence relations (per’s)
on resumptionstransducers resumptions

cartesian closed category Per(T)

monad on� Per(T)

denotational
semantics

equivalence class ofJ` t : ⌧K =
�J⌧K 2 Per(T)

Muroya (U. Tokyo)

Memoryful GoI — Translation

25

proof (soundness)

partial equivalence relations (per’s)
on resumptionstransducers resumptions

cartesian closed category Per(T)

monad on� Per(T)

denotational
semantics

equivalence class ofJ` t : ⌧K =
�J⌧K 2 Per(T)

L` t : ⌧M

Muroya (U. Tokyo)

Memoryful GoI — Translation

25

proof (soundness)

partial equivalence relations (per’s)
on resumptionstransducers resumptions

cartesian closed category Per(T)

monad on� Per(T)

denotational
semantics

equivalence class ofJ` t : ⌧K =
�J⌧K 2 Per(T)

L` t : ⌧M

Muroya (U. Tokyo)

Memoryful GoI — Translation

25

proof (soundness)

partial equivalence relations (per’s)
on resumptionstransducers resumptions

cartesian closed category Per(T)

monad on� Per(T)

denotational
semantics

equivalence class ofJ` t : ⌧K =
�J⌧K 2 Per(T)

L` t : ⌧M

Muroya (U. Tokyo)

Memoryful GoI — Summary

26

terms

transducers

c

A

B

C

d

c

A

B D

C

d c

A

B

C

cc

A

B

c

· · ·

A

B
ci

A

B
↵
· · · · · ·· · · cj

A

B

L� ` t : ⌧M =

N

N
L� ` t : ⌧M
N

N

N

N

· · ·

· · ·

{ n

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

net equipped with memories: TtT Simulator records every move-
ment of a token on it, together with the change of memories (from
x 2 X to x

0) caused by the visit of the token. Examples of simula-
tion results are shown shortly.

TtT Compiler is parametric in the choice of a monad T and al-
gebraic operations, exploiting Haskell’s support of computational
effects as monads. TtT Simulator, however, is necessarily monad-
specific; currently it supports the powerset monad (nondetermin-
ism) and the distribution monad (probability).

TtT as a Prototype We emphasize that what our tool TtT cur-
rently does is of no practical use whatsoever: after all it trans-
lates an effectful �-term—that may well be simply expressed as
a Haskell program—to another Haskell program that is way more
complicated and runs more slowly. Nevertheless we believe this is
a worthwhile venture, for the following three reasons.

The first reason is theoretical: our memoryful GoI framework
in [8] seems to be a useful theoretical tool that gives us in-
sights into higher-order computation with effects. Automating the
translation—that is painfully complicated when done by hand—
will hence meet some theoreticians’ needs.

The second reason is speculative but practical: we wish to fol-
low the path of [3, 4, 10, 11] and use memoryful GoI as a compila-
tion technique to hardware. In our case this will specifically mean
to take hardware that natively supports the effect T , and compiling
�-terms with T -algebraic effects to it. Doing so for emerging com-
puting paradigms like probabilistic and quantum programming will
have big practical impacts—not only because programs will exe-
cute faster (see e.g. [5]), but also because the compilation (based
on denotational semantics) is correct by construction. The current
toy tool of TtT will then form a basis of such practical compilers.

The third reason is: it’s simply a lot of fun to see higher-order
effectful computation in action—or GoI at work. We hope the
reader will be convinced by the following examples.

Transducers, Derived and Executed Consider the term P in (1)
with nondeterministic choice t in it. Its translation to a (three-state,
nondeterministic) transducer LPM : 3⇥ N ! P(3⇥ N), after some
manual simplifications, is depicted below (manually).

LPM =

�

h sum cpy

�

L3M�N,NL5M

. (3)

The figure is a string diagram in the traced monoidal category of
resumptions; the box L3M�N,NL5M in (3) is the (equivalence class of)
the transducer (2), after suitably encoding messages like q or 3 as
natural numbers. The diagram (3) can be identified with a proof net
via the “Int construction.” Specifically: notice a horizontal axis of
symmetry; folding the diagram on the axis then gives a proof net,
where the four � and nodes get identified and yield two nodes
that are understood as ` or ⌦ links in the proof net.

The tool TtT generates the transducer LPM inductively by the
derivation of the type of P. The outcome is a Haskell program
of type Td [] x Int Int where: Td is as defined before; [] is
the list monad; and x is a type that stands for a three-element set.
Presenting it graphically as in (3) seems to take a lot of efforts and
is left as future work.

Instead of pictorial presentation, we “execute” the transducer
with TtT Simulator and observe its dynamic behaviors. The simu-
lation result of LPM for P in (1) consists of 741 lines and it yields 6
and 10 as possible outcomes, successfully excluding 8. Similarly,
for the term (�f. f 0+f 1) (�x. 3t5) we have a simulation result

of 4526 lines that yields 6, 8, 8, 10 as possible outcomes (duplica-
tion of 8 is due to different final states of the transducer).

Simulation Results We present actual simulation results for sim-
pler terms: 3t5, written as 3|_|5 in Fig. 1; and (�x. x) 1 in Fig. 2.

1 . ---- dd<42,137> --->

2 | Query:[[3|_|5] @ Nothing]

3 +-. ---- dd<42,137> --->

4 | | Query:[[3]|_|5 @ *]

5 | | h; k_3; h

6 | | [[3]|_|5 @ *]:Answer

7 | | ---- dd<42,3> --->

8 | | [[3|_|5] @ Just (Left (*))]:Answer

9 | | ---- dd<42,3> --->

10 | Result: 3 / State: Just (Left (*))

11 ‘-. ---- dd<42,137> --->

12 | Query:[3|_|[5] @ *]

13 | h; k_5; h

14 | [3|_|[5] @ *]:Answer

15 | ---- dd<42,5> --->

16 | [[3|_|5] @ Just (Right (*))]:Answer

17 | ---- dd<42,5> --->

18 Result: 5 / State: Just (Right (*))

Figure 1. Simulation Result for 3 t 5

The convention is as follows. A token carries a natural number n
around—or more precisely, an edge e.g. in (3) consists of |N|-many
“pipes” and a token goes through the n-th—and this is denoted by
---- n --->. Therefore expressions like dd<42,137> in Fig. 1
stand for a certain natural number. We however chose to supple-
mentarily use the dynamic algebra notation (g for left and d for
right, in French, see e.g. [9, 11]), for readability and efficiency.

In Fig. 1, between movements ---- n ---> of the token are
expressions like Query:[[3|_|5] @ Nothing] and h; k_3; h.
The ones like the former stand for the token’s entrance to and exit
from a transducer. Specifically, p:[t@x]—with a subterm t

0 of t

designated by [t

0
]—means: the token entered to (a copy of) the

transducer Lt0M, whose current state is x, at its port p. Typical ports
include: Query (a top-level query) and Answer x (an answer to
the previous query on x; see Fig. 2, lines 24 and 44). Similarly,
[t@x]:p means the token departed from the port p.

The latter class of expressions like h; k_3; h on Fig. 1, line
5 and phi on Fig. 2, line 3 are referred to as bookkeeping. For
example, h; k_3; h means the token traversed an h node, a k3

node and then an h node. The definition of these nodes (as pure
functions like h : N + N ! N + N) is found in [8]. As we noted
before, these bookkeeping nodes correspond to logical connectives
in a proof net; therefore they change the number carried by the
token. From line 1 to 4 in Fig. 2, g is added by phi i.e. `; this is
much like in the dynamic algebra presentation [9].

Let us discuss effects. Branching occurred in Fig. 1, line 3,
as depicted by the lines on the left. As we discussed about the
term (1), different branches must result in different states x 2 X , or
“memories”; we see this is indeed the case in Fig. 1, lines 8 and 16,
hence eventually lines 10 and 18. The states Just (Left (*))

and Just (Right (*)) encode x

3

and x

5

in (2), respectively.
The indentation designates the depth of the subterm in focus. In

Fig. 2, we see a query on x raised on line 24. The token is returned
to shallower levels and is eventually passed on to the subterm 1 of
(�x. x) 1 (denoted by (\x.x) [1]) on line 33; and then the value
1 of x is obtained and carried by the token (in the form of 1 in
<42,1>) to the originator on line 44.

