Function spaces and stochastic processes on fractals I

Takashi Kumagai

(RIMS, Kyoto University, Japan)

http://www.kurims.kyoto-u.ac.jp/~kumagai/ International workshop on Fractal Analysis September 11-17, 2005 in Eisenach

Aim

Consider Besov-Lipschtiz spaces which appear as domains of Dirichlet forms on fractals. Properties of the Besov spaces \leftrightarrow Properties of the corresponding stochastic proc. <u>Plan</u>

(L1) Dirichlet forms on fractals and their domains

Short survey for D-forms on fractals, characterization of their domains

(L2) Jump type processes on d-sets (Alfors d-regular sets)

Relations of various jump-type processes on d-sets, heat kernel estimates

(L3) Trace theorem for Dirichlet forms on fractals and an application

Trace theorem for self-smilar D-forms on self-smilar sets to self-similar subsets, Application: diffusion processes penetrating fractals

1 Dirichlet forms on fractals and their domains

1.1 A quick view of the theory of Dirichlet forms

General Theory (see Fukushima-Oshima-Takeda '94 etc.)

 $\{X_t\}_t$: Sym. Hunt proc. on $(K, \mu) \oplus$ cont. path (diffusion)

- $\Leftrightarrow -\Delta$: non-neg. def. self-adj. op. on \mathbb{L}^2 s.t. $P_t := \exp(t\Delta)$ Markovian \oplus local $P_t f(x) = E^x[f(X_t)], \lim_{t \to 0} (P_t I)/t = \Delta$
- $\Leftrightarrow (\mathcal{E}, \mathcal{F}): \text{ regular Dirichlet form (i.e. sym. closed Markovian form) on } \mathbb{L}^2$ $\mathcal{E}(u, v) = \int_K \sqrt{-\Delta u} \sqrt{-\Delta v} d\mu, \ \mathcal{F} = \mathcal{D}(\sqrt{-\Delta}) \oplus \text{local}$

• $(\mathcal{E}, \mathcal{F})$: regular $\stackrel{\text{Def}}{\Leftrightarrow} \exists C \subset \mathcal{F} \cap C_0(K)$ linear space which is dense

i) in \mathcal{F} w.r.t. \mathcal{E}_1 -norm and ii) in $C_0(K)$ w.r.t. $\|\cdot\|_{\infty}$ -norm.

• $(\mathcal{E}, \mathcal{F})$: local $\stackrel{\text{Def}}{\Leftrightarrow} (u, v \in \mathcal{F}, \operatorname{Supp} u \cap \operatorname{Supp} v = \emptyset \Rightarrow \mathcal{E}(u, v) = 0).$

Example

BM on $\mathbb{R}^n \Leftrightarrow$ Laplace op. on $\mathbb{R}^n \Leftrightarrow \mathcal{E}(f, f) = \frac{1}{2} \int |\nabla f|^2 dx$, $\mathcal{F} = H^1(\mathbb{R}^n)$

1.2 Sierpinski gaskets

 $\{p_0, p_1, \dots, p_n\}$: vertices of the *n*-dimensional simplex, p_0 : the origin. $F_i(z) = (z - p_{i-1})/2 + p_{i-1}, \ z \in \mathbb{R}^n, \ i = 1, 2, \dots, n+1$ $\exists 1 \text{ non-void compact set } K \text{ s.t. } K = \bigcup_{i=1}^{n+1} F_i(K).$ K:(n-dimensional) Sierpinski gasket.

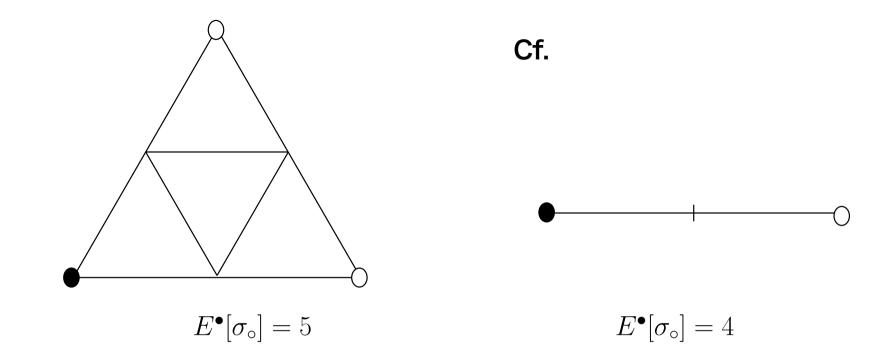
When $n = 1, K = [p_0, p_1]$.

