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Abstract

In this paper, we consider symmetric jump processes of mixed-type on metric measure
spaces under general volume doubling condition, and establish stability of two-sided heat
kernel estimates and heat kernel upper bounds. We obtain their stable equivalent charac-
terizations in terms of the jumping kernels, variants of cut-o↵ Sobolev inequalities, and the
Faber-Krahn inequalities. In particular, we establish stability of heat kernel estimates for
↵-stable-like processes even with ↵ � 2 when the underlying spaces have walk dimensions
larger than 2, which has been one of the major open problems in this area.
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1 Introduction and Main Results

1.1 Setting

Let (M, d) be a locally compact separable metric space, and let µ be a positive Radon measure
on M with full support. We will refer to such a triple (M, d, µ) as a metric measure space, and
denote by h·, ·i the inner product in L2(M ;µ). Throughout the paper, we assume for simplicity
that µ(M) = 1. We would emphasize that in this paper we do not assume M to be connected
nor (M, d) to be geodesic.

We consider a regular Dirichlet form (E ,F) on L2(M ;µ). By the Beurling-Deny formula,
such form can be decomposed into three terms — the strongly local term, the pure-jump term
and the killing term (see [FOT, Theorem 4.5.2]). Throughout this paper, we consider the form
that consists of the pure-jump term only; namely there exists a symmetric Radon measure J(·, ·)
on M ⇥M \ diag, where diag denotes the diagonal set {(x, x) : x 2 M}, such that

E(f, g) =
Z

M⇥M\diag
(f(x)� f(y)(g(x)� g(y)) J(dx, dy), f, g 2 F . (1.1)
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Since (E ,F) is regular, each function f 2 F admits a quasi-continuous version ef on M
(see [FOT, Theorem 2.1.3]). Throughout the paper, we will abuse notation and take the quasi-
continuous version of f without writing f̃ . Let L be the (negative definite) L2-generator of
(E ,F) on L2(M ;µ); this is, L is the self-adjoint operator in L2(M ;µ) such that

E(f, g) = �hLf, gi for all f 2 D(L) and g 2 F .

Let {Pt}t�0 be the associated semigroup. Associated with the regular Dirichlet form (E ,F) on
L2(M ;µ) is an µ-symmetric Hunt process X = {Xt, t � 0; Px, x 2 M \N}. Here N is a properly
exceptional set for (E ,F) in the sense that µ(N ) = 0 and Px(Xt 2 N for some t > 0) = 0 for all
x 2 M \N . This Hunt process is unique up to a properly exceptional set — see [FOT, Theorem
4.2.8]. We fix X and N , and write M0 = M \N . While the semigroup {Pt}t�0 associated with E
is defined on L2(M ;µ), a more precise version with better regularity properties can be obtained,
if we set, for any bounded Borel measurable function f on M ,

Ptf(x) = Exf(Xt), x 2 M0.

The heat kernel associated with the semigroup {Pt}t�0 (if it exists) is a measurable function
p(t, x, y) : M0 ⇥M0 ! (0,1) for every t > 0, such that

Exf(Xt) = Ptf(x) =
Z

p(t, x, y)f(y) µ(dy), x 2 M0, f 2 L1(M ;µ), (1.2)

p(t, x, y) = p(t, y, x) for all t > 0, x, y 2 M0, (1.3)

p(s + t, x, z) =
Z

p(s, x, y)p(t, y, z) µ(dy) for all s > 0, t > 0, x, z 2 M0. (1.4)

While (1.2) only determines p(t, x, ·) µ-a.e., using the Chapman-Kolmogorov equation (1.4) one
can regularize p(t, x, y) so that (1.2)–(1.4) hold for every point in M0. See [BBCK, Theorem
3.1] and [GT, Section 2.2] for details. We call p(t, x, y) the heat kernel on the metric measure
Dirichlet space (or MMD space) (M, d, µ, E). By (1.2), sometime we also call p(t, x, y) the
transition density function with respect to the measure µ for the process X. Note that in some
arguments of our paper, we can extend (without further mention) p(t, x, y) to all x, y 2 M by
setting p(t, x, y) = 0 if x or y is outside M0. The existence of the heat kernel allows to extend
the definition of Ptf to all measurable functions f by choosing a Borel measurable version of f
and noticing that the integral (1.2) does not change if function f is changed on a set of measure
zero.

Denote the ball centered at x with radius r by B(x, r) and µ(B(x, r)) by V (x, r). When the
metric measure space M is an Alhfors d-regular set on Rn with d 2 (0, n] (that is, V (x, r) ⇣ rd

for r 2 (0, 1]), and the Radon measure J(dx, dy) = J(x, y) µ(dx) µ(dy) for some non-negative
symmetric function J(x, y) such that

J(x, y) ⇣ d(x, y)�(d+↵), x, y 2 M (1.5)

for some 0 < ↵ < 2, it is established in [CK1] that the corresponding Markov process X has
infinite lifetime, and has a jointly Hölder continuous transition density function p(t, x, y) with
respect to the measure µ, which enjoys the following two-sided estimate

p(t, x, y) ⇣ t�d/↵ ^ t

d(x, y)d+↵
(1.6)

2



for any (t, x, y) 2 (0, 1] ⇥M ⇥M . Here for two positive functions f, g, notation f ⇣ g means
f/g is bounded between two positive constants, and a ^ b := min{a, b}. Moreover, if M is a
global d-set; that is, if V (x, r) ⇣ rd holds for all r > 0, then the estimate (1.6) holds for all
(t, x, y) 2 (0,1) ⇥M ⇥M . We call the above Hunt process X an ↵-stable-like process on M .
Note that when M = Rd and J(x, y) = c|x�y|�(d+↵) for some constants ↵ 2 (0, 2) and c > 0, X
is a rotationally symmetric ↵-stable Lévy process on Rd. The estimate (1.6) can be regarded as
the jump process counterpart of the celebrated Aronson estimates for di↵usions. Since J(x, y) is
the weak limit of p(t, x, y)/t as t ! 0, heat kernel estimate (1.6) implies (1.5). Hence the results
from [CK1] give a stable characterization for ↵-stable-like heat kernel estimates when ↵ 2 (0, 2)
and the metric measure space M is a d-set for some constant d > 0. This result has later been
extended to mixed stable-like processes [CK2] and to di↵usions with jumps [CK3], with some
growth condition on the rate function � such as

Z r

0

s

�(s)
ds  c

r2

�(r)
for r > 0. (1.7)

For ↵-stable-like processes where �(r) = r↵, condition (1.7) corresponds exactly to 0 < ↵ < 2.
Some of the key methods used in [CK1] were inspired by a previous work [BL] on random walks
on integer lattice Zd.

The notion of d-set arises in the theory of function spaces and in fractal geometry. Geomet-
rically, self-similar sets are typical examples of d-sets. There are many self-similar fractals on
which there exist fractal di↵usions with walk dimension dw > 2 (that is, di↵usion processes with
scaling relation time ⇡ spacedw). This is the case, for example, for the Sierpinski gasket in Rn

(n � 2) which is a d-set with d = log(n+1)/ log 2 and has walk dimension dw = log(n+3)/ log 2,
and for the Sierpinski carpet in Rn (n � 2) which is a d-set with d = log(3n � 1)/ log 3 and
has walk dimension dw > 2; see [B]. A direct calculation shows (see [BSS, Sto]) that the �-
subordination of the fractal di↵usions on these fractals are jump processes whose Dirichlet forms
(E ,F) are of the form given above with ↵ = �dw and their transition density functions have
two-sided estimate (1.6). Note that as � 2 (0, 1), ↵ 2 (0, dw) so ↵ can be larger than 2. When
↵ > 2, the approach in [CK1] ceases to work as it is hopeless to construct good cut-o↵ func-
tions a priori in this case. A long standing open problem in the field is whether estimate (1.6)
holds for generic jump processes with jumping kernel of the form (1.5) for any ↵ 2 (0, dw). A
related open question is to find a characterization for heat kernel estimate (1.6) that is stable
under “rough isometries”. Do they hold on general metric measure spaces with volume doubling
(VD) and reverse volume doubling (RVD) properties (see Definition 1.1 below for these two
terminologies)? These are the questions we will address in this paper.

For di↵usions on manifolds with walk dimension 2, a remarkable fundamental result obtained
independently by Grigor’yan [Gr2] and Salo↵-Coste [Sa] asserts that the following are equivalent:
(i) Aronson-type Gaussian bounds for heat kernel, (ii) parabolic Harnack equality, and (iii) VD
and Poincaré inequality. This result is then extended to strongly local Dirichlet forms on metric
measure spaces in [BM, St1, St2] and to graphs in [De]. For di↵usions on fractals with walk
dimension larger than 2, the above equivalence still holds but one needs to replace (iii) by
(iii’) VD, Poincaré inequality and a cut-o↵ Sobolev inequality; see [BB2, BBK1, AB]. For heat
kernel estimates of symmetric jump processes in general metric measure spaces, as mentioned
above, when ↵ 2 (0, 2) and the metric measure space M is a d-set, characterizations of ↵-stable-
like heat kernel estimates were obtained in [CK1] which are stable under rough isometries; see
[CK2, CK3] for further extensions. For the equivalent characterizations of heat kernel estimates
for symmetric jump processes analogous to the situation when ↵ � 2, there are some e↵orts
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such as [BGK1, Theorem 1.2] and [GHL2, Theorem 2.3] but none of these characterizations are
stable under rough isometries. In [BGK1, Theorem 0.3], assuming that (E ,F) is conservative,
V (x, r)  crd for some constant d > 0 and that p(t, x, x)  ct�d/↵ for any x 2 M and t > 0, an
equivalent characterization for the heat kernel upper bound estimate in (1.6) is given in terms
of certain exit time estimates. Under the assumption that (E ,F) is conservative, the Radon
measure J(dx, dy) = J(x, y) µ(dx) µ(dy) for some non-negative symmetric function J(x, y), and
V (x, r)  crd for some constant d > 0, it is shown in [GHL2] that heat kernel upper bound
estimate in (1.6) holds if and only if p(t, x, x)  c1td/↵, J(x, y)  c2d(x, y)�(d+↵), and the
following survival estimate holds: there are constants �, " 2 (0, 1) so that Px(⌧B(x,r)  t)  " for
all x 2 M , r > 0 and t1/↵  �r. In both [BGK1, GHL2], ↵ can be larger than 2. We note that
when ↵ < 2, further equivalent characterizations of heat kernel estimates are given for jump
processes on graphs [BBK2, Theorem 1.5], some of which are stable under rough isometries.
Also, when the Dirichlet form of the jump process is parabolic (namely the capacity of any
non-empty compact subset of M is positive [GHL2, Definition 6.3], which is equivalent to that
every singleton has positive capacity), an equivalent characterization of heat kernel estimates is
given in [GHL2, Theorem 6.17], which is stable under rough isometries.

1.2 Heat kernel

In this paper, we are concerned with both upper bound and two-sided estimates on p(t, x, y) for
mixed stable-like processes on general metric measure spaces including ↵-stable-like processes
with ↵ � 2. To state our results precisely, we need a number of definitions.

Definition 1.1. (i) We say that (M, d, µ) satisfies the volume doubling property (VD) if there
exists a constant Cµ � 1 such that for all x 2 M and r > 0,

V (x, 2r)  CµV (x, r). (1.8)

(ii) We say that (M, d, µ) satisfies the reverse volume doubling property (RVD) if there exist
constants d1 > 0, cµ > 0 such that for all x 2 M and 0 < r  R,

V (x,R)
V (x, r)

� cµ

⇣R

r

⌘d1

. (1.9)

VD condition (1.8) is equivalent to the existence of d2 > 0 and eCµ > 0 so that

V (x,R)
V (x, r)

 eCµ

⇣R

r

⌘d2

for all x 2 M and 0 < r  R, (1.10)

while RVD condition (1.9) is equivalent to the existence of lµ > 1 and ecµ > 1 so that

V (x, lµr) � ecµV (x, r) for all x 2 M and r > 0. (1.11)

Since µ has full support on M , we have µ(B(x, r)) > 0 for every x 2 M and r > 0. Under
VD condition, we have from (1.10) that for all x 2 M and 0 < r  R,

V (x, R)
V (y, r)

 V (y, d(x, y) + R)
V (y, r)

 eCµ

⇣d(x, y) + R

r

⌘d2

. (1.12)

On the other hand, under RVD, we have from (1.11) that

µ
�
B(x0, lµr) \B(x0, r)

�
> 0 for each x0 2 M and r > 0.
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It is known that VD implies RVD if M is connected and unbounded. See, for example [GH,
Proposition 5.1 and Corollary 5.3].

Let R+ := [0,1), and � : R+ ! R+ be a strictly increasing continuous function with
�(0) = 0 , �(1) = 1 and satisfying that there exist constants c1, c2 > 0 and �2 � �1 > 0 such
that

c1

⇣R

r

⌘�1

 �(R)
�(r)

 c2

⇣R

r

⌘�2

for all 0 < r  R. (1.13)

Note that (1.13) is equivalent to the existence of constants c3, l0 > 1 such that

c�1
3 �(r)  �(l0r)  c3 �(r) for all r > 0.

Definition 1.2. We say J� holds if there exists a non-negative symmetric function J(x, y) so
that for µ⇥ µ-almost all x, y 2 M ,

J(dx, dy) = J(x, y) µ(dx) µ(dy), (1.14)

and
c1

V (x, d(x, y))�(d(x, y))
 J(x, y)  c2

V (x, d(x, y))�(d(x, y))
(1.15)

We say that J�, (resp. J�,�) if (1.14) holds and the upper bound (resp. lower bound) in (1.15)
holds.

Remark 1.3. (i) Since changing the value of J(x, y) on a subset of M ⇥M having zero µ⇥µ-
measure does not a↵ect the definition of the Dirichlet form (E ,F) on L2(M ;µ), without
loss of generality, we may and do assume that in condition J� (J�,� and J�,, respectively)
that (1.15) (and the corresponding inequality) holds for every x, y 2 M . In addition, by
the symmetry of J(·, ·), we may and do assume that J(x, y) = J(y, x) for all x, y 2 M .

(ii) Note that, under VD, for every � > 0, there are constants 0 < c1 < c2 so that for every
r > 0,

c1V (y, r)  V (x, r)  c2V (y, r) for x, y 2 M with d(x, y)  �r. (1.16)

Indeed, by (1.12), we have for every r > 0 and x, y 2 M with d(x, y)  �r,

eC�1
µ (1 + �)�d2  V (x, r)

V (y, r)
 eCµ(1 + �)d2 .

Taking � = 1 and r = d(x, y) in (1.16) shows that, under VD the bounds in condition
(1.15) are consistent with the symmetry of J(x, y).

Definition 1.4. Let U ⇢ V be open sets of M with U ⇢ U ⇢ V . We say a non-negative
bounded measurable function ' is a cut-o↵ function for U ⇢ V , if ' = 1 on U , ' = 0 on V c and
0  '  1 on M .

For f, g 2 F , we define the carré du-Champ operator �(f, g) for the non-local Dirichlet form
(E ,F) by

�(f, g)(dx) =
Z

y2M
(f(x)� f(y))(g(x)� g(y)) J(dx, dy).

Clearly E(f, g) = �(f, g)(M).
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Let Fb = F \ L1(M, µ). It can be verified (see [CKS, Lemma 3.5 and Theorem 3.7]) that
for any f 2 Fb, �(f, f) is the unique Borel measure (called the energy measure) on M satisfyingZ

M
g d�(f, f) = E(f, fg)� 1

2
E(f2, g), f, g 2 Fb.

Note that the following chain rule holds: for f, g, h 2 Fb,Z
M

d�(fg, h) =
Z

M
f d�(g, h) +

Z
M

g d�(f, h).