We note that a query to a natural number value must be a token
carrying a number dd<n,m>, where n and m are arbitrary (hence
42 and 137 in Fig. 1–2 are just arbitrary numbers). An answer to
this query, that the value is l, is given by a token carrying dd<n,l>.

use coalgebraic component calculus

Muroya (U. Tokyo)

Our Tool TtT

27

terms

transducers

“Terms to Transducers”

λ-terms with
effects

Haskell program

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

simulation
result

TtT Compiler

TtT Simulator

memoryful GoI

Muroya (U. Tokyo)

Our Tool TtT — Demonstration

28

net equipped with memories: TtT Simulator records every move-
ment of a token on it, together with the change of memories (from
x 2 X to x

0) caused by the visit of the token. Examples of simula-
tion results are shown shortly.

TtT Compiler is parametric in the choice of a monad T and al-
gebraic operations, exploiting Haskell’s support of computational
effects as monads. TtT Simulator, however, is necessarily monad-
specific; currently it supports the powerset monad (nondetermin-
ism) and the distribution monad (probability).

TtT as a Prototype We emphasize that what our tool TtT cur-
rently does is of no practical use whatsoever: after all it trans-
lates an effectful �-term—that may well be simply expressed as
a Haskell program—to another Haskell program that is way more
complicated and runs more slowly. Nevertheless we believe this is
a worthwhile venture, for the following three reasons.

The first reason is theoretical: our memoryful GoI framework
in [8] seems to be a useful theoretical tool that gives us in-
sights into higher-order computation with effects. Automating the
translation—that is painfully complicated when done by hand—
will hence meet some theoreticians’ needs.

The second reason is speculative but practical: we wish to fol-
low the path of [3, 4, 10, 11] and use memoryful GoI as a compila-
tion technique to hardware. In our case this will specifically mean
to take hardware that natively supports the effect T , and compiling
�-terms with T -algebraic effects to it. Doing so for emerging com-
puting paradigms like probabilistic and quantum programming will
have big practical impacts—not only because programs will exe-
cute faster (see e.g. [5]), but also because the compilation (based
on denotational semantics) is correct by construction. The current
toy tool of TtT will then form a basis of such practical compilers.

The third reason is: it’s simply a lot of fun to see higher-order
effectful computation in action—or GoI at work. We hope the
reader will be convinced by the following examples.

Transducers, Derived and Executed Consider the term P in (1)
with nondeterministic choice t in it. Its translation to a (three-state,
nondeterministic) transducer LPM : 3⇥ N ! P(3⇥ N), after some
manual simplifications, is depicted below (manually).

LPM =

�

h sum cpy

�

L3M�N,NL5M

. (3)

The figure is a string diagram in the traced monoidal category of
resumptions; the box L3M�N,NL5M in (3) is the (equivalence class of)
the transducer (2), after suitably encoding messages like q or 3 as
natural numbers. The diagram (3) can be identified with a proof net
via the “Int construction.” Specifically: notice a horizontal axis of
symmetry; folding the diagram on the axis then gives a proof net,
where the four � and nodes get identified and yield two nodes
that are understood as ` or ⌦ links in the proof net.

The tool TtT generates the transducer LPM inductively by the
derivation of the type of P. The outcome is a Haskell program
of type Td [] x Int Int where: Td is as defined before; [] is
the list monad; and x is a type that stands for a three-element set.
Presenting it graphically as in (3) seems to take a lot of efforts and
is left as future work.

Instead of pictorial presentation, we “execute” the transducer
with TtT Simulator and observe its dynamic behaviors. The simu-
lation result of LPM for P in (1) consists of 741 lines and it yields 6
and 10 as possible outcomes, successfully excluding 8. Similarly,
for the term (�f. f 0+f 1) (�x. 3t5) we have a simulation result

of 4526 lines that yields 6, 8, 8, 10 as possible outcomes (duplica-
tion of 8 is due to different final states of the transducer).

Simulation Results We present actual simulation results for sim-
pler terms: 3t5, written as 3|_|5 in Fig. 1; and (�x. x) 1 in Fig. 2.

1 . ---- dd<42,137> --->

2 | Query:[[3|_|5] @ Nothing]

3 +-. ---- dd<42,137> --->

4 | | Query:[[3]|_|5 @ *]

5 | | h; k_3; h

6 | | [[3]|_|5 @ *]:Answer

7 | | ---- dd<42,3> --->

8 | | [[3|_|5] @ Just (Left (*))]:Answer

9 | | ---- dd<42,3> --->

10 | Result: 3 / State: Just (Left (*))

11 ‘-. ---- dd<42,137> --->

12 | Query:[3|_|[5] @ *]

13 | h; k_5; h

14 | [3|_|[5] @ *]:Answer

15 | ---- dd<42,5> --->

16 | [[3|_|5] @ Just (Right (*))]:Answer

17 | ---- dd<42,5> --->

18 Result: 5 / State: Just (Right (*))

Figure 1. Simulation Result for 3 t 5

The convention is as follows. A token carries a natural number n
around—or more precisely, an edge e.g. in (3) consists of |N|-many
“pipes” and a token goes through the n-th—and this is denoted by
---- n --->. Therefore expressions like dd<42,137> in Fig. 1
stand for a certain natural number. We however chose to supple-
mentarily use the dynamic algebra notation (g for left and d for
right, in French, see e.g. [9, 11]), for readability and efficiency.

In Fig. 1, between movements ---- n ---> of the token are
expressions like Query:[[3|_|5] @ Nothing] and h; k_3; h.
The ones like the former stand for the token’s entrance to and exit
from a transducer. Specifically, p:[t@x]—with a subterm t

0 of t

designated by [t

0
]—means: the token entered to (a copy of) the

transducer Lt0M, whose current state is x, at its port p. Typical ports
include: Query (a top-level query) and Answer x (an answer to
the previous query on x; see Fig. 2, lines 24 and 44). Similarly,
[t@x]:p means the token departed from the port p.

The latter class of expressions like h; k_3; h on Fig. 1, line
5 and phi on Fig. 2, line 3 are referred to as bookkeeping. For
example, h; k_3; h means the token traversed an h node, a k3

node and then an h node. The definition of these nodes (as pure
functions like h : N + N ! N + N) is found in [8]. As we noted
before, these bookkeeping nodes correspond to logical connectives
in a proof net; therefore they change the number carried by the
token. From line 1 to 4 in Fig. 2, g is added by phi i.e. `; this is
much like in the dynamic algebra presentation [9].

Let us discuss effects. Branching occurred in Fig. 1, line 3,
as depicted by the lines on the left. As we discussed about the
term (1), different branches must result in different states x 2 X , or
“memories”; we see this is indeed the case in Fig. 1, lines 8 and 16,
hence eventually lines 10 and 18. The states Just (Left (*))

and Just (Right (*)) encode x

3

and x

5

in (2), respectively.
The indentation designates the depth of the subterm in focus. In

Fig. 2, we see a query on x raised on line 24. The token is returned
to shallower levels and is eventually passed on to the subterm 1 of
(�x. x) 1 (denoted by (\x.x) [1]) on line 33; and then the value
1 of x is obtained and carried by the token (in the form of 1 in
<42,1>) to the originator on line 44.

We note that a query to a natural number value must be a token
carrying a number dd<n,m>, where n and m are arbitrary (hence
42 and 137 in Fig. 1–2 are just arbitrary numbers). An answer to
this query, that the value is l, is given by a token carrying dd<n,l>.

net equipped with memories: TtT Simulator records every move-
ment of a token on it, together with the change of memories (from
x 2 X to x

0) caused by the visit of the token. Examples of simula-
tion results are shown shortly.

TtT Compiler is parametric in the choice of a monad T and al-
gebraic operations, exploiting Haskell’s support of computational
effects as monads. TtT Simulator, however, is necessarily monad-
specific; currently it supports the powerset monad (nondetermin-
ism) and the distribution monad (probability).