For simplicity, we will consider the 2-dimensional gasket.

$$V_0 = \{p_0, p_1, p_2\}, V_n = \bigcup_{i_1, \dots, i_n \in I} F_{i_1 \dots i_n}(V_0)$$

where $I := \{1, 2, 3\}$ and $F_{i_1 \dots i_n} := F_{i_1} \circ \dots \circ F_{i_n}$.
Let $V_* = \bigcup_{n \in \mathbb{N}} V_n$, where $\overline{\mathbb{N}} := \mathbb{N} \cup \{0\}$. Then $K = Cl(V_*)$.
 $d_f := \log 3/\log 2$: Hausdorff dimension of K (w.r.t. the Euclidean metric)
 μ : (normalized) Hausdorff measure on K , i.e. a Borel measure on K s.t.

$$\mu(F_{i_1\cdots i_n}(K)) = 3^{-n} \qquad \forall i_1, \cdots, i_n \in I.$$



1.3 Construction of Brownian motion on the gasket (Ideas)

(Goldstein '87, Kusuoka '87) X_n : simple random walk on V_n $X_n([5^n t]) \xrightarrow{n \to \infty} B_t$: Brownian motion on K

1.4 Construction of Dirichlet forms on the gaskets

For $f, g \in \mathbb{R}^{V_n} := \{h : h \text{ is a real-valued function on } V_n\}$, define $\mathcal{E}_n(f,g) := \frac{b_n}{2} \sum_{i_1 \cdots i_n \in I} \sum_{x,y \in V_0} (f \circ F_{i_1 \cdots i_n}(x) - f \circ F_{i_1 \cdots i_n}(y))(g \circ F_{i_1 \cdots i_n}(x) - g \circ F_{i_1 \cdots i_n}(y)),$

where $\{b_n\}$ is a sequence of positive numbers with $b_0 = 1$ (conductance on each bond). <u>Choose</u> $\{b_n\}$ s.t. \exists nice relations between the \mathcal{E}_n 's

Elementary computations yield

$$\inf\{\mathcal{E}_1(f,f): f \in \mathbb{R}^{V_1}, \ f|_{V_0} = u\} = \frac{3}{5} \cdot b_1 \mathcal{E}_0(u,u) \qquad \forall u \in \mathbb{R}^{V_0}.$$
(1.1)

So, taking $b_n = (5/3)^n$, we have

$$\mathcal{E}_n(f|_{V_n}, f|_{V_n}) \le \mathcal{E}_{n+1}(f, f) \quad \forall f \in \mathbb{R}^{V_{n+1}}$$

("=" \Leftrightarrow f is 'harmonic' on $V_{n+1} \setminus V_n$).

 $\mathcal{F}_* := \{ f \in \mathbb{R}^{V_*} : \lim_{n \to \infty} \mathcal{E}_n(f, f) < \infty \}, \qquad \mathcal{E}(f, g) := \lim_{n \to \infty} \mathcal{E}_n(f, g) \qquad \forall f, g \in \mathcal{F}_*.$ $(\mathcal{E}, \mathcal{F}_*): \text{ quadratic form on } \mathbb{R}^{V_*}.$ Further, $\forall f \in \mathbb{R}^{V_m}, \exists 1 P_m f \in \mathcal{F}_* \text{ s.t. } \mathcal{E}(P_m f, P_m f) = \mathcal{E}_m(f, f).$ $\underline{Want}: \text{ to extend this form to a form on } \mathbb{L}^2(K, \mu).$

Define $R(p,q)^{-1} := \inf \{ \mathcal{E}(f,f) : f \in V_*, f(p) = 1, f(q) = 0 \} \quad \forall p, q \in V_*, p \neq q.$

R(p,q): effective resistance between p and q. Set R(p,p) = 0 for $p \in V_*$.

Proposition 1.1 1) $R(\cdot, \cdot)$ is a metric on V_* . It can be extended to a metric on K, which gives the same topology on K as the one from the Euclidean metric. 2) For $p \neq q \in V_*$, $R(p,q) = \sup\{|f(p) - f(q)|^2 / \mathcal{E}(f,f) : f \in \mathcal{F}_*, f(p) \neq f(q)\}.$ So, $|f(p) - f(q)|^2 \leq R(p,q)\mathcal{E}(f,f), \quad \forall f \in \mathcal{F}_*, p,q \in V_*.$ (1.2) **Remark.** $R(p,q) \asymp ||p-q||^{d_w-d_f}$, where $d_w = \log 5/\log 2$ (Walk dimension). (Here $f(x) \asymp g(x) \Leftrightarrow c_1 f(x) \leq g(x) \leq c_2 f(x), \forall x.)$ By (1.2), $f \in \mathcal{F}_*$ can be extended conti. to K.

 \mathcal{F} : the set of functions in \mathcal{F}_* extended to $K \implies \mathcal{F} \subset C(K) \subset \mathbb{L}^2(K,\mu)$.