Indeed, this can be easily seen by the following equality

f(x)g(x)� f(y)g(y) = f(x)(g(x)� g(y)) + g(y)(f(x)� f(y)), x, y 2 M.

We now introduce a condition that controls the energy of cut-o↵ functions.

Definition 1.5. Let � be an increasing function on R+.

(i) (Condition CSJ(�)) We say that condition CSJ(�) holds if there exist constants C0 2
(0, 1] and C1, C2 > 0 such that for every 0 < r  R, almost all x0 2 M and any f 2 F ,
there exists a cut-o↵ function ' 2 Fb for B(x0, R) ⇢ B(x0, R + r) so that the following
holds: Z

B(x0,R+(1+C0)r)
f2 d�(',') C1

Z
U⇥U⇤

(f(x)� f(y))2 J(dx, dy)

+
C2

�(r)

Z
B(x0,R+(1+C0)r)

f2 dµ,
(1.17)

where U = B(x0, R + r) \B(x0, R) and U⇤ = B(x0, R + (1 + C0)r) \B(x0, R� C0r).

(ii) (Condition SCSJ(�)) We say that condition SCSJ(�) holds if there exist constants
C0 2 (0, 1] and C1, C2 > 0 such that for every 0 < r  R and almost all x0 2 M , there
exists a cut-o↵ function ' 2 Fb for B(x0, R) ⇢ B(x0, R + r) so that (1.17) holds for any
f 2 F .

Clearly SCSJ(�) =) CSJ(�).

Remark 1.6. (i) SCSJ(�) is a modification of CSA(�) that was introduced in [AB] for
strongly local Dirichlet forms as a weaker version of the so called cut-o↵ Sobolev inequality
CS(�) in [BB2, BBK1]. For strongly local Dirichlet forms the inequality corresponding to
CSJ(�) is called generalized capacity condition in [GHL3]. As we will see in Theorem 1.15
below, SCSJ(�) and CSJ(�) are equivalent under FK(�) (see Definition 1.8 below) and
J�,.

(ii) The main di↵erence between CSJ(�) here and CSA(�) in [AB] is that the integrals in
the left hand side and in the second term of the right hand side of the inequality (1.17)
are over B(x,R + (1 + C0)r) (containing U⇤) instead of over U for [AB]. Note that
the integral over U c is zero in the left hand side of (1.17) for the case of strongly local
Dirichlet forms. As we see in the arguments of the stability of heat kernel estimates for
jump processes, it is important to fatten the annulus and integrate over U⇤ rather than
over U . Another di↵erence from CSA(�) is that in [AB] the first term of the right hand
side is 1

8

R
U '

2 d�(f, f). However, we will prove in Proposition 2.4 that CSJ(�) implies the
stronger inequality CSJ(�)+ under some regular conditions VD, (1.13) and J�,. See [AB,
Lemma 5.1] for the case of strongly local Dirichlet forms.
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(iii) As will be proved in Proposition 2.3 (iv), under VD and (1.13), if (1.17) holds for some
C0 > 0, then it holds for all C 0

0 � C0 (with possibly di↵erent C2 > 0).

(iv) By the definition above, it is clear that if �1  �2, then CSJ(�2) implies CSJ(�1).

Remark 1.7. Under VD, (1.13) and J�,, SCSJ(�) always holds if �2 < 2, where �2 is the
exponent in (1.13). In particular, SCSJ(�) holds for �(r) = r↵ with ↵ < 2. Indeed, for any
fixed x0 2 M and r,R > 0, we choose a non-negative cut-o↵ function '(x) = h(d(x0, x)), where
h 2 C1([0,1)) such that 0  h  1, h(s) = 1 for all s  R, h(s) = 0 for s � R + r and
h0(s)  2/r for all s � 0. Then, by J�,, for almost every x 2 M ,

d�(',')
dµ

(x) =
Z

('(x)� '(y))2J(x, y) µ(dy)


Z
{d(x,y)�r}

J(x, y) µ(dy) +
4
r2

Z
{d(x,y)r}

d(x, y)2J(x, y) µ(dy)


Z
{d(x,y)�r}

J(x, y) µ(dy) +
4
r2

1X
i=0

Z
{2�i�1r<d(x,y)2�ir}

d(x, y)2J(x, y) µ(dy)

 c1

�(r)
+

c1

r2

1X
i=0

V (x, 2�ir)2�2ir2

V (x, 2�i�1r)�(2�i�1r)

 c1

�(r)
+

c2

�(r)

1X
i=0

2�i(2��2)  c3

�(r)
,

where in the third inequality we have used Lemma 2.1 below, and the forth inequality is due to
VD and (1.13). Thus (1.17) holds.

We next introduce the Faber-Krahn inequality, see [GT, Section 3.3] for more details. For
� > 0, we define

E�(f, g) = E(f, g) + �

Z
M

f(x)g(x) µ(dx) for f, g 2 F .

For any open set D ⇢ M , FD is defined to be the E1-closure in F of F \ Cc(D). Define

�1(D) = inf {E(f, f) : f 2 FD with kfk2 = 1} , (1.18)

the bottom of the Dirichlet spectrum of �L on D.

Definition 1.8. The MMD space (M, d, µ, E) satisfies the Faber-Krahn inequality FK(�), if there
exist positive constants C and ⌫ such that for any ball B(x, r) and any open set D ⇢ B(x, r),

�1(D) � C

�(r)
(V (x, r)/µ(D))⌫ . (1.19)

We remark that since V (x, r) � µ(D) for D ⇢ B(x, r), if (1.19) holds for some ⌫ = ⌫0 > 0,
it holds for every ⌫ 2 (0, ⌫0). So without loss of generality, we may and do assume 0 < ⌫ < 1.

Recall that X = {Xt} is the Hunt process associated with the regular Dirichlet form (E ,F)
on L2(M ;µ) with proper exceptional set N , and M0 := M \ N . For a set A ⇢ M , define the
exit time ⌧A = inf{t > 0 : Xt 2 Ac}.
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Definition 1.9. We say that E� holds if there is a constant c1 > 1 such that for all r > 0 and
all x 2 M0,

c�1
1 �(r)  Ex[⌧B(x,r)]  c1�(r).

We say that E�, (resp. E�,�) holds if the upper bound (resp. lower bound) in the inequality
above holds.

Under (1.13), it is easy to see that E�,� and E�, imply the following statements respectively:

Ey[⌧B(x,r)] � c2�(r) for all x 2 M, y 2 B(x, r/2) \M0, r > 0;

Ey[⌧B(x,r)]  c3�(r) for all x 2 M, y 2 M0, r > 0.

Indeed, for y 2 B(x, r/2) \ M0, we have Ey[⌧B(x,r)] � Ey[⌧B(y,r/2)] � c�1
1 �(r/2) � c2�(r).

Similarly, for y 2 B(x, r) \ M0, we have Ey[⌧B(x,r)]  Ey[⌧B(y,2r)]  c1�(2r)  c3�(r) (and
Ey[⌧B(x,r)] = 0 for y 2 M0 \B(x, r)).

Definition 1.10. We say EP�, holds if there is a constant c > 0 such that for all r, t > 0 and
all x 2 M0,

Px(⌧B(x,r)  t)  ct

�(r)
.

We say EP�,," holds, if there exist constants ", � 2 (0, 1) such that for any ball B = B(x0, r)
with radius r > 0,

Px(⌧B  ��(r))  " for all x 2 B(x0, r/4) \M0.

It is clear that EP�, implies EP�,,". We will prove in Lemma 4.16 below that under (1.13),
E� implies EP�,,".

Definition 1.11. (i) We say that HK(�) holds if there exists a heat kernel p(t, x, y) of the
semigroup {Pt} associated with (E ,F), which has the following estimates for all t > 0 and
all x, y 2 M0,

c1

⇣ 1
V (x,��1(t))

^ t

V (x, d(x, y))�(d(x, y))

⌘

 p(t, x, y)  c2

⇣ 1
V (x,��1(t))

^ t

V (x, d(x, y))�(d(x, y))

⌘
,

(1.20)

where c1, c2 > 0 are constants independent of x, y 2 M0 and t > 0. Here the inverse
function of the strictly increasing function t 7! �(t) is denoted by ��1(t).

(ii) We say UHK(�) (resp. LHK(�)) holds if the upper bound (resp. the lower bound) in (1.20)
holds.

(iii) We say UHKD(�) holds if there is a constant c > 0 such that for all t > 0 and all x 2 M0,

p(t, x, x)  c

V (x,��1(t))
.

Remark 1.12. We have three remarks about this definition.
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(i) First, note that under VD

1
V (y,��1(t))

^ t

V (y, d(x, y))�(d(x, y))
⇣ 1

V (x,��1(t))
^ t

V (x, d(x, y))�(d(x, y))
. (1.21)

Therefore we can replace V (x, d(x, y)) by V (y, d(x, y)) in (1.20) by modifying the values
of c1 and c2. This is because

1
V (x,��1(t))

 t

V (x, d(x, y))�(d(x, y))

if and only if d(x, y)  ��1(t), and by (1.12),

C̃µ
�1
⇣
1 +

d(x, y)
��1(t)

⌘�d2

 V (x,��1(t))
V (y,��1(t))

 C̃µ

⇣
1 +

d(x, y)
��1(t)

⌘d2

.

This together with (1.16) yields (1.21).

(ii) By the Cauchy-Schwarz inequality, one can easily see that UHKD(�) is equivalent to the
existence of c1 > 0 so that

p(t, x, y)  c1p
V (x,��1(t))V (y,��1(t))

for x, y 2 M0 and t > 0.

Consequently, by Remark 1.3(ii), under VD, UHKD(�) implies that for every c1 > 0 there
is a constant c2 > 0 so that

p(t, x, y)  c2

V (x,��1(t))
for x, y 2 M0 with d(x, y)  c1�

�1(t).

(iii) It will be implied by Theorem 1.13 and Lemma 5.6 below that if VD, (1.13) and HK(�)
hold, then the heat kernel p(t, x, y) is Hölder continuous on (x, y) for every t > 0, and so
(1.20) holds for all x, y 2 M .

In the following, we say (E ,F) is conservative if its associated Hunt process X has infinite
lifetime. This is equivalent to Pt1 = 1 a.e. on M0 for every t > 0. It follows from Proposition
3.1(ii) that LHK(�) implies that (E ,F) is conservative. We can now state the stability of the
heat kernel estimates HK(�). The following is the main result of this paper.

Theorem 1.13. Assume that the metric measure space (M, d, µ) satisfies VD and RVD, and �
satisfies (1.13). Then the following are equivalent:
(1) HK(�).
(2) J� and E�.
(3) J� and SCSJ(�).
(4) J� and CSJ(�).

Remark 1.14. (i) When � satisfies (1.13) with �2 < 2, by Remark 1.7, SCSJ(�) holds and
so in this case we have by Theorem 1.13 that HK(�) () J�. Thus Theorem 1.13 not
only recovers but also extends the main results in [CK1, CK2] except for the cases where
J(x, y) decays exponentially when d(x, y) is large, in the sense that the underlying spaces
here are general metric measure spaces satisfying VD and RVD.
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(ii) A new point of Theorem 1.13 is that it gives us the stability of heat kernel estimates for
general symmetric jump processes of mixed-type, including ↵-stable-like processes with
↵ � 2, on general metric measure spaces when the underlying spaces have walk dimension
larger than 2. In particular, if (M, d, µ) is a metric measure space on which there is an
anomalous di↵usion with walk dimension dw > 2 such as Sierpinski gaskets or carpets, one
can deduce from the subordinate anomalous di↵usion the two-sided heat kernel estimates
of any symmetric jump processes with jumping kernel J(x, y) of ↵-stable type or mixed
stable type; see Section 6 for details. This in particular answers a long standing problem
in the field.

In the process of establishing Theorem 1.13, we also obtain the following characterizations
for UHK(�).

Theorem 1.15. Assume that the metric measure space (M, d, µ) satisfies VD and RVD, and �
satisfies (1.13). Then the following are equivalent:
(1) UHK(�) and (E ,F) is conservative.
(2) UHKD(�), J�, and E�.
(3) FK(�), J�, and SCSJ(�).
(4) FK(�), J�, and CSJ(�).

We point out that UHK(�) alone does not imply the conservativeness of the associated
Dirichlet form (E ,F). For example, censored (also called resurrected) ↵-stable processes in
upper half spaces with ↵ 2 (1, 2) enjoy UHK(�) with �(r) = r↵ but have finite lifetime; see [CT,
Theorem 1.2]. We also note that RVD are only used in the proofs of UHKD(�) =) FK(�) and
J�,� =) FK(�).

We emphasize again that in our main results above, the underlying metric measure space
(M, d, µ) is only assumed to satisfy the general VD and RVD. Neither uniform VD nor uniform
RVD property is assumed. We do not assume M to be connected nor (M, d) to be geodesic.

As mentioned earlier, parabolic Harnack inequality is equivalent to the two-sided Aronson
type heat kernel estimates for di↵usion processes. In a subsequent paper [CKW], we study
stability of parabolic Harnack inequality for symmetric jump processes on metric measure spaces.

Definition 1.16. (i) We say that a Borel measurable function u(t, x) on [0,1)⇥M is parabolic
(or caloric) on D = (a, b) ⇥ B(x0, r) for the process X if there is a properly exceptional
set Nu associated with the process X so that for every relatively compact open subset U
of D, u(t, x) = E(t,x)u(Z⌧U ) for every (t, x) 2 U \ ([0,1)⇥ (M\Nu)).

(ii) We say that the parabolic Harnack inequality (PHI(�)) holds for the process X, if there
exist constants 0 < C1 < C2 < C3 < C4, C5 > 1 and C6 > 0 such that for every x0 2 M ,
t0 � 0, R > 0 and for every non-negative function u = u(t, x) on [0,1) ⇥ M that is
parabolic on cylinder Q(t0, x0,�(C4R), C5R) := (t0, t0 + �(C4R))⇥B(x0, C5R),

ess sup Q�u  C6 ess inf Q+u, (1.22)

where Q� := (t0+�(C1R), t0+�(C2R))⇥B(x0, R) and Q+ := (t0+�(C3R), t0+�(C4R))⇥
B(x0, R).

We note that the above PHI(�) is called a weak parabolic Harnack inequality in [BGK2], in
the sense that (1.22) holds for some C1, · · · , C5. It is called a parabolic Harnack inequality in
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[BGK2] if (1.22) holds for any choice of positive constants C1, · · · , C5 with C6 = C6(C1, . . . , C5) <
1. Since our underlying metric measure space may not be geodesic, one can not expect to deduce
parabolic Harnack inequality from weak parabolic Harnack inequality.

As a consequence of Theorem 1.13 and various equivalent characterizations of parabolic
Harnack inequality established in [CKW], we have the following.

Theorem 1.17. Suppose that the metric measure space (M, d, µ) satisfies VD and RVD, and �
satisfies (1.13). Then

HK(�) () PHI(�) + J�,�.

Thus for symmetric jump processes, parabolic Harnack inequality PHI(�) is strictly weaker
than HK(�). This fact was proved for symmetric jump processes on graphs with V (x, r) ⇣ rd,
�(r) = r↵ for some d � 1 and ↵ 2 (0, 2) in [BBK2, Theorem 1.5].