TtT as a Prototype We emphasize that what our tool TtT cur-
rently does is of no practical use whatsoever: after all it trans-
lates an effectful �-term—that may well be simply expressed as
a Haskell program—to another Haskell program that is way more
complicated and runs more slowly. Nevertheless we believe this is
a worthwhile venture, for the following three reasons.

The first reason is theoretical: our memoryful GoI framework
in [8] seems to be a useful theoretical tool that gives us in-
sights into higher-order computation with effects. Automating the
translation—that is painfully complicated when done by hand—
will hence meet some theoreticians’ needs.

The second reason is speculative but practical: we wish to fol-
low the path of [3, 4, 10, 11] and use memoryful GoI as a compila-
tion technique to hardware. In our case this will specifically mean
to take hardware that natively supports the effect T , and compiling
�-terms with T -algebraic effects to it. Doing so for emerging com-
puting paradigms like probabilistic and quantum programming will
have big practical impacts—not only because programs will exe-
cute faster (see e.g. [5]), but also because the compilation (based
on denotational semantics) is correct by construction. The current
toy tool of TtT will then form a basis of such practical compilers.

The third reason is: it’s simply a lot of fun to see higher-order
effectful computation in action—or GoI at work. We hope the
reader will be convinced by the following examples.

Transducers, Derived and Executed Consider the term P in (1)
with nondeterministic choice t in it. Its translation to a (three-state,
nondeterministic) transducer LPM : 3⇥ N ! P(3⇥ N), after some
manual simplifications, is depicted below (manually).

LPM =

�

h sum cpy

�

L3M�N,NL5M

. (3)

The figure is a string diagram in the traced monoidal category of
resumptions; the box L3M�N,NL5M in (3) is the (equivalence class of)
the transducer (2), after suitably encoding messages like q or 3 as
natural numbers. The diagram (3) can be identified with a proof net
via the “Int construction.” Specifically: notice a horizontal axis of
symmetry; folding the diagram on the axis then gives a proof net,
where the four � and nodes get identified and yield two nodes
that are understood as ` or ⌦ links in the proof net.

The tool TtT generates the transducer LPM inductively by the
derivation of the type of P. The outcome is a Haskell program
of type Td [] x Int Int where: Td is as defined before; [] is
the list monad; and x is a type that stands for a three-element set.
Presenting it graphically as in (3) seems to take a lot of efforts and
is left as future work.

Instead of pictorial presentation, we “execute” the transducer
with TtT Simulator and observe its dynamic behaviors. The simu-
lation result of LPM for P in (1) consists of 741 lines and it yields 6
and 10 as possible outcomes, successfully excluding 8. Similarly,
for the term (�f. f 0+f 1) (�x. 3t5) we have a simulation result

of 4526 lines that yields 6, 8, 8, 10 as possible outcomes (duplica-
tion of 8 is due to different final states of the transducer).

Simulation Results We present actual simulation results for sim-
pler terms: 3t5, written as 3|_|5 in Fig. 1; and (�x. x) 1 in Fig. 2.

1 . ---- dd<42,137> --->

2 | Query:[[3|_|5] @ Nothing]

3 +-. ---- dd<42,137> --->

4 | | Query:[[3]|_|5 @ *]

5 | | h; k_3; h

6 | | [[3]|_|5 @ *]:Answer

7 | | ---- dd<42,3> --->

8 | | [[3|_|5] @ Just (Left (*))]:Answer

9 | | ---- dd<42,3> --->

10 | Result: 3 / State: Just (Left (*))

11 ‘-. ---- dd<42,137> --->

12 | Query:[3|_|[5] @ *]

13 | h; k_5; h

14 | [3|_|[5] @ *]:Answer

15 | ---- dd<42,5> --->

16 | [[3|_|5] @ Just (Right (*))]:Answer

17 | ---- dd<42,5> --->

18 Result: 5 / State: Just (Right (*))

Figure 1. Simulation Result for 3 t 5

The convention is as follows. A token carries a natural number n
around—or more precisely, an edge e.g. in (3) consists of |N|-many
“pipes” and a token goes through the n-th—and this is denoted by
---- n --->. Therefore expressions like dd<42,137> in Fig. 1
stand for a certain natural number. We however chose to supple-
mentarily use the dynamic algebra notation (g for left and d for
right, in French, see e.g. [9, 11]), for readability and efficiency.

In Fig. 1, between movements ---- n ---> of the token are
expressions like Query:[[3|_|5] @ Nothing] and h; k_3; h.
The ones like the former stand for the token’s entrance to and exit
from a transducer. Specifically, p:[t@x]—with a subterm t

0 of t

designated by [t

0
]—means: the token entered to (a copy of) the

transducer Lt0M, whose current state is x, at its port p. Typical ports
include: Query (a top-level query) and Answer x (an answer to
the previous query on x; see Fig. 2, lines 24 and 44). Similarly,
[t@x]:p means the token departed from the port p.

The latter class of expressions like h; k_3; h on Fig. 1, line
5 and phi on Fig. 2, line 3 are referred to as bookkeeping. For
example, h; k_3; h means the token traversed an h node, a k3

node and then an h node. The definition of these nodes (as pure
functions like h : N + N ! N + N) is found in [8]. As we noted
before, these bookkeeping nodes correspond to logical connectives
in a proof net; therefore they change the number carried by the
token. From line 1 to 4 in Fig. 2, g is added by phi i.e. `; this is
much like in the dynamic algebra presentation [9].

Let us discuss effects. Branching occurred in Fig. 1, line 3,
as depicted by the lines on the left. As we discussed about the
term (1), different branches must result in different states x 2 X , or
“memories”; we see this is indeed the case in Fig. 1, lines 8 and 16,
hence eventually lines 10 and 18. The states Just (Left (*))

and Just (Right (*)) encode x

3

and x

5

in (2), respectively.
The indentation designates the depth of the subterm in focus. In

Fig. 2, we see a query on x raised on line 24. The token is returned
to shallower levels and is eventually passed on to the subterm 1 of
(�x. x) 1 (denoted by (\x.x) [1]) on line 33; and then the value
1 of x is obtained and carried by the token (in the form of 1 in
<42,1>) to the originator on line 44.

We note that a query to a natural number value must be a token
carrying a number dd<n,m>, where n and m are arbitrary (hence
42 and 137 in Fig. 1–2 are just arbitrary numbers). An answer to
this query, that the value is l, is given by a token carrying dd<n,l>.

net equipped with memories: TtT Simulator records every move-
ment of a token on it, together with the change of memories (from
x 2 X to x

0) caused by the visit of the token. Examples of simula-
tion results are shown shortly.

TtT Compiler is parametric in the choice of a monad T and al-
gebraic operations, exploiting Haskell’s support of computational
effects as monads. TtT Simulator, however, is necessarily monad-
specific; currently it supports the powerset monad (nondetermin-
ism) and the distribution monad (probability).

TtT as a Prototype We emphasize that what our tool TtT cur-
rently does is of no practical use whatsoever: after all it trans-
lates an effectful �-term—that may well be simply expressed as
a Haskell program—to another Haskell program that is way more
complicated and runs more slowly. Nevertheless we believe this is
a worthwhile venture, for the following three reasons.

The first reason is theoretical: our memoryful GoI framework
in [8] seems to be a useful theoretical tool that gives us in-
sights into higher-order computation with effects. Automating the
translation—that is painfully complicated when done by hand—
will hence meet some theoreticians’ needs.

The second reason is speculative but practical: we wish to fol-
low the path of [3, 4, 10, 11] and use memoryful GoI as a compila-
tion technique to hardware. In our case this will specifically mean
to take hardware that natively supports the effect T , and compiling
�-terms with T -algebraic effects to it. Doing so for emerging com-
puting paradigms like probabilistic and quantum programming will
have big practical impacts—not only because programs will exe-
cute faster (see e.g. [5]), but also because the compilation (based
on denotational semantics) is correct by construction. The current
toy tool of TtT will then form a basis of such practical compilers.

The third reason is: it’s simply a lot of fun to see higher-order
effectful computation in action—or GoI at work. We hope the
reader will be convinced by the following examples.