Theorem 1.2 (Kigami) $(\mathcal{E}, \mathcal{F})$ is a local regular D-form on $\mathbb{L}^2(K, \mu)$.

$$|f(p) - f(q)|^2 \le R(p,q)\mathcal{E}(f,f) \qquad \forall f \in \mathcal{F}, \ \forall p,q \in K$$
(1.3)

$$\mathcal{E}(f,g) = \frac{5}{3} \sum_{i \in I} \mathcal{E}(f \circ F_i, g \circ F_i) \quad \forall f, g \in \mathcal{F}$$
(1.4)

 $\{B_t\}$: corresponding diffusion process (Brownian motion)

 Δ : corresponding self-adjoint operator on $\mathbb{L}^2(K,\mu)$.

<u>Uniqueness</u> (Barlow-Perkins '88) Any self-similar diffusion process on K whose law is invariant under local translations and reflections of each small triangle is a constant time change of $\{B_t\}$. — Metz, Peirone, Sabot, ...

1.5 Properties of the Dirichlet forms on the gaskets

(A) Spectral properties (Fukushima-Shima '92) $-\Delta$ has a compact resolvent. Set $\rho(x) = \#\{\lambda \le x : \lambda \text{ is an eigenvalue of } -\Delta\}$. Then $0 < \liminf_{x \to \infty} \frac{\rho(x)}{x^{d_s/2}} < \limsup_{x \to \infty} \frac{\rho(x)}{x^{d_s/2}} < \infty.$ (1.5)

(Barlow-Kigami '97) < above is because

 \exists 'many' localized eigenfunctions that produce eigenvalues with high multiplicities u: a localized eigenfunction $\stackrel{\text{Def}}{\Leftrightarrow} u$: is an eigenfunction of $-\Delta$ s.t.

Supp $u \subset O$, \exists open set $O \subset Int K$.

 $d_s = 2 \log 3 / \log 5 = 2d_f / d_w$: spectral dimension

— Kigami-Lapidus, Lindstrøm, Mosco, Strichartz, Teplyaev, ...

(B) Heat kernel estimates (Barlow-Perkins '88)

 $\exists p_t(x,y)$: jointly continuous sym. transition density of $\{X_t\}$ w.r.t. μ

 $(P_t f(x) = \int_K p_t(x, y) f(y) \mu(dy) \ \forall x \in K, \quad \frac{\partial}{\partial t} p_t(x_0, x) = \Delta_x p_t(x_0, x) \) \text{ s.t.}$

$$c_1 t^{-d_s/2} \exp(-c_2(\frac{d(x,y)^{d_w}}{t})^{\frac{1}{d_w-1}}) \le p_t(x,y) \le c_3 t^{-d_s/2} \exp(-c_4(\frac{d(x,y)^{d_w}}{t})^{\frac{1}{d_w-1}}).$$
(1.6)

— Barlow-Bass, Hambly-K, Grigor'yan-Telcs, ...

By integrating (1.6), we have $E^0[d(0, X_t)] \simeq t^{1/d_w}$.

$$d_w = \log 5 / \log 2 > 2, d_s = 2 \log 3 / \log 5 = 2d_f / d_w < 2$$

As $d_w > 2$, we say the process is sub-diffusive.

n-dim. Sierpinski gasket $(n \ge 2)$

 $d_f = \log(n+1)/\log 2, d_w = \log(n+3)/\log 2 > 2, d_s = 2\log(n+1)/\log(n+3) < 2$

(C) Domains of the Dirichlet forms

For $1 \leq p < \infty$, $1 \leq q \leq \infty$, $\beta \geq 0$ and $m \in \overline{\mathbb{N}}$, set

$$a_m(\beta, f) := L^{m\beta} (L^{md_f} \int \int_{|x-y| < c_0 L^{-m}} |f(x) - f(y)|^p d\mu(x) d\mu(y))^{1/p}, \quad f \in \mathbb{L}^p(K, \mu),$$

where $1 < L < \infty$, $0 < c_0 < \infty$.

$$\begin{split} \Lambda_{p,q}^{\beta}(K) &: \text{a set of } f \in \mathbb{L}^{p}(K,\mu) \text{ s.t. } \bar{a}(\beta,f) := \{a_{m}(\beta,f)\}_{m=0}^{\infty} \in l^{q}. \\ \Lambda_{p,q}^{\beta}(K) \text{ is a } Besov-Lipschitz space. It is a Banach space.} \\ \underline{p=2} \quad \Lambda_{2,q}^{\beta}(\mathbb{R}^{n}) = B_{2,q}^{\beta}(\mathbb{R}^{n}) \text{ if } 0 < \beta < 1, \quad = \{0\} \text{ if } \beta > 1. \\ \underline{p=2}, \beta = 1 \quad \Lambda_{2,\infty}^{1}(\mathbb{R}^{n}) = H^{1}(\mathbb{R}^{n}), \Lambda_{2,2}^{1}(\mathbb{R}^{n}) = \{0\}. \end{split}$$