Some of the main results of this paper were presented at the 38th Conference on Stochastic
Processes and their Applications held at the University of Oxford, UK from July 13-17, 2015
and at the International Conference on Stochastic Analysis and Related Topics held at Wuhan
University, China from August 3-8, 2015. While we were at the final stage of finalizing this
paper, we received a copy of [MS1, MS2] from M. Murugan. Stability of discrete-time long
range random walks of stable-like jumps on infinite connected locally finite graphs is studied
in [MS2]. Their results are quite similar to ours when specialized to the case of �(r) = r↵ but
the techniques and the settings are somewhat di↵erent. They work on discrete-time random
walks on infinite connected locally finite graphs equipped with graph distance, while we work
on continuous-time symmetric jump processes on general metric measure space and with much
more general jumping mechanisms. Moreover, it is assumed in [MS2] that there is a constant
c � 1 so that c�1  µ({x})  c for every x 2 M and the d-set condition that there are constants
C � 1 and df > 0 so that C�1rdf  V (x, r)  Crdf for every x 2 M and r � 1, while we
only assume general VD and RVD. Technically, their approach is to generalize the so-called
Davies’ method (to obtain the o↵-diagonal heat kernel upper bound from the on-diagonal upper
bound) to be applicable when ↵ > 2 under the assumption of cut-o↵ Sobolev inequalities. Quite
recently, we also learned from A. Grigor’yan [GHH] that they are also working on the same
topic of this paper on metric measure spaces with the d-set condition and the conservativeness
assumption on (E ,F). Their results are also quite similar to ours, again specialized to the case of
�(r) = r↵, but the techniques are also somewhat di↵erent. Their approach [GHH] is to deduce a
kind of weak Harnack inequalities first from J� and CSJ(�), which they call generalized capacity
condition. They then obtain uniform Hölder continuity of harmonic functions, which plays the
key role for them to obtain the near-diagonal lower heat kernel bound that corresponds to (3.2).
As we see below, our approach is di↵erent from theirs. We emphasize here that in this paper
we do not assume a priori that (E ,F) is conservative.

The rest of the paper is organized as follows. In the next section, we present some preliminary
results about J�, and CSJ(�). In particular, in Proposition 2.4 we show that the leading
constant in CSJ(�) is self-improving. Sections 3, 4 and 5 are devoted to the proofs of (1) =)
(3), (4) =) (2) and (2) =) (1) in Theorems 1.13 and 1.15, respectively. Among them, Section
4 is the most di�cult part, where in Subsection 4.2 we establish the Caccioppoli inequality
and the Lp-mean value inequality for subharmonic functions associated with symmetric jump
processes, and in Subsection 4.4 Meyer’s decomposition is realized for jump processes in the VD
setting. Both subsections are of interest in their own. In Section 6, some examples are given
to illustrate the applications of our results, and a counterexample is also given to indicate that
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J φ,≥ FK(φ) Eφ,≤

Jφ,≤

CSJ(φ) Eφ  ζ=∞ UHKD(φ)

UHK(φ)J φ

SCSJ(φ)

LHK(φ)

§4.1

§4.3

§5.2

§3.2

§5.1

§5.1

Prop3.1

ζ=∞

Lem4.15

§4.4

Prop7.6

Lem4.22

Figure 1: diagram

CSJ(�) is necessary for HK(�) in general setting. For reader’s convenience, some known facts
used in this paper are streamlined and collected in Subsections 7.1-7.4 of the Appendix. In
connection with the implication of (3) =) (1) in Theorem 1.15, we show in Subsection 7.5 that
SCSJ(�) + J�, =) (E ,F) is conservative; in other words FK(�) is not needed for establishing
the conservativeness of (E ,F). We remark that, in order to increase the readability of the paper,
we have tried to make the paper as self-contained as possible. Figure 1 illustrates implications
of various conditions and flow of our proofs.

Throughout this paper, we will use c, with or without subscripts, to denote strictly positive
finite constants whose values are insignificant and may change from line to line. For p 2 [1,1],
we will use kfkp to denote the Lp-norm in Lp(M ;µ). For B = B(x0, r) and a > 0, we use aB
to denote the ball B(x0, ar).

2 Preliminaries

For basic properties and definitions related to Dirichlet forms, such as the relation between
regular Dirichlet forms and Hunt processes, associated semigroups, resolvents, capacity and
quasi-continuity, we refer the reader to [CF, FOT].

We begin with the following estimate, which is essentially given in [CK2, Lemma 2.1].

Lemma 2.1. Assume that VD and (1.13) hold. Then there exists a constant c0 > 0 such that
Z

B(x,r)c

1
V (x, d(x, y))�(d(x, y))

µ(dy)  c0

�(r)
for every x 2 M and r > 0. (2.1)

Thus if, in addition, J�, holds, then there exists a constant c1 > 0 such that
Z

B(x,r)c
J(x, y) µ(dy)  c1

�(r)
for every x 2 M and r > 0.
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Proof. For completeness, we present a proof here. By J�, and VD, we have for every x 2 M
and r > 0,

Z
B(x,r)c

1
V (x, d(x, y))�(d(x, y))

µ(dy)

=
1X
i=0

Z
B(x,2i+1r)\B(x,2ir)

1
V (x, d(x, y))�(d(x, y))

µ(dy)


1X
i=0

1
V (x, 2ir)�(2ir)

V (x, 2i+1r)

 c2

1X
i=0

1
�(2ir)

 c3

�(r)

1X
i=0

2�i�1  c4

�(r)
,

where the lower bound in (1.13) is used in the second to the last inequality. ⇤

Fix ⇢ > 0 and define a bilinear form (E(⇢),F) by

E(⇢)(u, v) =
Z

(u(x)� u(y))(v(x)� v(y))1{d(x,y)⇢} J(dx, dy). (2.2)

Clearly, the form E(⇢)(u, v) is well defined for u, v 2 F , and E(⇢)(u, u)  E(u, u) for all u 2 F .
Assume that VD, (1.13) and J�, hold. Then we have by Lemma 2.1 that for all u 2 F ,

E(u, u)� E(⇢)(u, u) =
Z

(u(x)� u(y))21{d(x,y)>⇢} J(dx, dy)

 4
Z

M
u2(x) µ(dx)

Z
B(x,⇢)c

J(x, y) µ(dy)  c0kuk22
�(⇢)

.
(2.3)

Thus E1(u, u) is equivalent to E(⇢)
1 (u, u) := E(⇢)(u, u) + kuk22 for every u 2 F . Hence (E(⇢),F)

is a regular Dirichlet form on L2(M ;µ). Throughout this paper, we call (E(⇢),F) ⇢-truncated
Dirichlet form. The Hunt process associated with (E(⇢),F) can be identified in distribution with
the Hunt process of the original Dirichlet form (E ,F) by removing those jumps of size larger
than ⇢.

Assume that J�, holds, and in particular (1.14) holds. Define J(x, dy) = J(x, y) µ(dy). Let
J (⇢)(dx, dy) = 1{d(x,y)⇢}J(dx, dy), J (⇢)(x, dy) = 1{d(x,y)⇢}J(x, dy), and �(⇢)(f, g) be the carré
du-Champ operator of the ⇢-truncated Dirichlet form (E(⇢),F); namely,

E(⇢)(f, g) =
Z

M
µ(dx)

Z
M

(f(x)� f(y))(g(x)� g(y)) J (⇢)(x, dy) =:
Z

M
d�(⇢)(f, g).

We now define variants of CSJ(�).

Definition 2.2. Let � be an increasing function on R+ with �(0) = 0, and C0 2 (0, 1]. For any
x0 2 M and 0 < r  R, set U = B(x0, R+r)\B(x0, R), U⇤ = B(x0, R+(1+C0)r)\B(x0, R�C0r)
and U⇤0 = B(x0, R + 2r) \B(x0, R� r).

(i) We say that condition CSJ(⇢)(�) holds if the following holds for all ⇢ > 0: there exist
constants C0 2 (0, 1] and C1, C2 > 0 such that for every 0 < r  R, almost all x0 2 M
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and any f 2 F , there exists a cut-o↵ function ' 2 Fb for B(x0, R) ⇢ B(x0, R + r) so that
the following holds for all ⇢ > 0:Z

B(x0,R+(1+C0)r)
f2 d�(⇢)(',') C1

Z
U⇥U⇤

(f(x)� f(y))2 J (⇢)(dx, dy)

+
C2

�(r ^ ⇢)

Z
B(x0,R+(1+C0)r)

f2 dµ.
(2.4)

(ii) We say that condition CSAJ(�) holds if there exist constants C0 2 (0, 1] and C1, C2 > 0
such that for every 0 < r  R, almost all x0 2 M and any f 2 F , there exists a cut-o↵
function ' 2 Fb for B(x0, R) ⇢ B(x0, R + r) so that the following holds for all ⇢ > 0:Z

U⇤
f2 d�(',') C1

Z
U⇥U⇤

(f(x)� f(y))2 J(dx, dy) +
C2

�(r)

Z
U⇤

f2 dµ. (2.5)

(iii) We say that condition CSAJ(⇢)(�) holds if the following holds for all ⇢ > 0: there exist
constants C0 2 (0, 1] and C1, C2 > 0 such that for every 0 < r  R, almost all x0 2 M
and any f 2 F , there exists a cut-o↵ function ' 2 Fb for B(x0, R) ⇢ B(x0, R + r) so that
the following holds for all ⇢ > 0:Z

U⇤
f2 d�(⇢)(',')  c1

Z
U⇥U⇤

(f(x)� f(y))2 J (⇢)(dx, dy) +
C2

�(r ^ ⇢)

Z
U⇤

f2 dµ.

(iv) We say that condition CSJ(⇢)(�)+ holds if the following holds for all ⇢ > 0: for any " > 0,
there exists a constant c1(") > 0 such that for every 0 < r  R, almost all x0 2 M and
any f 2 F , there exists a cut-o↵ function ' 2 Fb for B(x0, R) ⇢ B(x0, R + r) so that the
following holds for all ⇢ > 0:Z

B(x0,R+2r)
f2 d�(⇢)(',') "

Z
U⇥U⇤0

'2(x)(f(x)� f(y))2 J (⇢)(dx, dy)

+
c1(")

�(r ^ ⇢)

Z
B(x0,R+2r)

f2 dµ.
(2.6)

(v) We say that condition CSAJ(⇢)(�)+ holds if the following holds for all ⇢ > 0: for any " > 0,
there exists a constant c1(") > 0 such that for every 0 < r  R, almost all x0 2 M and
any f 2 F , there exists a cut-o↵ function ' 2 Fb for B(x0, R) ⇢ B(x0, R + r) so that the
following holds for all ⇢ > 0:

Z
U⇤0

f2 d�(⇢)(',') "
Z

U⇥U⇤0
'2(x) (f(x)� f(y))2 J (⇢)(dx, dy) +

c1(")
�(r ^ ⇢)

Z
U⇤0

f2 dµ.

For open subsets A and B of M with A ⇢ B, and for any ⇢ > 0, define

Cap(⇢)(A,B) = inf{E(⇢)(',') : ' 2 F , '|A = 1, '|Bc = 0}.

Proposition 2.3. Let � be an increasing function on R+. Assume that VD, (1.13) and J�,
hold. The following hold.

(1) CSJ(�) is equivalent to CSJ(⇢)(�).
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(2) CSJ(�) is implied by CSAJ(�).

(3) CSAJ(�) is equivalent to CSAJ(⇢)(�).

(4) If CSJ(⇢)(�) (resp. CSAJ(⇢)(�)) holds for some C0 > 0, then for any C 0
0 � C0, there exist

constants C1, C2 > 0 (where C2 depends on C 0
0) such that CSJ(⇢)(�) (resp. CSAJ(⇢)(�))

holds.

(5) If CSJ(�) holds, then there is a constant c0 > 0 such that for every 0 < r  R, ⇢ > 0 and
almost all x 2 M ,

Cap(⇢)(B(x,R), B(x,R + r))  c0
V (x,R + r)
�(r ^ ⇢) .

In particular, we have

Cap(B(x,R), B(x,R + r))  c0
V (x,R + r)

�(r)
. (2.7)

Proof. (1) Letting ⇢ ! 1, we see that (2.4) implies (1.17). Now, assume that (1.17) holds.
Then for any x0 2 M , ⇢ > 0 and f 2 F ,

Z
B(x0,R+(1+C0)r)

f2 d�(⇢)(',')


Z

B(x0,R+(1+C0)r)
f2 d�(',')

 C1

Z
U⇥U⇤

(f(x)� f(y))2 J(dx, dy) +
C2

�(r)

Z
B(x0,R+(1+C0)r)

f2 dµ

 C1

Z
U⇥U⇤

(f(x)� f(y))2 J (⇢)(dx, dy) + 2C1

Z
U⇥U⇤

(f2(x) + f2(y))1{d(x,y)>⇢} J(dx, dy)

+
C2

�(r)

Z
B(x0,R+(1+C0)r)

f2 dµ

 C1

Z
U⇥U⇤

(f(x)� f(y))2 J (⇢)(dx, dy) +
C3

�(r ^ ⇢)

Z
B(x0,R+(1+C0)r)

f2 dµ,

where Lemma 2.1 is used in the last inequality.
(2) Fix x0 2 M . Let ' 2 Fb be a cut-o↵ function for B(x0, R) ⇢ B(x0, R+r). Since '(x) = 1

on x 2 B(x0, R), we have for f 2 F ,
Z

B(x0,R�C0r)
f2 d�(',') =

Z
B(x0,R�C0r)

f2(x) µ(dx)
Z

M
(1� '(y))2J(x, y) µ(dy)


Z

B(x0,R�C0r)
f2(x) µ(dx)

Z
B(x0,R)c

J(x, y) µ(dy)


Z

B(x0,R�C0r)
f2(x) µ(dx)

Z
B(x,C0r)c

J(x, y) µ(dy)

 c1

�(C0r)

Z
B(x0,R�C0r)

f2 dµ
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 c2

�(r)

Z
B(x0,R�C0r)

f2 dµ,

where we used Lemma 2.1 and (1.13) in the last two inequalities. This together with (2.5) gives
us the desired conclusion.

(3) This can be proved in the same way as (1).
(4) This is easy. Indeed, for C 0

0 � C0, set D1 = B(x0, R + (1 + C 0
0)r) \B(x0, R + (1 + C0)r)

and D2 = B(x0, R�C0r) \B(x0, R�C 0
0r), where we set B(x0, R�C 0

0r) = ; for C 0
0 > R/r. Let

' 2 Fb be a cut-o↵ function for B(x0, R) ⇢ B(x0, R + r). Then for any f 2 F and ⇢ > 0,
Z

D1

f2 d�(⇢)(',') =
Z

D1

f2(x) µ(dx)
Z

B(x0,R+r)
'2(y)J (⇢)(x, y) µ(dy)


Z

D1

f2(x) µ(dx)
Z

B(x,C0r)c
J(x, y) µ(dy)

 c1

�(r)

Z
D1

f2 dµ,

where Lemma 2.1 and (1.13) are used in the last inequality. Similarly, for any f 2 F and ⇢ > 0,
Z

D2

f2 d�(⇢)(',')  c2

�(r)

Z
D2

f2 dµ.

From both inequalities above we can get the desired assertion for C 0
0 � C0.

(5) In view of (1) and (4), CSJ(⇢)(�) holds for every ⇢ > 0 and we can and do take C0 = 1
in (1.17). Fix x0 2 M and write Bs := B(x0, s) for s � 0. Let f 2 F such that f |BR+2r = 1 and
f |Bc

R+3r
= 0. For any ⇢ > 0, let ' 2 Fb be the cut-o↵ function for BR ⇢ BR+r associated with

f in CSJ(⇢)(�). Then

Cap(⇢)(BR, BR+r) 
Z

BR+2r

d�(⇢)(',') +
Z

Bc
R+2r

d�(⇢)(',')

=
Z

BR+2r

f2 d�(⇢)(',') +
Z

Bc
R+2r

d�(⇢)(',')

c1

Z
(BR+r\BR)⇥(BR+2r\BR�r)

(f(x)� f(y))2 J (⇢)(dx, dy)

+
c2

�(r ^ ⇢)

Z
BR+2r

f2 dµ +
Z

Bc
R+2r

µ(dx)
Z

BR+r

'2(y)J(x, y) µ(dy)

c2µ(BR+2r)
�(r ^ ⇢) +

c3µ(BR+r)
�(r)

c4µ(BR+r)
�(r ^ ⇢) ,

where we used CSJ(⇢)(�) in the second inequality and Lemma 2.1 in the third inequality.
Now let f⇢ be the potential whose E(⇢)-norm gives the capacity. Then the Cesàro mean of

a subsequence of f⇢ converges in E1-norm, say to f , and E(f, f) is no less than the capacity
corresponding to ⇢ = 1. So (2.7) is proved. ⇤
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We next show that the leading constant in CSJ(⇢)(�) (resp. CSAJ(⇢)(�)) is self-improving in
the following sense.