Transducers, Derived and Executed Consider the term P in (1)
with nondeterministic choice t in it. Its translation to a (three-state,
nondeterministic) transducer LPM : 3⇥ N ! P(3⇥ N), after some
manual simplifications, is depicted below (manually).

LPM =

�

h sum cpy

�

L3M�N,NL5M

. (3)

The figure is a string diagram in the traced monoidal category of
resumptions; the box L3M�N,NL5M in (3) is the (equivalence class of)
the transducer (2), after suitably encoding messages like q or 3 as
natural numbers. The diagram (3) can be identified with a proof net
via the “Int construction.” Specifically: notice a horizontal axis of
symmetry; folding the diagram on the axis then gives a proof net,
where the four � and nodes get identified and yield two nodes
that are understood as ` or ⌦ links in the proof net.

The tool TtT generates the transducer LPM inductively by the
derivation of the type of P. The outcome is a Haskell program
of type Td [] x Int Int where: Td is as defined before; [] is
the list monad; and x is a type that stands for a three-element set.
Presenting it graphically as in (3) seems to take a lot of efforts and
is left as future work.

Instead of pictorial presentation, we “execute” the transducer
with TtT Simulator and observe its dynamic behaviors. The simu-
lation result of LPM for P in (1) consists of 741 lines and it yields 6
and 10 as possible outcomes, successfully excluding 8. Similarly,
for the term (�f. f 0+f 1) (�x. 3t5) we have a simulation result

of 4526 lines that yields 6, 8, 8, 10 as possible outcomes (duplica-
tion of 8 is due to different final states of the transducer).

Simulation Results We present actual simulation results for sim-
pler terms: 3t5, written as 3|_|5 in Fig. 1; and (�x. x) 1 in Fig. 2.

1 . ---- dd<42,137> --->

2 | Query:[[3|_|5] @ Nothing]

3 +-. ---- dd<42,137> --->

4 | | Query:[[3]|_|5 @ *]

5 | | h; k_3; h

6 | | [[3]|_|5 @ *]:Answer

7 | | ---- dd<42,3> --->

8 | | [[3|_|5] @ Just (Left (*))]:Answer

9 | | ---- dd<42,3> --->

10 | Result: 3 / State: Just (Left (*))

11 ‘-. ---- dd<42,137> --->

12 | Query:[3|_|[5] @ *]

13 | h; k_5; h

14 | [3|_|[5] @ *]:Answer

15 | ---- dd<42,5> --->

16 | [[3|_|5] @ Just (Right (*))]:Answer

17 | ---- dd<42,5> --->

18 Result: 5 / State: Just (Right (*))

Figure 1. Simulation Result for 3 t 5

The convention is as follows. A token carries a natural number n
around—or more precisely, an edge e.g. in (3) consists of |N|-many
“pipes” and a token goes through the n-th—and this is denoted by
---- n --->. Therefore expressions like dd<42,137> in Fig. 1
stand for a certain natural number. We however chose to supple-
mentarily use the dynamic algebra notation (g for left and d for
right, in French, see e.g. [9, 11]), for readability and efficiency.

In Fig. 1, between movements ---- n ---> of the token are
expressions like Query:[[3|_|5] @ Nothing] and h; k_3; h.
The ones like the former stand for the token’s entrance to and exit
from a transducer. Specifically, p:[t@x]—with a subterm t

0 of t

designated by [t

0
]—means: the token entered to (a copy of) the

transducer Lt0M, whose current state is x, at its port p. Typical ports
include: Query (a top-level query) and Answer x (an answer to
the previous query on x; see Fig. 2, lines 24 and 44). Similarly,
[t@x]:p means the token departed from the port p.

The latter class of expressions like h; k_3; h on Fig. 1, line
5 and phi on Fig. 2, line 3 are referred to as bookkeeping. For
example, h; k_3; h means the token traversed an h node, a k3

node and then an h node. The definition of these nodes (as pure
functions like h : N + N ! N + N) is found in [8]. As we noted
before, these bookkeeping nodes correspond to logical connectives
in a proof net; therefore they change the number carried by the
token. From line 1 to 4 in Fig. 2, g is added by phi i.e. `; this is
much like in the dynamic algebra presentation [9].

Let us discuss effects. Branching occurred in Fig. 1, line 3,
as depicted by the lines on the left. As we discussed about the
term (1), different branches must result in different states x 2 X , or
“memories”; we see this is indeed the case in Fig. 1, lines 8 and 16,
hence eventually lines 10 and 18. The states Just (Left (*))

and Just (Right (*)) encode x

3

and x

5

in (2), respectively.
The indentation designates the depth of the subterm in focus. In

Fig. 2, we see a query on x raised on line 24. The token is returned
to shallower levels and is eventually passed on to the subterm 1 of
(�x. x) 1 (denoted by (\x.x) [1]) on line 33; and then the value
1 of x is obtained and carried by the token (in the form of 1 in
<42,1>) to the originator on line 44.

We note that a query to a natural number value must be a token
carrying a number dd<n,m>, where n and m are arbitrary (hence
42 and 137 in Fig. 1–2 are just arbitrary numbers). An answer to
this query, that the value is l, is given by a token carrying dd<n,l>.

threeOrFive =

Oplus (Const 3) (Const 5)

idOne = Apply

(Abst "x" $ Variable "x")

(Const 1)

secondNondetExample = Apply

(Abst "f" $ sumLambda

(Apply (Variable "f") (Const 0))

(Apply (Variable "f") (Const 1))

)

(Abst "x" $ Oplus (Const 3) (Const 5))

Muroya (U. Tokyo)

Our Tool TtT — Demonstration

29

net equipped with memories: TtT Simulator records every move-
ment of a token on it, together with the change of memories (from
x 2 X to x

0) caused by the visit of the token. Examples of simula-
tion results are shown shortly.

TtT Compiler is parametric in the choice of a monad T and al-
gebraic operations, exploiting Haskell’s support of computational
effects as monads. TtT Simulator, however, is necessarily monad-
specific; currently it supports the powerset monad (nondetermin-
ism) and the distribution monad (probability).

TtT as a Prototype We emphasize that what our tool TtT cur-
rently does is of no practical use whatsoever: after all it trans-
lates an effectful �-term—that may well be simply expressed as
a Haskell program—to another Haskell program that is way more
complicated and runs more slowly. Nevertheless we believe this is
a worthwhile venture, for the following three reasons.

The first reason is theoretical: our memoryful GoI framework
in [8] seems to be a useful theoretical tool that gives us in-
sights into higher-order computation with effects. Automating the
translation—that is painfully complicated when done by hand—
will hence meet some theoreticians’ needs.

The second reason is speculative but practical: we wish to fol-
low the path of [3, 4, 10, 11] and use memoryful GoI as a compila-
tion technique to hardware. In our case this will specifically mean
to take hardware that natively supports the effect T , and compiling
�-terms with T -algebraic effects to it. Doing so for emerging com-
puting paradigms like probabilistic and quantum programming will
have big practical impacts—not only because programs will exe-
cute faster (see e.g. [5]), but also because the compilation (based
on denotational semantics) is correct by construction. The current
toy tool of TtT will then form a basis of such practical compilers.

The third reason is: it’s simply a lot of fun to see higher-order
effectful computation in action—or GoI at work. We hope the
reader will be convinced by the following examples.

Transducers, Derived and Executed Consider the term P in (1)
with nondeterministic choice t in it. Its translation to a (three-state,
nondeterministic) transducer LPM : 3⇥ N ! P(3⇥ N), after some
manual simplifications, is depicted below (manually).

LPM =

�

h sum cpy

�

L3M�N,NL5M

. (3)

The figure is a string diagram in the traced monoidal category of
resumptions; the box L3M�N,NL5M in (3) is the (equivalence class of)
the transducer (2), after suitably encoding messages like q or 3 as
natural numbers. The diagram (3) can be identified with a proof net
via the “Int construction.” Specifically: notice a horizontal axis of
symmetry; folding the diagram on the axis then gives a proof net,
where the four � and nodes get identified and yield two nodes
that are understood as ` or ⌦ links in the proof net.