Theorem 1.3 (Jonsson '96, K, Paluba, Grigor'yan-Hu-Lau, K-Sturm) Let $(\mathcal{E}, \mathcal{F})$ be the Dirichlet form on the gasket. Then,

$$\mathcal{F} = \Lambda_{2,\infty}^{d_w/2}(K).$$

Proof. Proof of $\mathcal{F} \subset \Lambda_{2,\infty}^{d_w/2}$. Let $\mathcal{E}_t(f,f) := (f - P_t f, f)_{\mathbb{L}^2}/t$, $f \in \mathbb{L}^2(K,\mu)$. Then, $\mathcal{E}_t(f,f) = \frac{1}{2t} \int \int_{K \times K} (f(x) - f(y))^2 p_t(x,y) \mu(dx) \mu(dy)$ $\geq \frac{1}{2t} \int \int_{|x-y| \le c_0 t^{1/d_w}} (f(x) - f(y))^2 p_t(x,y) \mu(dx) \mu(dy)$ $\geq \frac{c_1}{2t} \int \int_{|x-y| \le c_0 t^{1/d_w}} t^{-d_s/2} (f(x) - f(y))^2 \mu(dx) \mu(dy), \quad (1.7)$

where (1.6) was used in the last inequality.

Take $t = L^{-md_w}$ and use $d_s/2 = d_f/d_w \implies (1.7) = c_1 a_m (d_w/2, f)^2$. $\mathcal{E}_t(f, f) \nearrow \mathcal{E}(f, f)$ as $t \downarrow 0$. So we obtain $\sup_m a_m (d_w/2, f) \le c_2 \sqrt{\mathcal{E}(f, f)}$.

$$\frac{\text{Proof of } \mathcal{F} \supset \Lambda_{2,\infty}^{d_w/2}}{\mathcal{E}_t(g,g) = \frac{1}{2t} \int \int_{\substack{x,y \in K \\ |x-y| \le 1}} (g(x) - g(y))^2 p_t(x,y) \mu(dx) \mu(dy)} \\
\leq \frac{1}{2t} \sum_{m=1}^{\infty} c_3 t^{-d_s/2} e^{-c_4(tL^{md_w})^{-\gamma}} \int \int_{L^{-m} < |x-y| \le L^{-m+1}} (g(x) - g(y))^2 \mu(dx) \mu(dy)} \\
\leq c_3 t^{-(1+d_s/2)} \sum_{m=1}^{\infty} e^{-c_4(tL^{md_w})^{-\gamma}} L^{-m(d_w+d_f)} a_{m-1}(d_w/2,g)^2,$$
(1.8)

where (1.6) was used in the first inequality. Let $\Phi_t(x) = e^{-c_4(tL^{xd_w})^{-\gamma}}L^{-x(d_w+d_f)}$.

•
$$\Phi_t(0) > 0$$
, $\lim_{x \to \infty} \Phi_t(x) = 0$ and $\int_0^\infty \Phi_t(x) dx = c_5 t^{1+d_s/2}$.

• $\exists x_t > 0 \text{ s.t. } \Phi_t(x) \uparrow (0 \leq \forall x < x_t), \Phi_t(x) \downarrow (x_t < \forall x < \infty), \text{ and } \Phi_t(x_t) = c_6 t^{1+d_s/2}.$

Thus,
$$\sum_{m=1}^{\infty} \Phi_t(m) \leq \int_0^{\infty} \Phi_t(x) dx + 2\Phi_t(x_t) \leq c_7 t^{1+d_s/2}$$
.
Since $(1.8) \leq c_3 t^{-(1+d_s/2)} (\sup_m a_m(d_w/2, f))^2 \sum_{m=1}^{\infty} \Phi_t(m)$,
we conclude that $\sup_{t>0} \mathcal{E}_t(g, g) = \lim_{t\to 0} \mathcal{E}_t(g, g) \leq c_8 (\sup_m a_m(d_w/2, f))^2$.

1.6 Unbounded Sierpinski gaskets

 $\hat{K} := \bigcup_{n \ge 1} 2^n K$: the unbdd Sierpinski gasket • Construction of D-forms, as in Thm 1.2.

- Heat kernel estimates : (1.6) holds for all $x, y \in \hat{K}, 0 < t < \infty$.
- Domains of the D-forms: Thm 1.3 holds.
- 1.7 More general fractals
 - Nested fractals (Lindstrøm '90): Similar constructions, similar results.
 - P.c.f. self-similar sets (Kigami '93): Under the existence of the 'reg. harm. structure', similar constructions, generalized versions for (A), (B) and (C).
 - Sierpinski carpets: Construction of D-forms, much harder, but possible (Barlow-Bass etc). Similar results for (B) and (C).