Proposition 2.4. Suppose that VD, (1.13) and J�, hold. Then the following hold.

(1) CSJ(⇢)(�) is equivalent to CSJ(⇢)(�)+.

(2) CSAJ(⇢)(�) is equivalent to CSAJ(⇢)(�)+.

Proof. We only prove (1), since (2) can be verified similarly. It is clear that CSJ(⇢)(�)+
implies that CSJ(⇢)(�). Below, we assume that CSJ(�) holds.

Fix x0 2 M , 0 < r  R and f 2 F . For s > 0, set Bs = B(x0, s). The goal is to construct a
cut-o↵ function ' 2 Fb for BR ⇢ BR+r which satisfies (2.6).

For � > 0 which is determined later, let

sn = c0re
�n�/(2�2),

where c0 := c0(�) is chosen so that
P1

n=1 sn = r and �2 is given in (1.13). Set r0 = 0 and

rn =
nX

k=1

sk, n � 1.

Clearly, R < R + r1 < R + r2 < · · · < R + r. For any n � 0, define Un := BR+rn+1 \BR+rn , and
U⇤

n = BR+rn+1+sn+1 \ BR+rn�sn+1 . By CSJ(⇢)(�) (with C0 = 1; see Proposition 2.3 (4)), there
exists a cut-o↵ function 'n for BR+rn ⇢ BR+rn+1 such that

Z
BR+rn+1+sn+1

f2 d�(⇢)('n,'n) C1

Z
Un⇥U⇤n

(f(x)� f(y))2 J (⇢)(dx, dy)

+
C2

�(sn+1 ^ ⇢)

Z
BR+rn+1+sn+1

f2 dµ.
(2.8)

Let bn = e�n� and define

' =
1X

n=1

(bn�1 � bn)'n. (2.9)

Then ' is a cut-o↵ function for BR ⇢ BR+r, because ' = 1 on BR and ' = 0 on Bc
R+r. On Un

we have ' = (bn�1 � bn)'n + bn, so that bn  '  bn�1 on Un. In particular, on Un

bn�1 � bn 
'(bn�1 � bn)

bn
= (e� � 1)'. (2.10)

Below, we verify that the function ' defined by (2.9) satisfies (2.6) and ' 2 Fb. For this, we
will make a non-trivial and substantial modification of the proof of [AB, Lemma 5.1]. Set

Fn,m(x, y) = f2(x)('n(x)� 'n(y))('m(x)� 'm(y))

for any n,m � 1. Then
Z

BR+2r

f2 d�(⇢)(',') =
Z

BR+2r

f2(x)
Z

M

⇣ 1X
n=1

(bn�1 � bn)('n(x)� 'n(y)
⌘2

J (⇢)(dx, dy)
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
Z

BR+2r

Z
M


2
1X

n=1

n�2X
m=1

(bn�1 � bn)(bm�1 � bm)Fn,m(x, y)

+ 2
1X

n=2

(bn�1 � bn)(bn�2 � bn�1)Fn,n�1(x, y)

+
1X

n=1

(bn�1 � bn)2Fn,n(x, y)
�

J (⇢)(dx, dy)

= : I1 + I2 + I3.

For n � m + 2, since Fn,m(x, y) = 0 for x, y 2 BR+rn or x, y /2 BR+rm+1 , we can deduce
that Fn,m(x, y) 6= 0 only if x 2 BR+rm+1 , y /2 BR+rn or x /2 BR+rn , y 2 BR+rm+1 . Since
|Fn,m(x, y)|  f2(x), using Lemma 2.1, we have

Z
BR+2r

Z
M

Fn,m(x, y) J (⇢)(dx, dy)

=
Z

BR+2r\BR+rm+1

Z
Bc

R+rn

· · ·+
Z

BR+2r\Bc
R+rn

Z
BR+rm+1

· · ·

 c

�(
Pn

k=m+2 sk)

Z
BR+2r

f2(x) µ(dx)

 c

�(sm+2)

Z
BR+2r

f2(x) µ(dx).

(2.11)

Note that, according to (1.13), we have

�(r)
�(sk+2)

 c0
⇣ r

c0(�)re�(k+2)�/(2�2)

⌘�2

= c0
e�ek�/2

c0(�)�2
=

c0e�(e� � 1)1/2

c0(�)�2(bk�1 � bk)1/2
.

Therefore,
(bk�1 � bk)1/2�(sk+2)�1  c1(�)�(r)�1. (2.12)

This together with (2.11) implies

I1  2
1X

n=1

n�2X
m=1

(bn�1 � bn)(bm�1 � bm)
c

�(sm+2)

Z
BR+2r

f2(x) µ(dx)


1X

n=1

n�2X
m=1

(bn�1 � bn)(bm�1 � bm)1/2 c2(�)
�(r)

Z
BR+2r

f2(x) µ(dx)

 c3(�)
�(r)

Z
BR+2r

f2(x) µ(dx),

because
P1

m=1(bm�1�bm)1/2 = c4(�) and
P1

n=1(bn�1�bn) = 1. For I2, by the Cauchy-Schwarz
inequality, we have

I2  2
1X

n=2

⇣Z
BR+2r

Z
M

(bn�1 � bn)2Fn,n(x, y)2 J (⇢)(dx, dy)
⌘1/2

⇥
⇣Z

BR+2r

Z
M

(bn�2 � bn�1)2Fn�1,n�1(x, y)2 J (⇢)(dx, dy)
⌘1/2
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 2 I3,

where we used 2(ab)1/2  a + b for a, b � 0 in the last inequality. For I3,Z
BR+2r

Z
M

Fn,n(x, y) J (⇢)(dx, dy)

=
⇣Z

BR+rn+1+sn+1

Z
M

+
Z

BR+2r\BR+rn+1+sn+1

Z
M

⌘
Fn,n(x, y) J (⇢)(dx, dy)


Z

BR+rn+1+sn+1

Z
M

Fn,n(x, y) J (⇢)(dx, dy) +
c

�(sn+1)

Z
BR+2r

f2(x) µ(dx)

 C1

Z
Un⇥U⇤n

(f(x)� f(y))2 J (⇢)(dx, dy) +
c + C2

�(sn+1 ^ ⇢)

Z
BR+2r

f2(x) µ(dx),

where we used Lemma 2.1 in the second line and (2.8) in the last line. Using (2.10) and (2.12),
and noting that sk+1 � sk+2 and

P1
m=1(bm�1 � bm)3/2 +

P1
m=1(bm�1 � bm)2 = c5(�), we have

I3  C3(e� � 1)2
Z

U⇥U⇤0
'2(x)(f(x)� f(y))2 J (⇢)(dx, dy) +

c6(�)
�(r ^ ⇢)

Z
BR+2r

f2(x) µ(dx),

where we used the facts that {Un} are disjoint,
S

n Un = U , and U⇤
n ⇢ U⇤0 for all n � 1. For

any " > 0, we now choose � so that 3C3(e� � 1)2 = ", and obtain (2.6).
Next, we prove that ' 2 Fb. Let '(i) =

Pi
n=1(bn�1 � bn)'n for i � 1. It is clear that

'(i) 2 Fb and '(i) ! ' as i !1. So in order to prove ' 2 Fb, it su�ces to verify that

lim
i,j!1

E('(i) � '(j),'(i) � '(j)) = 0. (2.13)

Indeed, for any i > j, we can follow the arguments above and obtain that
Z

BR+2r

d�('(i) � '(j),'(i) � '(j))

 e�j�

 
c7(�)

Z
U⇥U⇤0

(f(x)� f(y))2 J(dx, dy) +
c8(�)
�(r)

Z
BR+2r

f2(x) µ(dx)

!
.

On the other hand, by Lemma 2.1 and the fact that supp ('(i) � '(j)) ⇢ BR+r,

Z
Bc

R+2r

d�('(i) � '(j),'(i) � '(j)) 

0
@ iX

n=j+1

(bn�1 � bn)

1
A

2 Z
Bc

R+2r

Z
BR+r

J(x, y) µ(dy) µ(dx)

e�j� c9(�)
�(r)

µ(BR+r).

Combining with both inequalities above, we can get that (2.13) holds true. ⇤

As a direct consequence of Proposition 2.3(1) and Proposition 2.4(1), we have the following
corollary.
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Corollary 2.5. Suppose that VD, (1.13), J�, and CSJ(�) hold. Then there exists a constant
c1 > 0 such that for every 0 < r  R, almost all x0 2 M and any f 2 F , there exists a cut-o↵
function ' 2 Fb for B(x0, R) ⇢ B(x0, R + r) so that the following holds for all ⇢ 2 (0,1]:

Z
B(x0,R+2r)

f2 d�(⇢)(',')  1
8

Z
U⇥U⇤0

'2(x)(f(x)� f(y))2 J (⇢)(dx, dy)

+
c1

�(r ^ ⇢)

Z
B(x0,R+2r)

f2 dµ,
(2.14)

where U = B(x0, R + r) \B(x0, R) and U⇤0 = B(x0, R + 2r) \B(x0, R� r).

Remark 2.6. According to all the arguments above, we can easily obtain that Propositions 2.3,
2.4 and Corollary 2.5 with small modifications (i.e. the cut-o↵ function ' 2 Fb can be chosen
to be independent of f 2 F) hold for SCSJ(�).

We close this subsection by the following statement.

Lemma 2.7. Assume that VD, (1.13) UHK(�) hold and (E ,F) is conservative. Then EP�,
holds.

Proof. We first verify that there is a constant c1 > 0 such that for each t, r > 0 and for almost
all x 2 M , Z

B(x,r)c
p(t, x, y) µ(dy)  c1t

�(r)
.

Indeed, we only need to consider the case that �(r) > t; otherwise, the inequality above holds
trivially with c1 = 1. According to UHK(�), VD and (1.13), for any t, r > 0 with �(r) > t and
almost all x 2 M ,

Z
B(x,r)c

p(t, x, y) µ(dy) =
1X
i=0

Z
B(x,2i+1r)\B(x,2ir)

p(t, x, y) µ(dy)


1X
i=0

c2tV (x, 2i+1r)
V (x, 2ir)�(2ir)

 c3t

�(r)

1X
i=0

2�i�1  c4t

�(r)
.

Now, since (E ,F) is conservative, by the strong Markov property, for any each t, r > 0 and
for almost all x 2 M ,

Px(⌧B(x,r)  t) = Px(⌧B(x,r)  t,X2t 2 B(x, r/2)c) + Px(⌧B(x,r)  t,X2t 2 B(x, r/2))

 Px(X2t 2 B(x, r/2)c) + sup
z /2B(x,r)c,st

Pz(X2t�s 2 B(z, r/2)c)

 c5t

�(r)
,

which yields EP�,. (Note that the conservativeness of (E ,F) is used in the equality above.
Indeed, without the conservativeness, there must be an extra term Px(⌧B(x,r)  t, ⇣  2t) in the
right hand side of the above equality, where ⇣ is the lifetime of X.) ⇤
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3 Implications of heat kernel estimates

In this section, we will prove (1) =) (3) in Theorems 1.13 and 1.15. We point out that, under
VD, RVD and (1.13), UHK(�) =) FK(�) is given in Proposition 7.6 in the Appendix.

3.1 UHK(�) + (E ,F) is conservative =) J�,, and HK(�) =) J�

We first show the following, where, for future reference, it is formulated for a general Hunt
process Y that admits no killings inside.

Proposition 3.1. Suppose that Y = {Yt, t � 0, Px, x 2 E} is an arbitrary Hunt process on a
locally compact separable metric space E that admits no killings inside E. Denote its lifetime
by ⇣.

(i) If there is a constant c0 > 0 so that

Px(⇣ = 1) � c0 for every x 2 E, (3.1)

then Px(⇣ = 1) = 1 for every x 2 E.

(ii) Suppose that VD holds, the heat kernel p(t, x, y) of the process Y exists, and there exist
constants " 2 (0, 1) and c1 > 0 such that for any x 2 E and t > 0,

p(t, x, y) � c1

V (x,��1(t))
for y 2 B(x, "��1(t)), (3.2)

where � : R+ ! R+ is a strictly increasing continuous function with �(0) = 0. Then
Px(⇣ = 1) = 1 for every x 2 E. In particular, LHK(�) implies ⇣ = 1 a.s.

Proof. (i) Let {FY
t ; t � 0} be the minimal augmented filtration generated by the Hunt process

Y , and set u(x) := Px(⇣ = 1). Then we have u(x) � c0 > 0 for x 2 E. Note that

u(Yt) = 1{⇣>t}u(Yt) = Ex
⇥
1{⇣=1}|FY

t

⇤
is a bounded martingale with limt!1 u(Yt) = 1{⇣=1}. Let {Kj ; j � 1} be an increasing sequence
of compact sets so that [1j=1Kj = E and define ⌧j = inf{t � 0 : Yt /2 Kj}. Since the Hunt
process Y admits no killings inside E, we have ⌧j < ⇣ a.s. for every j � 1. Clearly limj!1 ⌧j = ⇣.
By the optional stopping theorem, we have for x 2 E,

u(x) = lim
j!1

Exu(Y⌧j ) = Ex


lim

j!1
u(Y⌧j )

�
= Ex


lim

j!1
u(Y⌧j )1{⇣<1} + lim

t!1
u(Yt)1{⇣=1}

�

� c0Px(⇣ < 1) + Px(⇣ = 1) = c0Px(⇣ < 1) + u(x).

It follows that Px(⇣ < 1) = 0 for every x 2 E.
(ii) By (3.2) and the equivalent characterization (1.10) of VD, we have for every x 2 E and

t > 0,

Px(⇣ > t) �
Z

B(x,"��1(t))
p(t, x, y) µ(dy) �

Z
B(x,"��1(t))

c1

V (x,��1(t))
µ(dy) � c2 > 0.

Passing t !1, we get Px(⇣ = 1) � c2 for every x 2 E. The conclusion now follows immediately
from (i). ⇤
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Remark 3.2. (i) The condition that Y admits no killings inside E is needed for Proposition
3.1 to hold. That is, condition (3.1) alone does not guarantee Y is conservative. Here is
a counterexample. Let Y be the process obtained from a Brownian motion W = {Wt} in
R3 killed according to the potential q(x) := 1B(0,1)(x). That is, for f � 0 on R3,

Ex[f(Yt)] = Ex


f(Wt) exp

✓
�
Z t

0
1B(0,1)(Ws) ds

◆�
. (3.3)

Denote by ⇣ the lifetime of Y . We claim that (3.1) holds for Y . Indeed, for three-
dimensional Brownian motion W , we have

inf
x2R3:|x|�2

Px(�W
B(0,1) = 1) = 1� sup

x2R3:|x|�2
Px(�W

B(0,1) < 1) = 1� sup
x2R3:|x|�2

1
|x| =

1
2
,

where �W
B(0,1) = inf{t � 0 : Wt 2 B(0, 1)}. Clearly for x 2 B(0, 2)c,

Px(⇣ = 1) � Px(�W
B(0,1) = 1) � 1

2
. (3.4)

On the other hand, if we use p(t, x, y) and p0(t, x, y) to denote the transition density
function of Y and W with respect to the Lebesgue measure on R3 respectively, then we
have by (3.3) that

e�tp0(t, x, y)  p(t, x, y)  p0(t, x, y) for t > 0 and x, y 2 R3.