The tool TtT generates the transducer LPM inductively by the
derivation of the type of P. The outcome is a Haskell program
of type Td [] x Int Int where: Td is as defined before; [] is
the list monad; and x is a type that stands for a three-element set.
Presenting it graphically as in (3) seems to take a lot of efforts and
is left as future work.

Instead of pictorial presentation, we “execute” the transducer
with TtT Simulator and observe its dynamic behaviors. The simu-
lation result of LPM for P in (1) consists of 741 lines and it yields 6
and 10 as possible outcomes, successfully excluding 8. Similarly,
for the term (�f. f 0+f 1) (�x. 3t5) we have a simulation result

of 4526 lines that yields 6, 8, 8, 10 as possible outcomes (duplica-
tion of 8 is due to different final states of the transducer).

Simulation Results We present actual simulation results for sim-
pler terms: 3t5, written as 3|_|5 in Fig. 1; and (�x. x) 1 in Fig. 2.

1 . ---- dd<42,137> --->

2 | Query:[[3|_|5] @ Nothing]

3 +-. ---- dd<42,137> --->

4 | | Query:[[3]|_|5 @ *]

5 | | h; k_3; h

6 | | [[3]|_|5 @ *]:Answer

7 | | ---- dd<42,3> --->

8 | | [[3|_|5] @ Just (Left (*))]:Answer

9 | | ---- dd<42,3> --->

10 | Result: 3 / State: Just (Left (*))

11 ‘-. ---- dd<42,137> --->

12 | Query:[3|_|[5] @ *]

13 | h; k_5; h

14 | [3|_|[5] @ *]:Answer

15 | ---- dd<42,5> --->

16 | [[3|_|5] @ Just (Right (*))]:Answer

17 | ---- dd<42,5> --->

18 Result: 5 / State: Just (Right (*))

Figure 1. Simulation Result for 3 t 5

The convention is as follows. A token carries a natural number n
around—or more precisely, an edge e.g. in (3) consists of |N|-many
“pipes” and a token goes through the n-th—and this is denoted by
---- n --->. Therefore expressions like dd<42,137> in Fig. 1
stand for a certain natural number. We however chose to supple-
mentarily use the dynamic algebra notation (g for left and d for
right, in French, see e.g. [9, 11]), for readability and efficiency.

In Fig. 1, between movements ---- n ---> of the token are
expressions like Query:[[3|_|5] @ Nothing] and h; k_3; h.
The ones like the former stand for the token’s entrance to and exit
from a transducer. Specifically, p:[t@x]—with a subterm t

0 of t

designated by [t

0
]—means: the token entered to (a copy of) the

transducer Lt0M, whose current state is x, at its port p. Typical ports
include: Query (a top-level query) and Answer x (an answer to
the previous query on x; see Fig. 2, lines 24 and 44). Similarly,
[t@x]:p means the token departed from the port p.

The latter class of expressions like h; k_3; h on Fig. 1, line
5 and phi on Fig. 2, line 3 are referred to as bookkeeping. For
example, h; k_3; h means the token traversed an h node, a k3

node and then an h node. The definition of these nodes (as pure
functions like h : N + N ! N + N) is found in [8]. As we noted
before, these bookkeeping nodes correspond to logical connectives
in a proof net; therefore they change the number carried by the
token. From line 1 to 4 in Fig. 2, g is added by phi i.e. `; this is
much like in the dynamic algebra presentation [9].

Let us discuss effects. Branching occurred in Fig. 1, line 3,
as depicted by the lines on the left. As we discussed about the
term (1), different branches must result in different states x 2 X , or
“memories”; we see this is indeed the case in Fig. 1, lines 8 and 16,
hence eventually lines 10 and 18. The states Just (Left (*))

and Just (Right (*)) encode x

3

and x

5

in (2), respectively.
The indentation designates the depth of the subterm in focus. In

Fig. 2, we see a query on x raised on line 24. The token is returned
to shallower levels and is eventually passed on to the subterm 1 of
(�x. x) 1 (denoted by (\x.x) [1]) on line 33; and then the value
1 of x is obtained and carried by the token (in the form of 1 in
<42,1>) to the originator on line 44.

We note that a query to a natural number value must be a token
carrying a number dd<n,m>, where n and m are arbitrary (hence
42 and 137 in Fig. 1–2 are just arbitrary numbers). An answer to
this query, that the value is l, is given by a token carrying dd<n,l>.

net equipped with memories: TtT Simulator records every move-
ment of a token on it, together with the change of memories (from
x 2 X to x

0) caused by the visit of the token. Examples of simula-
tion results are shown shortly.

TtT Compiler is parametric in the choice of a monad T and al-
gebraic operations, exploiting Haskell’s support of computational
effects as monads. TtT Simulator, however, is necessarily monad-
specific; currently it supports the powerset monad (nondetermin-
ism) and the distribution monad (probability).

TtT as a Prototype We emphasize that what our tool TtT cur-
rently does is of no practical use whatsoever: after all it trans-
lates an effectful �-term—that may well be simply expressed as
a Haskell program—to another Haskell program that is way more
complicated and runs more slowly. Nevertheless we believe this is
a worthwhile venture, for the following three reasons.

The first reason is theoretical: our memoryful GoI framework
in [8] seems to be a useful theoretical tool that gives us in-
sights into higher-order computation with effects. Automating the
translation—that is painfully complicated when done by hand—
will hence meet some theoreticians’ needs.

The second reason is speculative but practical: we wish to fol-
low the path of [3, 4, 10, 11] and use memoryful GoI as a compila-
tion technique to hardware. In our case this will specifically mean
to take hardware that natively supports the effect T , and compiling
�-terms with T -algebraic effects to it. Doing so for emerging com-
puting paradigms like probabilistic and quantum programming will
have big practical impacts—not only because programs will exe-
cute faster (see e.g. [5]), but also because the compilation (based
on denotational semantics) is correct by construction. The current
toy tool of TtT will then form a basis of such practical compilers.

The third reason is: it’s simply a lot of fun to see higher-order
effectful computation in action—or GoI at work. We hope the
reader will be convinced by the following examples.

Transducers, Derived and Executed Consider the term P in (1)
with nondeterministic choice t in it. Its translation to a (three-state,
nondeterministic) transducer LPM : 3⇥ N ! P(3⇥ N), after some
manual simplifications, is depicted below (manually).

LPM =

�

h sum cpy

�

L3M�N,NL5M

. (3)

The figure is a string diagram in the traced monoidal category of
resumptions; the box L3M�N,NL5M in (3) is the (equivalence class of)
the transducer (2), after suitably encoding messages like q or 3 as
natural numbers. The diagram (3) can be identified with a proof net
via the “Int construction.” Specifically: notice a horizontal axis of
symmetry; folding the diagram on the axis then gives a proof net,
where the four � and nodes get identified and yield two nodes
that are understood as ` or ⌦ links in the proof net.

The tool TtT generates the transducer LPM inductively by the
derivation of the type of P. The outcome is a Haskell program
of type Td [] x Int Int where: Td is as defined before; [] is
the list monad; and x is a type that stands for a three-element set.
Presenting it graphically as in (3) seems to take a lot of efforts and
is left as future work.

Instead of pictorial presentation, we “execute” the transducer
with TtT Simulator and observe its dynamic behaviors. The simu-
lation result of LPM for P in (1) consists of 741 lines and it yields 6
and 10 as possible outcomes, successfully excluding 8. Similarly,
for the term (�f. f 0+f 1) (�x. 3t5) we have a simulation result

of 4526 lines that yields 6, 8, 8, 10 as possible outcomes (duplica-
tion of 8 is due to different final states of the transducer).

Simulation Results We present actual simulation results for sim-
pler terms: 3t5, written as 3|_|5 in Fig. 1; and (�x. x) 1 in Fig. 2.

