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Aim
Consider Besov-Lipschtiz spaces which appear as domains of Dirichlet forms on fractals.

Properties of the Besov spaces <= Properties of the corresponding stochastic proc.

Plan

(L1) Dirichlet forms on fractals and their domains

Short survey for D-forms on fractals, characterization of their domains

(L2) Jump type processes on d-sets (Alfors d-regular sets)

Relations of various jump-type processes on d-sets, heat kernel estimates

(L3) Trace theorem for Dirichlet forms on fractals and an application
Trace theorem for self-smilar D-forms on self-smilar sets to self-similar subsets,

Application: diffusion processes penetrating fractals



1 Dirichlet forms on fractals and their domains

1.1 A quick view of the theory of Dirichlet forms

General Theory (see Fukushima-Oshima-Takeda '94 etc.)

{X:};+ : Sym. Hunt proc. on (K, u)@ cont. path (diffusion)

& —A ' non-neg. def. self-adj. op. on L s.t. P, := exp(tA) Markovian @ local
Pf(x) = EXLF(X)), (P — 1)/t = A

& (€, F) ¢ regular Dirichlet form (i.e. sym. closed Markovian form) on LL?

E(u,v) = /K\/—AU\/—Avd,u, F =D(/—-A) & local

Def

o( &, F): regular & IC' C F N Cy(K) linear space which is dense

i) in F w.r.t. E-norm and ii) in Cy(K) w.r.t. ||+ ||s-norm.

Def

(&, F): local & (u,v € F,SuppunSuppv =0 = E(u,v) =0).



Example

BM on R" < Laplace op. on R" < E(f, f) = 5 [ |V f|*dz, F = H'(R")

1.2 Sierpinski gaskets

{po, p1, -+, pn}: vertices of the n-dimensional simplex, py: the origin.
Fi(z)=(z—pi-1)/2+pi_1, z€R", i=1,2,--- n+1

31 non-void compact set K st. K = U EF(K).

K:(n-dimensional) Sierpinski gasket.

When n =1, K = [pg, p1].

For simplicity, we will consider the 2-dimensional gasket.



Vo = {po, p1, p2}, Voo = Uiy - iner By i, (Vo)

where I :={1,2,3} and F},..;, == F;,0---0 F .

Let Vi = UpeqVi, where N := N U {0}. Then K = CI(V,).

dy :=log3/log2: Hausdorff dimension of K (w.r.t. the Euclidean metric)

p: (normalized) Hausdorff measure on K, i.e. a Borel measure on K s.t.

W(E i (K) =3 ¥ip, i, € 1.



Cf.

E*[0)] =5 E*[0.] = 4
1.3 Construction of Brownian motion on the gasket (Ideas)

(Goldstein '87, Kusuoka '87) X, simple random walk on V,

n—aoo

X,([5"t]) — By Brownian motion on K



1.4 Construction of Dirichlet forms on the gaskets

For f,g € R" .= {h : h is a real-valued function on V,,}, define

Enlf,9) = %n Y (foFy (@) = foFy))(go Fyi(z) — g0 Fiy,(y)),

11-in€l x,yeV)

where {b,,} is a sequence of positive numbers with by = 1 ( on each bond).

Choose {b,} s.t. 3 nice relations between the &£,,’s

Elementary computations yield
inf{€1(f, f): f €R, fly, =u} = ; bi€o(u,u)  Yu e R, (1.1)
So, taking b, = (5/3)", we have
Enlflvy, flv) < Enia(f, ) VfeRM!

("=" < f is 'harmonic’ on V11 \ V},).



Define

Fo = {fERV*37}i_{rologn(faf> < oo}, E(f,g9) = lim E,(f,9) Vf,g € F.

n—aoo

(£, F.): quadratic form on R"*.
Further, Vf € R, 31P,.f € F, st. E(Puf, Pnf) = Enlf, f).

Want: to extend this form to a form on L*(K, p).
Define

R(p, q): effective resistance between p and ¢q. Set R(p,p) = 0 for p € V..

Proposition 1.1 1) R(-,-) is a metric on V. It can be extended to a metric on K,

which gives the same topology on K as the one from the Fuclidean metric.

2) Forp#q € Vi, Rp,q) =sup{|f(p) — fF(@QP/Ef. [): [ € Fs, f(p) # fla)}-

So, |f(p) — f(@))? < Rp,q)E(f. f),  Vf€F.pqecV. (1.2)



Remark. R(p,q) < ||p — q||* %, where

(Here f(z) < g(z) & a1 f(zx) < g(z) < eof (x), Va.)
By (1.2), f € F, can be extended conti. to K.

F: the set of functions in F, extended to K = F C C(K) C L*(K, p).

Theorem 1.2 (Kigami) (&, F) is a local reqular D-form on L*(K, ).

f(p)— f ()\2<R(p, OE(f,f) YfEF, VpqeK
E(f.g) = ZE oF,goF) VfgeF

ZEI
{B:}: corresponding diffusion process (Brownian motion)

A: corresponding self-adjoint operator on L*(K, ).