Hence there is a constant c1 2 (0, 1) so that

Px
�
Y1 2 R3 \B(0, 2)

�
� c1 for every x 2 B(0, 1).

Using the Markov property of Y at time 1, we have from (3.4) that Px(⇣ = 1) � c1/2
for every x 2 B(0, 1). This establishes (3.1) with c0 = c1/2. However Px(⇣ < 1) > 0 for
every x 2 R3.

(ii) In the setting of this paper, X is the symmetric Hunt process associated with the regular
Dirichlet form (E ,F) given by (1.1) that has no killing term. So X always admits no
killings inside M .

The next proposition in particular shows that UHK(�) implies (1.14).

Proposition 3.3. Under VD and (1.13),

UHK(�) and (E ,F) is conservative =) J�,,

and
HK(�) =) J�.

Proof. The proof is easy and standard, and we only consider HK(�) =) J� for simplicity.
Consider the form E(t)(f, g) := hf�Ptf, gi/t. Since (E ,F) is conservative by Proposition 3.1(ii),
we can write

E(t)(f, g) =
1
2t

Z
M

Z
M

(f(x)� f(y))(g(x)� g(y))p(t, x, y) µ(dx) µ(dy).
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It is well known that limt!0 E(t)(f, g) = E(f, g) for all f, g 2 F . Let A, B be disjoint compact
sets, and take f, g 2 F such that supp f ⇢ A and supp g ⇢ B. Then

E(t)(f, g) = �1
t

Z
A

Z
B

f(x)g(y)p(t, x, y) µ(dy) µ(dx) t!0�! �
Z

A

Z
B

f(x)g(y) J(dx, dy).

Using HK(�), we obtainZ
A

Z
B

f(x)g(y) J(dx, dy) ⇣
Z

A

Z
B

f(x)g(y)
V (x, d(x, y))�(d(x, y))

µ(dy) µ(dx),

for all f, g 2 F such that supp f ⇢ A and supp g ⇢ B. Since A, B are arbitrary disjoint compact
sets, it follows that J(dx, dy) is absolutely continuous w.r.t. µ(dx) µ(dy), and J� holds. ⇤

3.2 UHK(�) and (E ,F) is conservative =) SCSJ(�)

In this subsection, we give the proof that UHK(�) and the conservativeness of (E ,F) imply
SCSJ(�). For D ⇢ M and � > 0, define

GD
� f(x) = Ex

Z ⌧D

0
e��tf(Xt) dt, x 2 M0.

Lemma 3.4. Suppose that VD, (1.13) and UHK(�) hold, and (E ,F) is conservative. Let x0 2
M , 0 < r  R, and define

D0 = B(x0, R + 9r/10) \B(x0, R + r/10),

D1 = B(x0, R + 4r/5) \B(x0, R + r/5),

D2 = B(x0, R + 3r/5) \B(x0, R + 2r/5).

Let � = �(r)�1, and set h = GD0
� 1D1. Then h 2 FD0 and h(x)  �(r) for all x 2 M0.

Moreover, there exists a constant c1 > 0, independent of x0, r and R, so that h(x) � c1�(r) for
all x 2 D2 \M0.

Proof. That h 2 FD0 follows by [FOT, Theorem 4.4.1]. The definition of h implies that
h(x) = 0 for x 62 D0, and the upper bound on h is elementary, since h  GM

� 1 = ��1 = �(r).
By Lemma 2.7, we can choose a constant �1/2 > 0 such that for all r > 0 and all x 2 M0,

Px(⌧B(x,r)  �1/2�(r))  1
2
.

For any x 2 D2 \M0, B1 := B(x, r/5) ⇢ D1. Hence

h(x) = Ex
Z ⌧D0

0
e��t1D1(Xt) dt

� Ex

Z ⌧B1

0
e��t1B1(Xt) dt; ⌧B1 > �1/2�(r/5)

�

� Px(⌧B1 > �1/2�(r/5))

"Z �1/2�(r/5)

0
e��t dt

#
� c1�(r),

where we used (1.13) in the last inequality. ⇤
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We also need the following property for non-local Dirichlet forms.

Lemma 3.5. For each f, g 2 Fb, ⌘ > 0 and any subset D ⇢ M ,

(1� ⌘�1)
Z

D⇥D
f2(x)(g(x)� g(y))2 J(dx, dy)


Z

D⇥D
(g(x)f2(x)� g(y)f2(y))(g(x)� g(y)) J(dx, dy)

+ ⌘

Z
D⇥D

g2(x)(f(x)� f(y))2 J(dx, dy)

(3.5)

Proof. For any f, g 2 Fb, we can easily get that
Z

D⇥D
f2(x)(g(x)� g(y))2 J(dx, dy)

=
Z

D⇥D
(g(x)f2(x)� g(y)f2(y))(g(x)� g(y)) J(dx, dy)

� 1
2

Z
D⇥D

(f2(x)� f2(y))(g2(x)� g2(y)) J(dx, dy).

(3.6)

Then according to the Cauchy-Schwarz inequality, for any ⌘ > 0,
���
Z

D⇥D
(f2(x)� f2(y))(g2(x)� g2(y)) J(dx, dy)

���

✓Z

D⇥D
⌘(g(x) + g(y))2(f(x)� f(y))2 J(dx, dy)

◆1/2

⇥
✓Z

D⇥D
⌘�1(f(x) + f(y))2(g(x)� g(y))2 J(dx, dy)

◆1/2


✓Z

D⇥D
4⌘g2(x)(f(x)� f(y))2 J(dx, dy)

◆1/2

⇥
✓Z

D⇥D
4⌘�1f2(x)(g(x)� g(y))2 J(dx, dy)

◆1/2

 2⌘
Z

D⇥D
g2(x)(f(x)� f(y))2 J(dx, dy)

+ 2⌘�1
Z

D⇥D
f2(x)(g(x)� g(y))2 J(dx, dy),

where we have used the fact ab  1
2(a2 + b2) for all a, b � 0 in the last inequality. Plugging this

into (3.6), we obtain (3.5). ⇤

Proposition 3.6. Suppose that VD, (1.13) and UHK(�) hold, and (E ,F) is conservative. Then
SCSJ(�) holds.

Proof. By the dominated convergence theorem, we only need to verify that SCSJ(�) holds for
any f 2 Fb. For any x0 2 M and s > 0, let Bs = B(x0, s). For 0 < r  R, let U = BR+r \ BR
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and U⇤ = BR+3r/2 \ BR�r/2. Let Di be those as in Lemma 3.4, and � = �(�)�1. For x 2 M0,
set

g(x) =
GD0

� 1D1(x)
c⇤�(r)

,

'(x) =

(
1 ^ g(x) if x 2 Bc

R+r/2 \M0,

1 if x 2 BR+r/2 \M0,

where c⇤ is the constant c1 in Lemma 3.4. Then by Lemma 3.4, ' = 0 on Bc
R+r, and ' = 1 on

BR.
We first claimZ

U⇤
f2 d�(',') 

Z
U⇤

f2 d�(g, g) +
c1

�(r)

Z
U⇤

f2 dµ, f 2 Fb. (3.7)

Indeed, by decomposing the regions of integrals, we haveZ
U⇤

f2 d�(',') =
Z

BR+r/2\BR�r/2

Z
BR+r\BR+r/2

+
Z

BR+3r/2\BR+r/2

Z
BR+r/2

+
Z

BR+3r/2\BR+r/2

Z
BR+r\BR+r/2

+
Z

BR+3r/2\BR�r/2

Z
Bc

R+r

=: I1 + I2 + I3 + I4,

where the first integral of each term in the right hand side is with respect to x. Here we used
the fact Z

BR+r/2\BR�r/2

f2(x) µ(dx)
Z

BR+r/2

('(x)� '(y))2J(x, y) µ(dy) = 0,

because '(x) = '(y) = 1 when x, y 2 BR+r/2. By Lemma 2.1 and (1.13), we have

I1 =
Z

BR+r/2\BR�r/2

f2(x) µ(dx)
Z

BR+r\BR+3r/5

(1� '(y))2J(x, y) µ(dy)

 c1

�(r/10)

Z
BR+r/2\BR�r/2

f2 dµ  c2

�(r)

Z
BR+r/2\BR�r/2

f2 dµ.

Similarly,

I2 =
Z

BR+3r/2\BR+3r/5

f2(x)('(x)� 1)2 µ(dx)
Z

BR+r/2

J(x, y) µ(dy)

 c3

�(r)

Z
BR+3r/2\BR+3r/5

f2 dµ,

I4 =
Z

BR+9r/10\BR�r/2

f2(x)'2(x) µ(dx)
Z

Bc
R+r

J(x, y) µ(dy)

 c4

�(r)

Z
BR+9r/10\BR�r/2

f2 dµ.

Finally, we have

I3 =
Z

BR+3r/2\BR+r/2

f2(x) µ(dx)
Z

BR+r\BR+r/2

('(x)� '(y))2J(x, y) µ(dy)
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
Z

BR+3r/2\BR+r/2

f2(x) µ(dx)
Z

BR+r\BR+r/2

(g(x)� g(y))2J(x, y) µ(dy)


Z

U⇤
f2 d�(g, g),

so that (3.7) is proved.
Next, using Lemma 2.1 and (3.5) with ⌘ = 2, we have for any f 2 Fb,Z
U⇤

f2 d�(g, g) 
Z

U⇤⇥U⇤
f2(x)(g(x)� g(y))2 J(dx, dy) +

Z
U⇤⇥U⇤c

f2(x)g2(x) J(dx, dy)

 2
Z

U⇤⇥U⇤
(f2(x)g(x)� f2(y)g(y))(g(x)� g(y)) J(dx, dy)

+ 4
Z

U⇤⇥U⇤
g2(x)(f(x)� f(y))2 J(dx, dy) +

c5

�(r)

Z
U

f2 dµ,

(3.8)

where in the last inequality we have used the fact that g is zero outside U .
With � = �(r)�1, we have for any f 2 Fb,Z

U⇤⇥U⇤
(f2(x)g(x)� f2(y)g(y))(g(x)� g(y)) J(dx, dy)


Z

(U⇤⇥U⇤)[(U⇤c⇥U⇤)[(U⇤⇥U⇤c)
(f2(x)g(x)� f2(y)g(y))(g(x)� g(y)) J(dx, dy)

=
Z

M
d�(f2g, g) = E(f2g, g)  E�(f2g, g)

= (c⇤�(r))�1E�(f2g, GD0
� 1D1)

= (c⇤�(r))�1hf2g,1D1i

 (c⇤�(r))�1
Z

U
f2g dµ.

(3.9)

Here we used [FOT, Theorem 4.4.1] and the fact that f2g 2 FD0 to obtain the third equality.
Plugging (3.9) into (3.8), and using the facts that g  c6 and g is zero outside U , we obtainZ

U⇤
f2 d�(g, g)  4

Z
U⇤⇥U⇤

g2(x)(f(x)� f(y))2 J(dx, dy) +
2

c⇤�(r)

Z
U

f2g dµ +
c5

�(r)

Z
U

f2 dµ

 4c2
6

Z
U⇥U⇤

(f(x)� f(y))2 J(dx, dy) +
⇣2c6

c⇤
+ c5

⌘ 1
�(r)

Z
U

f2 dµ.

This and (3.7) imply CSAJ(�) for any f 2 Fb with the strong form (i.e. the cut-o↵ function is
independent of f 2 Fb) with C0 = 1

2 . Therefore, the desired assertion follows from Proposition
2.3(2) and Remark 2.6. ⇤

As mentioned in the beginning of this section, UHK(�) implies FK(�) by Proposition 7.6
under VD, RVD and (1.13). This completes the proof of (1) =) (3) part in Theorems 1.13 and
1.15. Note also that (3) =) (4) part in Theorems 1.13 and 1.15 holds trivially.

4 Implications of CSJ(�) and J�,�

In this section, we will prove (4) =) (2) in Theorems 1.13 and 1.15.
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4.1 J�,� =) FK(�)

We first prove that under VD and (1.13), J�,� implies the local Nash inequality introduced by
Kigami ([Ki]). Note that for the uniform VD case, the following lemma was proved in [CK2,
Theorem 3.1]. The proof below is similar to that of [CK2, Theorem 3.1].

Lemma 4.1. Under VD, (1.13) and J�,�, there is a constant c0 > 0 such that for any s > 0,

kuk22  c0

⇣ kuk21
infz2supp u V (z, s)

+ �(s)E(u, u)
⌘
, 8u 2 F \ L1(M ;µ).

Proof. For any u 2 F \ L1(M ;µ) and s > 0, define

us(x) :=
1

V (x, s)

Z
B(x,s)

u(z) µ(dz) for x 2 M.

For A ⇢ M and s > 0, denote As := {z 2 M : d(z,A) < s}. Using (1.12), we have

kusk1  c1kuk1
infz02(supp u)s V (z0, s)

 c01kuk1
infz2supp u V (z, 2s)

 c01kuk1
infz2supp u V (z, s)

and

kusk1 
Z

(supp u)s

1
V (x, s)

µ(dx)
Z

B(x,s)
|u(z)|µ(dz)

=
Z

supp u
|u(z)|µ(dz)

Z
(supp u)s\B(z,s)

1
V (x, s)

µ(dx)  c2kuk1.

In particular,

kusk22  kusk1kusk1 
c3kuk21

infz2supp u V (z, s)
.

Therefore, for u 2 F \ L1(M ;µ), by J�,�,

kuk22  2ku� usk22 + 2kusk22

 2
Z

M

 
1

V (x, s)

Z
B(x,s)

(u(x)� u(y))2µ(dy)

!
µ(dx) +

2c3kuk21
infz2supp u V (z, s)

 c4

Z
M

✓
1

V (x, s)

Z
B(x,s)

(u(x)� u(y))2J(x, y)�(s)V (x, s)) µ(dy)
◆

µ(dx)

+
2c3kuk21

infz2supp u V (z, s)

 c5 �(s)
Z

M

Z
B(x,s)

(u(x)� u(y))2J(x, y) µ(dy) µ(dx)

+
2c3kuk21

infz2supp u V (z, s)

 c6

✓
�(s)E(u, u) +

kuk21
infz2supp u V (z, s)

◆
.

We thus obtain the desired inequality. ⇤
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We then conclude by Proposition 7.4 that J�,� =) FK(�) under VD, RVD and (1.13).

By Proposition 7.7 in Appendix (see also [BBCK, Theorem 3.1] and [GT, Section 2.2]), it
follows that there is a proper exceptional set N so that the Hunt process {Xt} has a transition
density function p(t, x, y) for every x, y 2 M \ N .

4.2 Caccioppoli and L1-mean value inequalities

In this subsection, we establish mean value inequalities for subharmonic functions. Though in
this paper, we only need mean value inequalities for the ⇢-truncated Dirichlet form (E(⇢),F), we
choose to first establish these inequalities for subharmonic functions of the original Dirichlet form
(E ,F) and then indicate how these proofs can be modified to establish similar inequalities for
subharmonic functions of the ⇢-truncated Dirichlet form (E(⇢),F). There are several reasons for
doing so: (i) the mean value inequalities for the original Dirichlet form (E ,F) will be used as one
of the key tools in the study of the stability of parabolic Harnack inequality in our subsequent
paper [CKW]; (ii) since the proofs share many common parts and ideas in the truncated and
non-truncated settings, it is more e�cient to do it in this way; (iii) although they share many
common ideas in these two settings, there are also some di↵erences; see the paragraph proceeding
the statement of Proposition 4.11, by putting together in one place clearly reveals di↵erences
and di�culties in the setting of jump processes as for the di↵usion case.