1 . ---- dd<42,137> --->

2 | Query:[[3|_|5] @ Nothing]

3 +-. ---- dd<42,137> --->

4 | | Query:[[3]|_|5 @ *]

5 | | h; k_3; h

6 | | [[3]|_|5 @ *]:Answer

7 | | ---- dd<42,3> --->

8 | | [[3|_|5] @ Just (Left (*))]:Answer

9 | | ---- dd<42,3> --->

10 | Result: 3 / State: Just (Left (*))

11 ‘-. ---- dd<42,137> --->

12 | Query:[3|_|[5] @ *]

13 | h; k_5; h

14 | [3|_|[5] @ *]:Answer

15 | ---- dd<42,5> --->

16 | [[3|_|5] @ Just (Right (*))]:Answer

17 | ---- dd<42,5> --->

18 Result: 5 / State: Just (Right (*))

Figure 1. Simulation Result for 3 t 5

The convention is as follows. A token carries a natural number n
around—or more precisely, an edge e.g. in (3) consists of |N|-many
“pipes” and a token goes through the n-th—and this is denoted by
---- n --->. Therefore expressions like dd<42,137> in Fig. 1
stand for a certain natural number. We however chose to supple-
mentarily use the dynamic algebra notation (g for left and d for
right, in French, see e.g. [9, 11]), for readability and efficiency.

In Fig. 1, between movements ---- n ---> of the token are
expressions like Query:[[3|_|5] @ Nothing] and h; k_3; h.
The ones like the former stand for the token’s entrance to and exit
from a transducer. Specifically, p:[t@x]—with a subterm t

0 of t

designated by [t

0
]—means: the token entered to (a copy of) the

transducer Lt0M, whose current state is x, at its port p. Typical ports
include: Query (a top-level query) and Answer x (an answer to
the previous query on x; see Fig. 2, lines 24 and 44). Similarly,
[t@x]:p means the token departed from the port p.

The latter class of expressions like h; k_3; h on Fig. 1, line
5 and phi on Fig. 2, line 3 are referred to as bookkeeping. For
example, h; k_3; h means the token traversed an h node, a k3

node and then an h node. The definition of these nodes (as pure
functions like h : N + N ! N + N) is found in [8]. As we noted
before, these bookkeeping nodes correspond to logical connectives
in a proof net; therefore they change the number carried by the
token. From line 1 to 4 in Fig. 2, g is added by phi i.e. `; this is
much like in the dynamic algebra presentation [9].

Let us discuss effects. Branching occurred in Fig. 1, line 3,
as depicted by the lines on the left. As we discussed about the
term (1), different branches must result in different states x 2 X , or
“memories”; we see this is indeed the case in Fig. 1, lines 8 and 16,
hence eventually lines 10 and 18. The states Just (Left (*))

and Just (Right (*)) encode x

3

and x

5

in (2), respectively.
The indentation designates the depth of the subterm in focus. In

Fig. 2, we see a query on x raised on line 24. The token is returned
to shallower levels and is eventually passed on to the subterm 1 of
(�x. x) 1 (denoted by (\x.x) [1]) on line 33; and then the value
1 of x is obtained and carried by the token (in the form of 1 in
<42,1>) to the originator on line 44.

We note that a query to a natural number value must be a token
carrying a number dd<n,m>, where n and m are arbitrary (hence
42 and 137 in Fig. 1–2 are just arbitrary numbers). An answer to
this query, that the value is l, is given by a token carrying dd<n,l>.

net equipped with memories: TtT Simulator records every move-
ment of a token on it, together with the change of memories (from
x 2 X to x

0) caused by the visit of the token. Examples of simula-
tion results are shown shortly.

TtT Compiler is parametric in the choice of a monad T and al-
gebraic operations, exploiting Haskell’s support of computational
effects as monads. TtT Simulator, however, is necessarily monad-
specific; currently it supports the powerset monad (nondetermin-
ism) and the distribution monad (probability).

TtT as a Prototype We emphasize that what our tool TtT cur-
rently does is of no practical use whatsoever: after all it trans-
lates an effectful �-term—that may well be simply expressed as
a Haskell program—to another Haskell program that is way more
complicated and runs more slowly. Nevertheless we believe this is
a worthwhile venture, for the following three reasons.

The first reason is theoretical: our memoryful GoI framework
in [8] seems to be a useful theoretical tool that gives us in-
sights into higher-order computation with effects. Automating the
translation—that is painfully complicated when done by hand—
will hence meet some theoreticians’ needs.

The second reason is speculative but practical: we wish to fol-
low the path of [3, 4, 10, 11] and use memoryful GoI as a compila-
tion technique to hardware. In our case this will specifically mean
to take hardware that natively supports the effect T , and compiling
�-terms with T -algebraic effects to it. Doing so for emerging com-
puting paradigms like probabilistic and quantum programming will
have big practical impacts—not only because programs will exe-
cute faster (see e.g. [5]), but also because the compilation (based
on denotational semantics) is correct by construction. The current
toy tool of TtT will then form a basis of such practical compilers.

The third reason is: it’s simply a lot of fun to see higher-order
effectful computation in action—or GoI at work. We hope the
reader will be convinced by the following examples.

Transducers, Derived and Executed Consider the term P in (1)
with nondeterministic choice t in it. Its translation to a (three-state,
nondeterministic) transducer LPM : 3⇥ N ! P(3⇥ N), after some
manual simplifications, is depicted below (manually).

LPM =

�

h sum cpy

�

L3M�N,NL5M

. (3)

The figure is a string diagram in the traced monoidal category of
resumptions; the box L3M�N,NL5M in (3) is the (equivalence class of)
the transducer (2), after suitably encoding messages like q or 3 as
natural numbers. The diagram (3) can be identified with a proof net
via the “Int construction.” Specifically: notice a horizontal axis of
symmetry; folding the diagram on the axis then gives a proof net,
where the four � and nodes get identified and yield two nodes
that are understood as ` or ⌦ links in the proof net.

The tool TtT generates the transducer LPM inductively by the
derivation of the type of P. The outcome is a Haskell program
of type Td [] x Int Int where: Td is as defined before; [] is
the list monad; and x is a type that stands for a three-element set.
Presenting it graphically as in (3) seems to take a lot of efforts and
is left as future work.

Instead of pictorial presentation, we “execute” the transducer
with TtT Simulator and observe its dynamic behaviors. The simu-
lation result of LPM for P in (1) consists of 741 lines and it yields 6
and 10 as possible outcomes, successfully excluding 8. Similarly,
for the term (�f. f 0+f 1) (�x. 3t5) we have a simulation result

of 4526 lines that yields 6, 8, 8, 10 as possible outcomes (duplica-
tion of 8 is due to different final states of the transducer).

Simulation Results We present actual simulation results for sim-
pler terms: 3t5, written as 3|_|5 in Fig. 1; and (�x. x) 1 in Fig. 2.

1 . ---- dd<42,137> --->

2 | Query:[[3|_|5] @ Nothing]

3 +-. ---- dd<42,137> --->

4 | | Query:[[3]|_|5 @ *]

5 | | h; k_3; h

6 | | [[3]|_|5 @ *]:Answer

7 | | ---- dd<42,3> --->

8 | | [[3|_|5] @ Just (Left (*))]:Answer

9 | | ---- dd<42,3> --->

10 | Result: 3 / State: Just (Left (*))

11 ‘-. ---- dd<42,137> --->

12 | Query:[3|_|[5] @ *]

13 | h; k_5; h

14 | [3|_|[5] @ *]:Answer

15 | ---- dd<42,5> --->

16 | [[3|_|5] @ Just (Right (*))]:Answer

17 | ---- dd<42,5> --->

18 Result: 5 / State: Just (Right (*))

Figure 1. Simulation Result for 3 t 5

The convention is as follows. A token carries a natural number n
around—or more precisely, an edge e.g. in (3) consists of |N|-many
“pipes” and a token goes through the n-th—and this is denoted by
---- n --->. Therefore expressions like dd<42,137> in Fig. 1
stand for a certain natural number. We however chose to supple-
mentarily use the dynamic algebra notation (g for left and d for
right, in French, see e.g. [9, 11]), for readability and efficiency.

In Fig. 1, between movements ---- n ---> of the token are
expressions like Query:[[3|_|5] @ Nothing] and h; k_3; h.
The ones like the former stand for the token’s entrance to and exit
from a transducer. Specifically, p:[t@x]—with a subterm t

0 of t

designated by [t

0
]—means: the token entered to (a copy of) the

transducer Lt0M, whose current state is x, at its port p. Typical ports
include: Query (a top-level query) and Answer x (an answer to
the previous query on x; see Fig. 2, lines 24 and 44). Similarly,
[t@x]:p means the token departed from the port p.