Uniqueness (Barlow-Perkins ’88) Any self-similar diffusion process on K whose law is

invariant under local translations and reflections of each small triangle is a constant time

change of {B;}. — Metz, Peirone, Sabot, . . .



1.5 Properties of the Dirichlet forms on the gaskets

(A) Spectral properties (Fukushima-Shima ’92) —A has a compact resolvent.

Set p(x) = #{\ < x : A is an eigenvalue of —A}. Then

p(x)
ds/2

0 < liminf plz)

minf s < 00. (1.5)

< lim sup
Tr—00

(Barlow-Kigami '97) < above is because
3 ‘many’ localized eigenfunctions that produce eigenvalues with high multiplicities
u: a localized eigenfunction & w: is an eigenfunction of —A s.t.

Supp u C O, d open set O C Int K.

— Kigami-Lapidus, Lindstrgm, Mosco, Strichartz, Teplyaev, ...



(B) Heat kernel estimates (Barlow-Perkins '88)

Ips(x, y): jointly continuous sym. transition density of {X;} w.rt. p

(P ( prt z,y)f(y)uldy) Vo € K, %Pt(%ax) = Aypi(To, ) ) 8.t

dw dw
d(.fC ty> d(x7ty> )dwll ) . (16)

clt_ds/z exp(—cz( )dw 1) < pt<ﬂ7 y) < cst 1s/2 eXP( (

— Barlow-Bass, Hambly-K, Grigor’yan-Telcs, ...
By integrating (1.6), we have E°[d(0, X,)] = ¢!/
dy =1logh/log2 > 2,d, = 2log3/logh = 2d;/d,, <2

As d,, > 2, we say the process is sub-diffusive.

n-dim. Sierpinski gasket (n > 2)

dy =log(n+1)/log2,d, =log(n+3)/log2> 2,ds = 2log(n + 1)/ log(n + 3)< 2



(C) Domains of the Dirichlet forms

Fori1<p<oo, 1<g<oo, 3>0and m €N, set

nB )= [ f F(@) — Fly)Pdpla)du() 7, F e LK, p),
lz—y|<coL™™
where 1 < L < 00, 0 < ¢y < 00.

AZ(K): aset of £ € LYK, 1) st. (B, f) = {an(B, )}y € 11
Ag’q(K ) is a Besov-Lipschitz space. 1t is a Banach space.

p=2 Ay (R") =B, (R)if0<B<1 ={0}ifs>1.
p=28=1 N (R")=H(R"), Aj,(R") = {0},

Theorem 1.3 (Jonsson '96, K, Paluba, Grigor'yan-Hu-Lau, K-Sturm)
Let (€, F) be the Dirichlet form on the gasket. Then,

F = AP (K).

2,00



Proof. Proof of F C Agﬁf. Let £ f, f) = (f — P.f, f)Lz/t, f € L*(K, u). Then,

e =5 [ [ @)= 1w pe oy
1 2
>5[ [ ) = S e ey
-2 f /| @) — ) ), (D

where (1.6) was used in the last inequality.
Take t = L% and use ds/2 = d;/dy, = (1.7)= cra,(dy/2, f)*
Ef,f) /7 Ef. ) ast L 0. Sowe obtain sup, an(dw /2, ) < cn/ECF )



Proof of F D Ay"”. Set = 1/(dy, — 1), diam (K) = 1. Then, Vg € A"

0.9 =5 [ [, (60~ 90)Ppla,y)utda)n(ay

|z — y|<1

—c mdw
< 33  cyt / / (9(z) — gly) Pp(do)a(dy
L=< rx—y|<L~ m+1

< cl e Z e cq(tLmw) = L m(dy +df) ( w/2 g) (1.8)

m=1

where (1.6) was used in the first inequality. Let ®,(z) = e~ca(tL™) ™" [=a(dutdy)

o 0,(0) > 0, lim,_o P4(z) = 0 and [;° y(x)dx = c5t! /2.
o Jx; > 0s.t. Oux) T (0 <V < ay), Pu(x) | (24 < Vo < 00), and §y(x;) = cgt!T%/2.

Thus, Y o°_, @y(m) < [ Oy(z)da 4 20y(x) < eptt /2,
Since (1.8) < 03t_(1+d5/2)(supm am(d/2, £))2 D00 Dy(m),

we conclude that sup;.o (g, g) = limy o E(g, 9) < cs(sup,, am(dw/2, f))*. -



1.6 Unbounded Sierpinski gaskets

AN

K = U,>12"K: the unbdd Sierpinski gasket e Construction of D-forms, as in Thm 1.2.
e Heat kernel estimates : (1.6) holds for all 2,y € K,0 < t < oo.

e Domains of the D-forms: Thm 1.3 holds.

1.7 More general fractals

e Nested fractals (Lindstrgm "90): Similar constructions, similar results.

e P.cf. self-similar sets (Kigami '93): Under the existence of the ‘reg. harm. structure’,

similar constructions, generalized versions for (A), (B) and (C).

e Sierpinski carpets: Construction of D-forms, much harder, but possible (Barlow-Bass

etc). Similar results for (B) and (C).