We first need to introduce the analytic characterization of subharmonic functions and to
extend the definition of bilinear form E . Let D be an open subset of M . Recall that a function
f is said to be locally in FD, denoted as f 2 F loc

D , if for every relatively compact subset U of D,
there is a function g 2 FD such that f = g m-a.e. on U .

The next lemma is proved in [C, Lemma 2.6].

Lemma 4.2. Let D be an open subset of M . Suppose u is a function in F loc
D that is locally

bounded on D and satisfies that
Z

U⇥V c
|u(y)|J(dx, dy) < 1 (4.1)

for any relatively compact open sets U and V of M with Ū ⇢ V ⇢ V̄ ⇢ D. Then for every
v 2 Cc(D) \ F , the expression

Z
(u(x)� u(y))(v(x)� v(y)) J(dx, dy)

is well defined and finite; it will still be denoted as E(u, v).

As noted in [C, (2.3)], since (E ,F) is a regular Dirichlet form on L2(M ;µ), for any relatively
compact open sets U and V with Ū ⇢ V , there is a function  2 F \ Cc(M) such that  = 1
on U and  = 0 on V . Consequently,

Z
U⇥V c

J(dx, dy) =
Z

U⇥V c
( (x)�  (y))2 J(dx, dy)  E( , ) < 1,

so each bounded function u satisfies (4.1).

Definition 4.3. Let D be an open subset of M .
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(i) We say that a nearly Borel measurable function u on M is E-subharmonic (resp. E-harmonic,
E-superharmonic) in D if u 2 F loc

D , satisfies condition (4.1) and

E(u,')  0 (resp. = 0,� 0)

for any 0  ' 2 FD.

(ii) A nearly Borel measurable function u on M is said to be subharmonic (resp. harmonic,
superharmonic) in D (with respect to the process X) if for any relatively compact sub-
set U ⇢ D, t 7! u(Xt^⌧U ) is a uniformly integrable submartingale (resp. martingale,
supermartingale) under Px for q.e. x 2 U .

The following result is established in [C, Theorem 2.11 and Lemma 2.3] first for harmonic
functions, and then extended in [ChK, Theorem 2.9] to subharmonic functions.

Theorem 4.4. Let D be an open subset of M , and let u be a bounded function. Then u is
E-harmonic (resp. E-subharmonic) in D if and only if u is harmonic (resp. subharmonic) in D.

To establish the Caccioppoli inequality, we also need the following definition.

Definition 4.5. For a Borel measurable function u on M , we define its nonlocal tail in the ball
B(x0, r) by

Tail (u;x0, r) = �(r)
Z

B(x0,r)c

|u(z)|
V (x0, d(x0, z))�(d(x0, z))

µ(dz). (4.2)

Suppose that VD and (1.13) hold. Observe that in view of (2.1), Tail (u;x0, r) is finite if u
is bounded. Note also that Tail (u;x0, r) is finite by the Hölder inequality and (2.1) whenever
u 2 Lp(M ;µ) for any p 2 [1,1) and r > 0. As mentioned in [CKP], the key-point in the present
nonlocal setting is how to manage the nonlocal tail.

We first show that CSJ(�) enables us to prove a Caccioppoli inequality for E-subharmonic
functions. Note that the Caccioppoli inequality below is di↵erent from that in [CKP, Lemma
1.4], since our argument is heavily based on CSJ(�).

Lemma 4.6. (Caccioppoli inequality) For x0 2 M and s > 0, let Bs = B(x0, s). Suppose
that VD, (1.13), CSJ(�) and J�, hold. For 0 < r < R, let u be an E-subharmonic function on
BR+r for the Dirichlet form (E ,F), and v = (u�✓)+ for ✓ � 0. Also, let ' be the cut-o↵ function
for BR�r ⇢ BR associated with v in CSJ(�). Then there exists a constant c > 0 independent of
x0, R, r and ✓ such that

Z
BR+r

d�(v', v')  c

�(r)

"
1 +

1
✓

✓
1 +

R

r

◆d2+�2��1

Tail (u;x0, R + r)

#Z
BR+r

u2 dµ. (4.3)

Proof. Since u is E-subharmonic on BR+r for the Dirichlet form (E ,F) and '2v 2 FBR ,

0 � E(u,'2v) =
Z

BR+r⇥BR+r

(u(x)� u(y))('2(x)v(x)� '2(y)v(y)) J(dx, dy)

+ 2
Z

BR+r⇥Bc
R+r

(u(x)� u(y))'2(x)v(x) J(dx, dy)

= : I1 + 2I2.

(4.4)
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For I1, we may and do assume without loss of generality that u(x) � u(y); otherwise just
exchange the roles of x and y below. We have

(u(x)� u(y))('2(x)v(x)� '2(y)v(y))

= (u(x)� u(y))'2(x)(v(x)� v(y)) + (u(x)� u(y))('2(x)� '2(y))v(y)

� '2(x)(v(x)� v(y))2 + (v(x)� v(y))('2(x)� '2(y))v(y)

� '2(x)(v(x)� v(y))2 � 1
8
('(x) + '(y))2(v(x)� v(y))2 � 2v2(y)('(x)� '(y))2

� 3
4
'2(x)(v(x)� v(y))2 � 1

4
'2(y)(v(x)� v(y))2 � 2v2(y)('(x)� '(y))2.

where the first inequality follows from the facts that for any x, y 2 M , u(x)�u(y) � v(x)�v(y)
and (u(x)� u(y))v(y) = (v(x)� v(y))v(y), while in the second and third equalities we used the
facts that ab � �1

8a2� 2b2 and (a + b)2  2a2 + 2b2, respectively, for all a, b 2 R. This together
with the symmetry of J(dx, dy) yields that

I1 �
1
2

Z
BR+r⇥BR+r

'2(x)(v(x)� v(y))2 J(dx, dy)� 2
Z

BR+r⇥BR+r

v2(x)('(x)� '(y))2 J(dx, dy).

For I2, note that

(u(x)�u(y))'2(x)v(x) = ((u(x)�✓)�(u(y)�✓))'2(x)v(x) � (v(x)�v(y))'2(x)v(x) � �v(x)v(y).

Note also that v  vu/✓  u2/✓. Hence we have

I2 =
Z

BR⇥Bc
R+r

(u(x)� u(y))'2(x)v(x) J(dx, dy)

��
Z

BR

v dµ

"
sup

x2BR

Z
Bc

R+r

v(y) J(x, dy)

#

�� 1
✓

Z
BR

u2 dµ

"
sup

x2BR

Z
Bc

R+r

v(y) J(x, dy)

#

�� c1

✓�(r)

✓
1 +

R

r

◆d2+�2��1

�(R + r)
Z

Bc
R+r

|u(y)|
V (x0, d(x0, y))�(d(x0, y))

µ(dy)
� Z

BR

u2 dµ

=� c1

✓�(r)

✓
1 +

R

r

◆d2+�2��1

Tail (u;x0, R + r)
� Z

BR

u2 dµ,

where the last inequality follows from the fact that v  |u|, J�, as well as (1.12) and (1.13)
which imply that for any x 2 BR and y 2 Bc

R+r,

V (x0, d(x0, y))�(d(x0, y))
V (x, d(x, y))�(d(x, y))

 c0
⇣
1 +

d(x0, x)
d(x, y)

⌘d2+�2

 c00
⇣
1 +

R

r

⌘d2+�2

and
�(r)

�(R + r)
 c000

⇣
1 +

R

r

⌘��1

.
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Putting the estimates for I1 and I2 above into (4.4), we arrive at

0  4
Z

BR+r⇥BR+r

v2(x)('(x)� '(y))2 J(dx, dy)

�
Z

BR⇥BR+r

'2(x)(v(x)� v(y))2 J(dx, dy)

+
c2

✓�(r)

✓
1 +

R

r

◆d2+�2��1

Tail (u;x0, R + r)
� Z

BR

u2 dµ

 4
Z

BR+r

v2 d�(',')�
Z

BR⇥BR+r

'2(x)(v(x)� v(y))2 J(dx, dy)

+
c2

✓�(r)

✓
1 +

R

r

◆d2+�2��1

Tail (u;x0, R + r)
� Z

BR

u2 dµ.

(4.5)

On the other hand, using the inequality (a + b)2  2(a2 + b2) for all a, b 2 R and Lemma
2.1, we have
Z

BR+r

d�(v', v')

=
Z

BR+r⇥M
(v(x)'(x)� v(y)'(y))2 J(dx, dy)


Z

BR+r⇥BR+r

�
v(x)('(x)� '(y)) + '(y)(v(x)� v(y))

�2
J(dx, dy)

+
Z

BR

v2(x)'2(x)
Z

Bc
R+r

J(dx, dy)

 2
 Z

BR+r⇥BR+r

v2(x)('(x)�'(y))2 J(dx, dy)

+
Z

BR+r⇥BR+r

'2(x)(v(x)�v(y))2 J(dx, dy)
�

+
c3

�(r)

Z
BR

v2 dµ

 2
Z

BR+r

v2 d�(',') + 2
Z

BR⇥BR+r

'2(x)(v(x)�v(y))2 J(dx, dy) +
c3

�(r)

Z
BR

u2 dµ.

(4.6)

Combining (4.5) with (4.6), we have for a > 0,

a

Z
BR+r

d�(v', v')

 (2a + 4)
Z

BR+r

v2 d�(',') + (2a� 1)
Z

BR⇥BR+r

'2(x)(v(x)� v(y))2 J(dx, dy)

+
c4(1 + a)
�(r)


1 +

1
✓

✓
1 +

R

r

◆d2+�2��1

Tail (u;x0, R + r)
� Z

BR

u2 dµ.

(4.7)

Next by using (2.14) for v with ⇢ = 1, we have
Z

BR+r

v2 d�(',')  1
8

Z
BR⇥BR+r

'2(x)(v(x)� v(y))2 J(dx, dy) +
c0

�(r)

Z
BR+r

v2 dµ. (4.8)
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Plugging this into (4.7) with a = 2/9 (so that (4 + 2a)/8 + (2a� 1) = 0), we obtain

2
9

Z
BR+r

d�(v', v')  c5

�(r)


1 +

1
✓

✓
1 +

R

r

◆d2+�2��1

Tail (u;x0, R + r)
� Z

BR+r

u2 dµ,

which proves the desired assertion. ⇤

Remark 4.7. In order to obtain (4.3) we need that the constant in the first term on the right
hand side of (2.14) was less than 1/4. On the other hand, we note that (4.8) is weaker than
(2.14) yielded by CSJ(�), which can strengthen the first term in the right hand side of (4.8) into

1
8

Z
U⇥U⇤

'2(x)(v(x)� v(y))2 J(dx, dy)

with U = BR \BR�r and U⇤ = BR+r \BR�2r.

The key step in the proof of the mean value inequality is the following comparison over balls.
For a ball B = B(x0, r) ⇢ M and a function w on B, write

I(w, B) =
Z

B
w2 dµ.

The following lemma can be proved similarly to that of [AB, Lemma 3.5] (see also [Gr1, Lemma
3.2]) with very minor corrections due to BR+r instead of BR. For completeness, we give the
proof below.

Lemma 4.8. For x0 2 M and s > 0, let Bs = B(x0, s). Suppose VD, (1.13), FK(�), CSJ(�) and
J�, hold. For R, r1, r2 > 0 with r1 2 [12R,R] and r1+r2  R, let u be an E-subharmonic function
on BR for the Dirichlet form (E ,F), and v = (u � ✓)+ for some ✓ > 0. Set I0 = I(u,Br1+r2)
and I1 = I(v, Br1). We have

I1 
c1

✓2⌫V (x0, R)⌫
I1+⌫
0

✓
1 +

r1

r2

◆�2
"
1 +

✓
1 +

r1

r2

◆d2+�2��1 Tail (u;x0, R/2)
✓

#
, (4.9)

where ⌫ is the constant appearing in the FK(�) inequality (1.19), d2 is the constant in (1.10)
from VD, and c1 is a constant independent of ✓, x0, R, r1 and r2.

Proof. Set
D = {x 2 Br1+r2/2 : u(x) > ✓}.

Let ' be a cut-o↵ function for Br1 ⇢ Br1+r2/2 associated with v in CSJ(�).
As in [Gr1] the proof uses the following five inequalities:

Z
Br1+r2/2

u2 dµ  I0, (4.10)

Z
Br1+r2

d�(v', v')  c0

�(r2)

"
1 +

1
✓

✓
1 +

r1

r2

◆d2+�2��1

Tail (u;x0, R/2)

#
I0, (4.11)

2
Z

D
d�(v', v') � �1(D)

Z
D

v2'2 dµ, (4.12)
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�1(D) � Cµ(Br1+r2)
⌫�(r1 + r2)�1µ(D)�⌫ , (4.13)

µ(D)  ✓�2
Z

Br1+r2/2

u2 dµ. (4.14)

Of these, (4.10) holds trivially. The inequality (4.11) follows immediately from (4.3) since, by
VD and (1.13),

Tail (u;x0, r1 + r2)  c1Tail (u;x0, R/2).

Inequality (4.12) is immediate from the variational definition (1.18) of �1(D) and the facts that
v' 2 FD and

2
Z

D
d�(v', v') � E(v', v').

Indeed, since v' = 0 on Dc, we have

E(v', v') =
✓Z

D⇥D
+
Z

D⇥Dc
+
Z

Dc⇥D
+
Z

Dc⇥Dc

◆�
v(x)'(x)� v(y)'(y)

�2
J(dx, dy)

=
✓Z

D⇥D
+
Z

D⇥Dc
+
Z

Dc⇥D

◆�
v(x)'(x)� v(y)'(y)

�2
J(dx, dy)


✓Z

D⇥M
+
Z

M⇥D

◆�
v(x)'(x)� v(y)'(y)

�2
J(dx, dy)

=2
Z

D⇥M

�
v(x)'(x)� v(y)'(y)

�2
J(dx, dy)

=2
Z

D
d�(v', v'),

where the third equality follows from the symmetry of J(dx, dy). (4.13) follows from the Faber-
Krahn inequality (1.19), VD and (1.13). (4.14) is just Markov’s inequality.

Putting (4.10) into (4.14), we get

µ(D)  I0/✓
2. (4.15)

By VD, (1.13), (4.12), (4.13) and (4.15), we have
Z

D
d�(v', v') � Cµ(Br1+r2)⌫

�(r1 + r2)µ(D)⌫

Z
D

v2'2 dµ

=
Cµ(Br1+r2)⌫

�(r1 + r2)µ(D)⌫

Z
Br1+r2/2

v2'2 dµ

� C 0V (x0, R)⌫✓2⌫

�(r1)I⌫
0

Z
Br1+r2/2

v2'2 dµ

� C 00V (x0, R)⌫✓2⌫

�(r1)I⌫
0

Z
Br1

v2 dµ

=
C 00V (x0, R)⌫✓2⌫

�(r1)I⌫
0

I1,

where in the last inequality we used the fact ' = 1 on Br1 . Combining the inequality above
with (4.11) and (1.13), we obtain the desired estimate (4.9). ⇤
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We need the following elementary iteration lemma, see, e.g., [Giu, Lemma 7.1].

Lemma 4.9. Let � > 0 and let {Aj} be a sequence of real positive numbers such that

Aj+1  c0b
jA1+�

j

with c0 > 0 and b > 1. If
A0  c�1/�

0 b�1/�2
,

then we have
Aj  b�j/�A0, (4.16)

which in particular yields limj!1Aj = 0.