The latter class of expressions like h; k_3; h on Fig. 1, line
5 and phi on Fig. 2, line 3 are referred to as bookkeeping. For
example, h; k_3; h means the token traversed an h node, a k3

node and then an h node. The definition of these nodes (as pure
functions like h : N + N ! N + N) is found in [8]. As we noted
before, these bookkeeping nodes correspond to logical connectives
in a proof net; therefore they change the number carried by the
token. From line 1 to 4 in Fig. 2, g is added by phi i.e. `; this is
much like in the dynamic algebra presentation [9].

Let us discuss effects. Branching occurred in Fig. 1, line 3,
as depicted by the lines on the left. As we discussed about the
term (1), different branches must result in different states x 2 X , or
“memories”; we see this is indeed the case in Fig. 1, lines 8 and 16,
hence eventually lines 10 and 18. The states Just (Left (*))

and Just (Right (*)) encode x

3

and x

5

in (2), respectively.
The indentation designates the depth of the subterm in focus. In

Fig. 2, we see a query on x raised on line 24. The token is returned
to shallower levels and is eventually passed on to the subterm 1 of
(�x. x) 1 (denoted by (\x.x) [1]) on line 33; and then the value
1 of x is obtained and carried by the token (in the form of 1 in
<42,1>) to the originator on line 44.

We note that a query to a natural number value must be a token
carrying a number dd<n,m>, where n and m are arbitrary (hence
42 and 137 in Fig. 1–2 are just arbitrary numbers). An answer to
this query, that the value is l, is given by a token carrying dd<n,l>.

net equipped with memories: TtT Simulator records every move-
ment of a token on it, together with the change of memories (from
x 2 X to x

0) caused by the visit of the token. Examples of simula-
tion results are shown shortly.

TtT Compiler is parametric in the choice of a monad T and al-
gebraic operations, exploiting Haskell’s support of computational
effects as monads. TtT Simulator, however, is necessarily monad-
specific; currently it supports the powerset monad (nondetermin-
ism) and the distribution monad (probability).

TtT as a Prototype We emphasize that what our tool TtT cur-
rently does is of no practical use whatsoever: after all it trans-
lates an effectful �-term—that may well be simply expressed as
a Haskell program—to another Haskell program that is way more
complicated and runs more slowly. Nevertheless we believe this is
a worthwhile venture, for the following three reasons.

The first reason is theoretical: our memoryful GoI framework
in [8] seems to be a useful theoretical tool that gives us in-
sights into higher-order computation with effects. Automating the
translation—that is painfully complicated when done by hand—
will hence meet some theoreticians’ needs.

The second reason is speculative but practical: we wish to fol-
low the path of [3, 4, 10, 11] and use memoryful GoI as a compila-
tion technique to hardware. In our case this will specifically mean
to take hardware that natively supports the effect T , and compiling
�-terms with T -algebraic effects to it. Doing so for emerging com-
puting paradigms like probabilistic and quantum programming will
have big practical impacts—not only because programs will exe-
cute faster (see e.g. [5]), but also because the compilation (based
on denotational semantics) is correct by construction. The current
toy tool of TtT will then form a basis of such practical compilers.

The third reason is: it’s simply a lot of fun to see higher-order
effectful computation in action—or GoI at work. We hope the
reader will be convinced by the following examples.

Transducers, Derived and Executed Consider the term P in (1)
with nondeterministic choice t in it. Its translation to a (three-state,
nondeterministic) transducer LPM : 3⇥ N ! P(3⇥ N), after some
manual simplifications, is depicted below (manually).

LPM =

�

h sum cpy

�

L3M�N,NL5M

. (3)

The figure is a string diagram in the traced monoidal category of
resumptions; the box L3M�N,NL5M in (3) is the (equivalence class of)
the transducer (2), after suitably encoding messages like q or 3 as
natural numbers. The diagram (3) can be identified with a proof net
via the “Int construction.” Specifically: notice a horizontal axis of
symmetry; folding the diagram on the axis then gives a proof net,
where the four � and nodes get identified and yield two nodes
that are understood as ` or ⌦ links in the proof net.

The tool TtT generates the transducer LPM inductively by the
derivation of the type of P. The outcome is a Haskell program
of type Td [] x Int Int where: Td is as defined before; [] is
the list monad; and x is a type that stands for a three-element set.
Presenting it graphically as in (3) seems to take a lot of efforts and
is left as future work.

Instead of pictorial presentation, we “execute” the transducer
with TtT Simulator and observe its dynamic behaviors. The simu-
lation result of LPM for P in (1) consists of 741 lines and it yields 6
and 10 as possible outcomes, successfully excluding 8. Similarly,
for the term (�f. f 0+f 1) (�x. 3t5) we have a simulation result

of 4526 lines that yields 6, 8, 8, 10 as possible outcomes (duplica-
tion of 8 is due to different final states of the transducer).

Simulation Results We present actual simulation results for sim-
pler terms: 3t5, written as 3|_|5 in Fig. 1; and (�x. x) 1 in Fig. 2.

1 . ---- dd<42,137> --->

2 | Query:[[3|_|5] @ Nothing]

3 +-. ---- dd<42,137> --->

4 | | Query:[[3]|_|5 @ *]

5 | | h; k_3; h

6 | | [[3]|_|5 @ *]:Answer

7 | | ---- dd<42,3> --->

8 | | [[3|_|5] @ Just (Left (*))]:Answer

9 | | ---- dd<42,3> --->

10 | Result: 3 / State: Just (Left (*))

11 ‘-. ---- dd<42,137> --->

12 | Query:[3|_|[5] @ *]

13 | h; k_5; h

14 | [3|_|[5] @ *]:Answer

15 | ---- dd<42,5> --->

16 | [[3|_|5] @ Just (Right (*))]:Answer

17 | ---- dd<42,5> --->

18 Result: 5 / State: Just (Right (*))

Figure 1. Simulation Result for 3 t 5

The convention is as follows. A token carries a natural number n
around—or more precisely, an edge e.g. in (3) consists of |N|-many
“pipes” and a token goes through the n-th—and this is denoted by
---- n --->. Therefore expressions like dd<42,137> in Fig. 1
stand for a certain natural number. We however chose to supple-
mentarily use the dynamic algebra notation (g for left and d for
right, in French, see e.g. [9, 11]), for readability and efficiency.

In Fig. 1, between movements ---- n ---> of the token are
expressions like Query:[[3|_|5] @ Nothing] and h; k_3; h.
The ones like the former stand for the token’s entrance to and exit
from a transducer. Specifically, p:[t@x]—with a subterm t

0 of t

designated by [t

0
]—means: the token entered to (a copy of) the

transducer Lt0M, whose current state is x, at its port p. Typical ports
include: Query (a top-level query) and Answer x (an answer to
the previous query on x; see Fig. 2, lines 24 and 44). Similarly,
[t@x]:p means the token departed from the port p.

The latter class of expressions like h; k_3; h on Fig. 1, line
5 and phi on Fig. 2, line 3 are referred to as bookkeeping. For
example, h; k_3; h means the token traversed an h node, a k3

node and then an h node. The definition of these nodes (as pure
functions like h : N + N ! N + N) is found in [8]. As we noted
before, these bookkeeping nodes correspond to logical connectives
in a proof net; therefore they change the number carried by the
token. From line 1 to 4 in Fig. 2, g is added by phi i.e. `; this is
much like in the dynamic algebra presentation [9].

Let us discuss effects. Branching occurred in Fig. 1, line 3,
as depicted by the lines on the left. As we discussed about the
term (1), different branches must result in different states x 2 X , or
“memories”; we see this is indeed the case in Fig. 1, lines 8 and 16,
hence eventually lines 10 and 18. The states Just (Left (*))

and Just (Right (*)) encode x

3

and x

5

in (2), respectively.
The indentation designates the depth of the subterm in focus. In

Fig. 2, we see a query on x raised on line 24. The token is returned
to shallower levels and is eventually passed on to the subterm 1 of
(�x. x) 1 (denoted by (\x.x) [1]) on line 33; and then the value
1 of x is obtained and carried by the token (in the form of 1 in
<42,1>) to the originator on line 44.