Proof. We proceed by induction. The inequality (4.16) is obviously true for j = 0. Assume
now that holds for j. We have

Aj+1  c0b
jb�j(1+�)/�A1+�

0 = (c0b
1/�A�

0 )b�(j+1)/�A0  b�(j+1)/�A0,

so (4.16) holds for j + 1. ⇤

Proposition 4.10. (L2-mean value inequality) Let x0 2 M and R > 0. Assume VD, (1.13),
FK(�), CSJ(�) and J�, hold, and let u be a bounded E-subharmonic in B(x0, R). Then for any
� > 0,

ess sup B(x0,R/2)u  c1

2
4
 

(1 + ��1)1/⌫

V (x0, R)

Z
B(x0,R)

u2 dµ

!1/2

+ �Tail (u;x0, R/2)

3
5 , (4.17)

where ⌫ is the constant appearing in the FK(�) inequality (1.19), and c1 > 0 is a constant
independent of x0, R and �.

In particular, there is a constant c > 0 independent of x0 and R so that

ess sup B(x0,R/2)u  c

2
4
 

1
V (x0, R)

Z
B(x0,R)

u2 dµ

!1/2

+ Tail (u;x0, R/2)

3
5 . (4.18)

Proof. We first set up some notations. For i � 0 and ✓ > 0, let ri = 1
2(1 + 2�i)R and

✓i = (1� 2�i)✓. For any x0 2 M and s > 0, let Bs = B(x0, s). Define

Ii =
Z

Bri

(u� ✓i)2+ dµ, i � 0.

By [ChK, Corollary 2.10(iv)], for any i � 0, (u � ✓i)+ is an E-subharmonic function for the
Dirichlet form (E ,F) on BR. Then, thanks to Lemma 4.8, by (4.9) applied to the function
(u� ✓i) in Bri+1 ⇢ Bri ,

Ii+1 =
Z

Bri+1

(u� ✓i+1)2+ dµ =
Z

Bri+1

⇥
(u� ✓i)� (✓i+1 � ✓i)

⇤2
+

dµ

 c2

(✓i+1 � ✓i)2⌫V (x0, R)⌫
I1+⌫
i

✓
ri

ri � ri+1

◆�2

⇥
"
1 +

✓
ri

ri � ri+1

◆d2+�2��1 Tail (u;x0, R/2)
(✓i+1 � ✓i)

#

 c32(1+2⌫+d2+2�2��1)i

✓2⌫V (x0, R)⌫
I1+⌫
i


1 +

Tail (u;x0, R/2)
✓

�
.
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In the following, we take

✓ = �Tail (u;x0, R/2) +

s
c⇤

I0

V (x0, R)
, � > 0,

where c⇤ = [(1 + ��1)c3]1/⌫2(1+2⌫+d2+2�2��1)/⌫2
. It is easy to see that

I0 


c3

✓2⌫V (x0, R)⌫

⇣
1 +

Tail (u;x0, R/2)
✓

⌘��1/⌫

2�(1+2⌫+d2+2�2��1)/⌫2
.

Then by Lemma 4.9, we have Ii ! 0 as i !1. HenceZ
BR/2

(u� ✓)2+ dµ  inf
i

Ii = 0,

which implies that

ess sup BR/2
u  ✓  c4

2
4
 

(1 + ��1)1/⌫I0

V (x0, R)

!1/2

+ �Tail (u;x0, R/2)

3
5 .

This proves (4.17). ⇤

In the following, we consider L2 and L1 mean value inequalities for E-subharmonic functions
for truncated Dirichlet forms. In the truncated situation we can no longer use the nonlocal tail
of subharmonic functions, and the remedy is to enlarge the integral regions in the right hand side
of the mean value inequalities. These mean value inequalities will be used in the next subsection
to consider the stability of heat kernel.

Proposition 4.11. (L2-mean value inequality for ⇢-truncated Dirichlet forms) Assume
VD, (1.13), FK(�), CSJ(�) and J�, hold. There are positive constants c1, c2 > 0 so that
for x0 2 M , ⇢, R > 0, and for any bounded E(⇢)-subharmonic function u on B(x0, R) for the
⇢-truncated Dirichlet form (E(⇢),F), we have

ess sup B(x0,R/2)u
2  c1

V (x0, R)

⇣
1 +

⇢

R

⌘d2/⌫ ⇣
1 +

R

⇢

⌘�2/⌫
Z

B(x0,R+⇢)
u2 dµ. (4.19)

Here, ⌫ is the constant in FK(�), d2 and �2 are the exponents in (1.10) from VD and (1.13)
respectively.

Proof. The proof is mainly based on that of Proposition 4.10. For simplicity, we only present
the main di↵erent steps, and the details are left to the interested readers.

First, we apply the argument in the proof of Lemma 4.6 to the ⇢-truncated Dirichlet form
(E(⇢),F). In this truncated setting, we estimate the term I2 in (4.4) as follows.

I2 =
Z

BR⇥Bc
R+r

(u(x)� u(y))'2(x)v(x) J (⇢)(dx, dy)

��
Z

BR

v(x) µ(dx)

"
sup

x2BR

Z
Bc

R+r

v(y)J (⇢)(x, y) µ(dy)

#
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�� 1
✓

Z
BR

u2(x) µ(dx)

"
sup

x2BR

Z
Bc

R+r

v(y)J (⇢)(x, y) µ(dy)

#

�� 1
✓

Z
BR

u2(x) µ(dx)

"
c1

�(r)

✓
sup

x2BR

1
V (x, r)

◆Z
BR+⇢

v(y) µ(dy)

#

�� c2

�(r)

✓
R + ⇢

r

◆d2 1
✓V (x0, R + ⇢)

Z
BR+⇢

|u|(y) µ(dy)
� Z

BR

u2(x) µ(dx),

where in the second and third inequality we have used the fact that v  vu/✓  u2/✓ and the
condition J�, respectively, while the last inequality follows from that for any x 2 BR,

V (x, r)
V (x0, R + ⇢)

� V (x, r)
V (x, 2R + ⇢)

� c0
⇣R + ⇢

r

⌘�d2

,

thanks to VD.
On the other hand, we do the upper estimate for

R
BR+r

d�(v', v') just as (4.6), but using
⇢-truncated Dirichlet form (E(⇢),F) instead. Indeed, we haveZ

BR+r

d�(v', v') 
Z

BR+r⇥M
(v(x)'(x)� v(y)'(y))2 J (⇢)(dx, dy)

+ 2
Z

BR

v2(x)'2(x)
Z

d(x,y)�⇢
J(dx, dy)

+ 2
Z

M
v2(y)'2(y)

Z
d(x,y)�⇢

J(dx, dy)


Z

BR+r⇥BR+r

�
v(x)('(x)� '(y)) + '(y)(v(x)� v(y))

�2
J (⇢)(dx, dy)

+
Z

BR

v2(x)'2(x)
Z

Bc
R+r

J (⇢)(dx, dy) +
c01
�(⇢)

Z
BR

v2 dµ

2
⇣Z

BR+r⇥BR+r

v2(x)('(x)�'(y))2 J (⇢)(dx, dy)

+
Z

BR+r⇥BR+r

'2(x)(v(x)�v(y))2 J (⇢)(dx, dy)
⌘

+
c001

�(⇢ ^ r)

Z
BR

v2 dµ

2
Z

BR+r

v2 d�(⇢)(',') + 2
Z

BR⇥BR+r

'2(x)(v(x)�v(y))2 J (⇢)(dx, dy)

+
c002
�(r)

✓
1 +

r

⇢

◆�2
Z

BR

u2 dµ.

Having both two estimates above at hand, one can change (4.3) in Lemma 4.6 into
Z

BR+r

d�(v', v')  c

�(r)


1 +

✓
1 +

r

⇢

◆�2

+
✓

R + ⇢

r

◆d2 1
✓V (x0, R + ⇢)

Z
BR+⇢

u dµ

� Z
BR+r

u2 dµ,

where c > 0 is a constant independent of x0, R, r, ⇢ and ✓. This in turn gives us the following
conclusion instead of (4.9) in Lemma 4.8:

I1 
c1

✓2⌫V (x0, R)⌫
I1+⌫
0

✓
r1

r2

◆�2

1 +

✓
1 +

r2

⇢

◆�2

+
✓

r1 + ⇢

r2

◆d2 1
✓V (x0, R + ⇢)

Z
BR+⇢

|u| dµ

�
.
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Finally, following the argument of Proposition 4.10, we can obtain that for any bounded E(⇢)-
subharmonic function u associated with the ⇢-truncated Dirichlet form (E(⇢),F) on B(x0, R), it
holds

ess sup B(x0,R/2)u
2  c0

✓
1

V (x0, R + ⇢)

Z
B(x0,R+⇢)

u dµ

◆2

+
⇣
1 +

⇢

R

⌘d2/⌫ ⇣
1 +

R

⇢

⌘�2/⌫ 1
V (x0, R)

Z
B(x0,R)

u2 dµ

�
,

(4.20)

where ⌫ is the constant in FK(�), d2 and �2 are the constants in VD and (1.13) respectively, and
c0 > 0 is a constant independent of x0, ⇢ and R. Hence, the desired assertion (4.19) immediately
follows from (4.20). ⇤

As a consequence of Proposition 4.11, we have the following L1-mean value inequality for
truncated Dirichlet forms.

Corollary 4.12. (L1-mean value inequality for ⇢-truncated Dirichlet forms) Assume
VD, (1.13), FK(�), CSJ(�) and J�, hold. There are positive constants c1, c2 > 0 so that
for x0 2 M , ⇢, R > 0, and for any nonnegative, bounded and E(⇢)-subharmonic function u on
B(x0, R) for the ⇢-truncated Dirichlet form (E(⇢),F), we have

ess sup B(x0,R/2)u 
c2

V (x0, R)

⇣
1 +

⇢

R

⌘d2/⌫⇣
1 +

R

⇢

⌘�2/⌫
Z

B(x0,R+⇢)
u dµ. (4.21)

Here, ⌫ is the constant in FK(�), d2 and �2 are the exponents in (1.10) from VD and (1.13)
respectively.

Proof. Fix x0 2 M and R > 0. For any s > 0, let Bs = B(x0, s). For n � 0, let rn = R2�n�1.
Note that {rn} is decreasing such that r0 = R/2 and r1 = 0, and {Brn} is decreasing and
{BR�rn} is increasing such that B0 = BR�r0 = B(x0, R/2) and BR�r1 = B(x0, R). Take
arbitrary point ⇠ 2 BR�rn�1 ; then since rn = rn�1/2, we have B(⇠, rn) ⇢ BR�rn . Applying
(4.20) with x0 = ⇠ and R = rn, we have

u(⇠)2  c1

✓
1

V (⇠, rn + ⇢)

Z
B(⇠,rn+⇢)

u dµ

◆2

+
⇣
1 +

⇢

rn

⌘d2/⌫⇣
1 +

rn

⇢

⌘�2/⌫ 1
V (⇠, rn)

Z
B(⇠,rn)

u2 dµ

�
,

(4.22)

where c1 > 0 does not depend on ⇠, rn and ⇢.
In the following, let

Mn = ess sup BR�rn
u and A =

1
V (x0, R)

Z
B(x0,R+⇢)

u dµ.

Since B(⇠, rn) ⇢ BR�rn , we have
Z

B(⇠,rn)
u2 dµ  MnV (x0, R)A.
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Note that, by VD,

V (x0, R)
V (⇠, rn + ⇢)

 V (x0, R + ⇢)
V (⇠, rn + ⇢)

 c0
✓

1 +
d(x0, ⇠) + R + ⇢

rn + ⇢

◆d2

 c002nd2

and
V (x0, R)
V (⇠, rn)

 c0002nd2 .

Plugging these estimates into (4.22), we have

u(⇠)2  c222nd2A2 + c3

⇣
1 +

⇢

R

⌘d2/⌫⇣
1 +

R

⇢

⌘�2/⌫
MnA2nd2(1+1/⌫).

Since ⇠ is an arbitrary point in BR�rn�1 , we obtain

M2
n�1  c4

⇣
1 +

⇢

R

⌘d2/⌫⇣
1 +

R

⇢

⌘�2/⌫
(A + enb(1/⌫�1)Mn)e2nbA, (4.23)

where b = d2 log 2.
Our goal is to prove

M0  c0

⇣
1 +

⇢

R

⌘d2/⌫⇣
1 +

R

⇢

⌘�2/⌫
A

for some constant c0 > 0 independent of x0, R and ⇢. If M0  A, then we are done, and so we
only need to consider the case M0 > A. Then A < M0  enb(1/⌫�1)Mn for all n � 0, because
{Mn} is increasing and without loss of generality we may and do assume that ⌫ < 1. Therefore,
(4.23) implies

M2
n�1  2c4

⇣
1 +

⇢

R

⌘d2/⌫⇣
1 +

R

⇢

⌘�2/⌫
enb(1+1/⌫)MnA.

From here we can argue similarly to [CG, p. 689-690]. By iterating the inequality above, we
have

M2n

0  exp

 
b(1 + 1/⌫)

nX
i=1

i2n�i

!
2c4

⇣
1 +

⇢

R

⌘d2/⌫⇣
1 +

R

⇢

⌘�2/⌫
A

�1+2+22+···2n�1

Mn.

So

M0 c5


2c4

⇣
1 +

⇢

R

⌘d2/⌫⇣
1 +

R

⇢

⌘�2/⌫
A

�1�2�n

M2�n

n

c6

⇣
1 +

⇢

R

⌘d2/⌫⇣
1 +

R

⇢

⌘�2/⌫
�

A(Mn/A)2
�n

.

Since u is bounded in BR, Mn  c7 for all n � 0 and some constant c7 > 0, so we have
limn!1(Mn/A)2�n = 1. We thus obtain

M0  c6

⇣
1 +

⇢

R

⌘d2/⌫⇣
1 +

R

⇢

⌘�2/⌫
A.

The proof is complete. ⇤
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4.3 FK(�) + J�, + CSJ(�) =) E�

The main result of this subsection is as follows.

Proposition 4.13. Assume VD, (1.13), FK(�), J�, and CSJ(�) hold. Then E� holds.

In order to prove this, we first show that

Lemma 4.14. Assume that VD, (1.13) and FK(�) hold. Then E�, holds.

Proof. By Proposition 7.3, under VD and (1.13), FK(�) implies that there is a constant C > 0
such that for any ball B := B(x, r) with x 2 M and r > 0,

ess sup x0,y02BpB(t, x0, y0)  C

V (x, r)

✓
�(r)

t

◆1/⌫

,

where ⌫ is the constant in FK(�). Then for any T 2 (0,1) and all x 2 M0,

Ex⌧B =
Z 1

0
PB

t 1B(x) dt =
Z T

0
PB

t 1B(x) dt +
Z 1

T
PB

t 1B(x) dt

 T +
Z 1

T

Z
B

pB(t, x, y) µ(dy) dt

 T + C

Z 1

T

✓
�(r)

t

◆1/⌫

dt  T + C1�(r)1/⌫T 1�1/⌫ ,

where in the last inequality we have used the fact that the constant ⌫ in FK(�) can be assumed
that ⌫ 2 (0, 1). Setting T = �(r), we conclude that Ex⌧B  C2�(r). This proves E�,. ⇤

Let {X(⇢)
t } be the Hunt process associated with the ⇢-truncated Dirichlet form (E(⇢),F). For

� > 0, let ⇠� be an exponential distributed random variable with mean 1/�, which is independent
of the ⇢-truncated process {X(⇢)

t }.

Lemma 4.15. Assume that VD, (1.13), FK(�), J�, and CSJ(�) hold. Then for any c0 2 (0, 1),
there exists a constant c1 > 0 such that for all R > 0 and all x 2 M0,

Ex
h
⌧ (c0R)
B(x,R) ^ ⇠�(R)�1

i
� c1�(R).

Proof. For fixed c0 2 (0, 1) and R > 0, set ⇢ = c0R. Set B = B(x,R), � = 1/�(R) and
u�(x) = Ex

�
⌧ (⇢)
B ^ ⇠�

�
for x 2 M0; here and in the following we make some abuse of notation

and use E for the expectation of the product measure of the truncated process {X(⇢)
t } and ⇠�.