We note that a query to a natural number value must be a token
carrying a number dd<n,m>, where n and m are arbitrary (hence
42 and 137 in Fig. 1–2 are just arbitrary numbers). An answer to
this query, that the value is l, is given by a token carrying dd<n,l>.

1 ---- dd<42,137> --->

2 Query:[[(\x.x) 1] @ ({_: *}, *)]

3 phi

4 ---- gdd<42,137> --->

5 Query:[[\x.x] 1 @ {_: *}]

6 h

7 [[\x.x] 1 @ {_: *}]:Answer

8 ---- dgdd<42,137> --->

9 psi; psi; phi

10 ---- gdd<42,137> --->

11 Query:[(\x.x) [1] @ *]

12 h

13 [(\x.x) [1] @ *]:Answer

14 ---- dgdd<42,137> --->

15 psi; e; phi; phi

16 ---- dd<0,gdd<42,137>> --->

17 Query:[[\x.x] 1 @ {_: *}]

18 h; v

19 0 {

20 psi

21 ---- dd<42,137> --->

22 Query:[(\x.[x]) 1 @ *]

23 h

24 [(\x.[x]) 1 @ *]:Query x

25 ---- <42,137> --->

26 phi

27 } 0

28 u; h

29 [[\x.x] 1 @ {_: *}]:Answer

30 ---- dd<0,d<42,137>> --->

31 psi; psi; e’; phi

32 ---- dd<42,137> --->

33 Query:[(\x.x) [1] @ *]

34 h; k_1; h

35 [(\x.x) [1] @ *]:Answer

36 ---- dd<42,1> --->

37 psi; e; phi; phi

38 ---- dd<0,d<42,1>> --->

39 Query:[[\x.x] 1 @ {_: *}]

40 h; v

41 0 {

42 psi

43 ---- <42,1> --->

44 Answer x:[(\x.[x]) 1 @ *]

45 h

46 [(\x.[x]) 1 @ *]:Answer

47 ---- dd<42,1> --->

48 phi

49 } 0

50 u; h

51 [[\x.x] 1 @ {_: *}]:Answer

52 ---- dd<0,gdd<42,1>> --->

53 psi; psi; e’; phi

54 ---- dgdd<42,1> --->

55 Query:[(\x.x) [1] @ *]

56 h

57 [(\x.x) [1] @ *]:Answer

58 ---- gdd<42,1> --->

59 psi; phi; phi

60 ---- dgdd<42,1> --->

61 Query:[[\x.x] 1 @ {_: *}]

62 h

63 [[\x.x] 1 @ {_: *}]:Answer

64 ---- gdd<42,1> --->

65 psi

66 [[(\x.x) 1] @ ({_: *}, *)]:Answer

67 ---- dd<42,1> --->

68 Result: 1 / State: ({_: *}, *)

Figure 2. Simulation Result for (�x. x) 1

Finally let us speak about making |N|-many copies of a transducer—
which interprets the ! modality that is implicit in the Girard
translation A ! B = !A (B. The bookkeeping function
v : N ! N ⇥ N in Fig. 2, line 18, splits |N|-many pipes into
|N| · |N|-many pipes; and lines 19 and 27 mean the token went
to the 0-th bunch of pipes, i.e., to the 0-th copy of the transducer
[(\x.[x]) 1 @ *]. The state {_: *} that occur e.g. on line
17 stands for the function N ! 1, n 7! *, meaning that the state of
every copy of the transducer is the unique one *.

Acknowledgments

Thank are due to Ugo Dal Lago, Claudia Faggian, Dan Ghica and
Akira Yoshimizu for useful discussions, and to the anonymous ref-
erees for useful comments. K.M. and I.H. are supported by Grants-
in-Aid for Young Scientists (A) No. 24680001, JSPS; T.K. is sup-
ported by Grant-in-Aid for JSPS Fellows; and N.H. is supported by
Grants-in-Aid for Young Scientists (B) No. 26730004, JSPS.

References

[1] S. Abramsky. Retracing some paths in process algebra. In CONCUR,
pages 1–17, 1996.

[2] S. Abramsky, E. Haghverdi, and P. Scott. Geometry of interaction and
linear combinatory algebras. Math. Struct. in Comp. Sci., 12:625–665,
2002.

[3] O. Fredriksson and D. R. Ghica. Seamless distributed computing from
the geometry of interaction. In C. Palamidessi and M. D. Ryan, editors,
Trustworthy Global Computing, volume 8191 of Lecture Notes in
Computer Science, pages 34–48. Springer Berlin Heidelberg, 2013.

[4] D. R. Ghica. Geometry of synthesis: a structured approach to VLSI
design. In M. Hofmann and M. Felleisen, editors, POPL, pages 363–
375. ACM, 2007. ISBN 1-59593-575-4.

[5] D. R. Ghica, A. I. Smith, and S. Singh. Geometry of synthesis
IV: compiling affine recursion into static hardware. In M. M. T.
Chakravarty, Z. Hu, and O. Danvy, editors, ICFP, pages 221–233.
ACM, 2011. ISBN 978-1-4503-0865-6.

[6] J.-Y. Girard. Geometry of interaction 1: Interpretation of system F. In
S. V. R. Ferro, C. Bonotto and A. Zanardo, editors, Logic Colloquium
’88 Proceedings of the Colloquium held in Padova, volume 127 of
Studies in Logic and the Foundations of Mathematics, pages 221–260.
Elsevier, 1989.

[7] I. Hasuo and N. Hoshino. Semantics of higher-order quantum compu-
tation via geometry of interaction. In LICS, pages 237–246, 2011.

[8] N. Hoshino, K. Muroya, and I. Hasuo. Memoryful geometry of
interaction: From coalgebraic components to algebraic effects. In
CSL-LICS, 2014. To appear.

[9] O. Laurent. A token machine for full geometry of interaction. In
TLCA, pages 283–297, 2001.

[10] I. Mackie. The geometry of interaction machine. In R. K. Cytron
and P. Lee, editors, POPL, pages 198–208. ACM Press, 1995. ISBN
0-89791-692-1.

[11] J. S. Pinto. Implantation Parallèle avec la Logique Linéaire (Applica-
tions des Réseaux d’Interaction et de la Géométrie de l’Interaction).
PhD thesis, École Polytechnique, 2001. Main text in English.

[12] G. Plotkin and J. Power. Algebraic operations and generic effects.
Applied Categorical Structures, 11(1):69–94, 2003.

aaaaa
aaaaa
aaaaa

aaaaa
aaaaa
aaaaa

aaaaa
aaaaa
aaaaa

aaaaa
aaaaa
aaaaa

aaaaa
aaaaa
aaaaa

aaaaa
aaaaa
aaaaa

aaaaa
aaaaa
aaaaa

aaaaa
aaaaa
aaaaa

aaaaa
aaaaa
aaaaa

aaaaa
aaaaa
aaaaa

aaaaa
aaaaa
aaaaa

aaaaa
aaaaa
aaaaa

aaaaa
aaaaa
aaaaa

aaaaa
aaaaa
aaaaa

(4,526 lines)

Muroya (U. Tokyo)

Our Tool TtT

30

Muroya (U. Tokyo)

• currently no practical use

Our Tool TtT

30

Muroya (U. Tokyo)

• currently no practical use

• nevertheless worthwhile
• helpful for studying higher-order effectful computations

• showing dynamics of token
• (speculative) basis of compiler for effectful computations

• following [Mackie ’95] [Pinto ’01] [Ghica ’07]

Our Tool TtT

30

Muroya (U. Tokyo)

• currently no practical use

• nevertheless worthwhile
• helpful for studying higher-order effectful computations

• showing dynamics of token
• (speculative) basis of compiler for effectful computations

• following [Mackie ’95] [Pinto ’01] [Ghica ’07]

• fun to see GoI at work!

Our Tool TtT

30