Then for all x 2 M0,

u�(x) = Ex

"Z ⌧
(⇢)
B ^⇠�

0
1(X(⇢)

t ) dt

#
= Ex

"Z ⌧
(⇢)
B

0
e��t1(X(⇢)

t ) dt

#
= G(⇢),B

� 1(x),

where G(⇢),B
� is the �-order resolvent for the truncated process {X(⇢)

t } killed on exiting B. Clearly
u� is bounded and is in F (⇢)

B . Moreover, u�(X(⇢)

t^⌧
(⇢)
B

) is a bounded supermartingale under Px for

every x 2 B \M0.
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Set u�," = u� + " for any " > 0. Since t 7! u�,"(X
(⇢)

t^⌧
(⇢)
B

) is a bounded supermartingale under

Px for every x 2 B \M0, we have by Theorem 4.4 that u�," 2 F (⇢),loc
B and is E(⇢)-superharmonic

in B. By J�,, CSJ(�) and Proposition 2.3(5), we can choose a non-negative cut-o↵ function
' 2 F (⇢)

B for 1+c0
2 B ⇢ B such that

E(⇢)(',')  c1µ(B)
�(R)

and so
E(⇢)

� (',') = E(⇢)(',') + �h','i  c1µ(B)
�(R)

+ �µ(B)  c2µ(B)
�(R)

.

Furthermore, choose a continuous function g on [0,1) such that g(0) = 0, g(t) = "2t�1 for t � "
and |g(t) � g(t0)|  |t � t0| for all t, t0 � 0. According to [FOT, Theorem 1.4.2 (v) and (iii)],
u�1

�," = "�2g(u�,") 2 F (⇢),loc
B and u�1

�,"'
2 2 F (⇢)

B . Thus, it follows from the fact

(u�,"(x)� u�,"(y))(u�,"(x)�1'2(x)� u�,"(y)�1'2(y))  ('(x)� '(y))2

that

E(⇢)
� (u�,", u

�1
�,"'

2) = E(⇢)(u�,", u
�1
�,"'

2) + �hu�,", u
�1
�,"'

2i  E(⇢)(',') + �h','i = E(⇢)
� (',').

Therefore,

E(⇢)
� (u�,", u

�1
�,"'

2)  c2µ(B)
�(R)

.

On the other hand, noticing again that u�1
�,"'

2 2 F (⇢)
B ,

E(⇢)
� (u�,", u

�1
�,"'

2) = "E(⇢)
� (1, u�1

�,"'
2) + E(⇢)

� (u�, u�1
�,"'

2)

= "�h1, u�1
�,"'

2i+ h1, u�1
�,"'

2i

� h1, u�1
�,"'

2i �
Z

1+c0
2 B

u�1
�," dµ,

and so Z
1+c0

2 B
u�1

�," dµ  c2µ(B)
�(R)

.

Since u�," � " is E(⇢)-superharmonic in B with respect to the truncated process {X(⇢)
t }, it

follows that u�1
�,"(X

(⇢)

t^⌧
(⇢)
B

) is a bounded Px-submartingale for every x 2 B \M0. Thus in view of

Theorem 4.4, u�1
�," is E(⇢)-subharmonic in B. Applying the L1-mean value inequality (4.21) to

u�1
�," on 1�c0

2 B, we get that

ess sup 1�c0
4 B

u�1
�," 

c3

µ(B)

Z
1+c0

2 B
u�1

�," dµ  c4

�(R)
.

Whence, ess inf 1�c0
4 B

u�," � c5�(R). Letting " ! 0, we get ess inf 1�c0
4 B

u� � c5�(R). This
yields the desired estimate. ⇤
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The next lemma is standard.

Lemma 4.16. If E� holds, then for all x 2 M0 and r, t > 0,

Px(⌧B(x,r)  t)  1� c1�(r)
�(2r)

+
c2t

�(2r)
. (4.24)

In particular, if (1.13) and E� hold, then EP�,," holds, i.e. for any ball B := B(x0, r) with
x0 2 M and radius r > 0, there are constants �, " 2 (0, 1) such that

Px(⌧B  t)  " for all x 2 B(x0, r/4) \M0 (4.25)

provided that t  ��(r).

Proof. Suppose that there are constants c2 � c1 > 0 such that for all x 2 M0 and r > 0,

c1�(r)  Ex⌧B(x,r)  c2�(r).

Since for any t > 0, ⌧B(x,r)  t + (⌧B(x,r) � t)1{⌧B(x,r)�t}, we have by the Markov property

Ex⌧B(x,r)  t + Ex
h
1{⌧B(x,r)>t}EXt [⌧B(x,r) � t]

i
 t + Px(⌧B(x,r) > t) sup

z2B(x,r)
Ez⌧B(x,r)

 t + Px(⌧B(x,r) > t) sup
z2B(x,r)

Ez⌧B(z,2r)  t + c2Px(⌧B(x,r) > t)�(2r).

Then for all x 2 M0, c1�(r)  Ex⌧B(x,r)  t + c2Px(⌧B(x,r) > t)�(2r), proving (4.24). Since

Px(⌧B(x0,r)  t)  Px(⌧B(x,3r/4)  t), x 2 B(x0, r/4) \M0.

inequality (4.25) follows from (4.24) and (1.13). ⇤

Lemma 4.17. Assume that VD, (1.13), FK(�), J�, and CSJ(�) hold. Then there exists a
constant c1 > 0 such that for all x 2 M0 and all R > 0,

Ex⌧B(x,R) � c1�(R).

Proof. Let B = B(x, R), ⇢ = cR for some c 2 (0, 1) and � = 1/�(R). Recall that ⇠� is an
exponential distributed random variable with mean 1/�, which is independent of the ⇢-truncated
process {X(⇢)

t }. Since it is clear that for all x 2 M0,

Ex
h
⌧ (⇢)
B ^ ⇠�

i
 Ex⇠� = �(R),

using Lemma 4.15, we have
Ex
h
⌧ (⇢)
B ^ ⇠�

i
⇣ �(R).

So by an argument similar to that of Lemma 4.16, we have for all x 2 M0,

Px
�
⌧ (⇢)
B ^ ⇠�  t

�
 1� c1 + c2t/�(R).
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In particular, choosing c3 > 0 small enough, we have

Px(⌧ (⇢)
B � c3�(R)) � Px

�
⌧ (⇢)
B ^ ⇠� � c3�(R)

�
� c4 > 0.

Next, let T⇢ be the first time that the size of jump bigger than ⇢ occurs for the original
process {Xt}, and let {X(⇢)

t } be the truncated process associated with {Xt}. Then, as in the
proof of [BGK1, Lemma 3.1(a)], we have

P(T⇢ > t|FX(⇢)

1 ) = exp
✓
�
Z t

0
J (X(⇢)

s ) ds

◆
� e�c5t/�(⇢),

where
J (x) :=

Z
B(x,⇢)c

J(x, y) µ(dy)  c5/�(⇢),

thanks to Lemma 2.1. So
P(T⇢ > c3�(R)|FX(⇢)

1 ) � c6.

This implies

Px
�
⌧ (⇢)
B ^ T⇢ > c3�(R)

�
= Ex

h
1{⌧ (⇢)

B �c3�(R)}E
x
h
1{T⇢>c3�(R)}|FX(⇢)

1

ii
� c4c6 > 0.

Note that ⌧B � ⌧ (⇢)
B ^ T⇢. (In fact, if ⌧ (⇢)

B < T⇢, then ⌧B = ⌧ (⇢)
B ; if ⌧ (⇢)

B � T⇢, then, by the
fact that the truncated process {X(⇢)

t } coincides with the original {Xt} till T⇢, we also have
⌧B � T⇢.) We obtain

Px(⌧B > c3�(R)) � c4c6,

and so the desired estimate holds. ⇤

4.4 FK(�) + E� + J�, =) UHKD(�)

If V (x, r) ⇣ rd for each r > 0 and x 2 M with some constant d > 0, then FK(�) =) UHKD(�)
is well-known; e.g. see the remark in the proof of [GT, Theorem 4.2]. However, in non-uniform
VD settings, it is highly non-trivial to establish the on-diagonal upper bound estimate UHKD(�)
from FK(�). Below, we will adopt the truncating argument and significantly modify the iteration
techniques in [Ki, Proof of Theorem 2.9] and [GH, Lemma 5.6]. Without further mention,
throughout the proof we will assume that µ and � satisfy VD and (1.13), respectively.

Recall that for ⇢ > 0, (E(⇢),F) is the ⇢-truncated Dirichlet form defined as in (2.2). It
is clear that for any function f, g 2 F with dist(supp f, supp g) > ⇢, E(⇢)(f, g) = 0. For any
non-negative open set D ⇢ M , denote by {PD

t } and {Q(⇢),D
t } the semigroups of (E ,FD) and

(E(⇢),FD), respectively. We write {Q(⇢),M
t } as {Q(⇢)

t } for simplicity.
We next give the following preliminary heat kernel estimate.

Lemma 4.18. Suppose that VD, (1.13), FK(�) and J�, hold. For any ball B = B(x, r)
with x 2 M and r > 0, the semigroup {Q(⇢),B

t } possesses the heat kernel q(⇢),B(t, x, y), which
satisfies that there exist constants C, c0, ⌫ > 0 (independent of ⇢) such that for all t > 0 and
x0, y0 2 B \M0,

q(⇢),B(t, x0, y0)  C

V (x, r)

✓
�(r)

t

◆1/⌫

exp
✓

c0t

�(⇢)

◆
.
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Proof. First, by Proposition 7.3, FK(�) implies that there exist constants C1, ⌫ > 0 such that
for any ball B = B(x, r),

V (x, r)⌫

�(r)
kuk2+2⌫

2  C1E(u, u)kuk2⌫
1 , 8u 2 FB.

According to (2.3), there is a constant c0 > 0 such that

V (x, r)⌫

�(r)
kuk2+2⌫

2 kuk�2⌫
1  C1

⇣
E(⇢)(u, u) +

c0kuk22
�(⇢)

⌘
=: C1E(⇢)

c0/�(⇢)(u, u), 8u 2 F (⇢)
B .

According to Proposition 7.3 again (to the Dirichelt form E(⇢)
c0/�(⇢)), this yields the required

assertion. ⇤

Let {X(⇢)
t } be the Hunt process associated with the Dirichlet form (E(⇢),F). For any subset

open set D, let ⌧ (⇢)
D be the first exit time from D by the Hunt process {X(⇢)

t }.
Lemma 4.19. Suppose that VD, (1.13), E� and J�, hold. Then there are constants c1, c2 > 0
such that for any r, t, ⇢ > 0,

Px(⌧ (⇢)
B(x,r)  t)  1� c1 +

c2t

�(2r) ^ �(⇢)
, x 2 M0.

Proof. First, by (1.13), E� and Lemma 4.16, we know that for all x 2 M0 and r, t > 0,

Px(⌧B(x,r)  t)  1� c1 +
c2t

�(2r)
.

Denote by B = B(x, r) for x 2 M and r > 0. According to Lemma 7.8, for all t > 0 and all
x 2 M0,

PB
t 1B(x)  Q(⇢),B

t 1B(x) +
c3t

�(⇢)
. (4.26)

Combining both estimates above with the facts that

1� PB
t 1B(x) = Px(⌧B  t), 1�Q(⇢),B

t 1B(x) = Px(⌧ (⇢)
B  t),

we prove the desired assertion. ⇤

Lemma 4.20. Suppose that VD, (1.13), E� and J�, hold. Then there are constants " 2 (0, 1)
and c > 0 such that for any r,�, ⇢ > 0 with � � c

�(r^⇢) ,

Ex[e��⌧
(⇢)
B(x,r) ]  1� ", x 2 M0.

Proof. Denote by B = B(x, r). Using Lemma 4.19, we have for any t > 0 and all x 2 M0,

Ex
h
e��⌧

(⇢)
B

i
= Ex

h
e��⌧

(⇢)
B 1{⌧ (⇢)

B <t}

i
+ Ex

h
e��⌧

(⇢)
B 1{⌧ (⇢)

B �t}

i

 Px(⌧ (⇢)
B < t) + e��t  1� c1 +

c2t

�(2r) ^ �(⇢)
+ e��t.

Next, set " = c1
4 > 0. Taking t = c3�(r ^ ⇢) for some c3 > 0 such that c2t

�(2r) + c2t
�(⇢)  2", and

� > 0 such that e��t  " in the inequality above, we obtain the desired assertion. ⇤
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The following lemma furthermore improves the estimate established in Lemma 4.20.

Lemma 4.21. Suppose that VD, (1.13), E� and J�, hold. Then there exist constants C, c0 > 0
such that for all x 2 M0 and R, ⇢ > 0

Ex


e
� c

�(⇢) ⌧
(⇢)
B(x,R)

�
 C exp (�c0R/⇢) , (4.27)

where c > 0 is the constant in Lemma 4.20. In particular, (E ,F) is conservative.

Proof. We only need to consider the case that ⇢ 2 (0, R/2), since the conclusion holds trivially
when ⇢ � R/2. For simplicity, we drop the superscript ⇢ from ⌧ (⇢). For any z 2 M0 and R > 0,
set ⌧ = ⌧B(z,R). For any fixed 0 < r < R

2 , set n =
⇥

R
2r

⇤
. Let u(x) = Ex[e��⌧ ] for x 2 M0, and

mk = kukL1(B(z,kr);µ), k = 1, 2, · · · , n. For any 0 < "0 < " where " is the constant for Lemma
4.20, we can choose xk 2 B(z, kr)\M0 such that (1� "0)mk  u(xk)  mk. For any k  n� 1,
B(xk, r) ⇢ B(z, (k + 1)r) ⇢ B(z,R).

Next, we consider the following function in B(xk, r) \M0:

vk(x) = Ex[e��⌧k ],

where ⌧k = ⌧B(xk,r). Recall that {X(⇢)
t } is the Hunt process associated with the semigroup

{Q(⇢)
t }. By the strong Markov property, for any x 2 B(xk, r) \M0,

u(x) = Ex[e��⌧ ] = Ex
h
e��⌧ke��(⌧�⌧k)

i

= Ex
h
e��⌧kEX

(⇢)
⌧k (e��⌧ )

i
= Ex

h
e��⌧ku(X(⇢)

⌧k
)
i

 Ex
h
e��⌧k

i
kukL1(B(xk,r+⇢);µ) = vk(x)kukL1(B(xk,r+⇢);µ),

where we have used the fact that X(⇢)
⌧k 2 B(xk, r + ⇢) in the inequality above. It follows that for

any 0 < ⇢  r,
u(xk)  vk(xk)kukL1(B(xk,r+⇢);µ)  vk(xk)mk+2,

whence
(1� "0)mk  vk(xk)mk+2.

According to Lemma 4.20, if � � c
�(⇢) and 0 < ⇢  r (here c is the constant in Lemma 4.20),

then
(1� "0)mk  (1� ")mk+2,

whence it follows by iteration that

u(z)  m1 
✓

1� ✏

1� "0

◆n�1

m2n�1  C exp
✓
�c0

R

r

◆
,

where in the last inequality we have used that n � R
2r � 1, m2n�1  1 and c0 := 1

2 log 1�"0
1�" . This

completes the proof of (4.27).
To see that this implies that (E ,F) is conservative, take R ! 1 in (4.27). Then one has

Ex
⇣
e
� c

�(⇢) ⇣(⇢)
⌘

= 0 for all x 2 M0, where ⇣(⇢) is the lifetime of {X(⇢)
t }. So we conclude ⇣(⇢) = 1

a.s. This together with Lemma 2.1 implies that (E ,F) is conservative. Indeed, the process
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{Xt} can be obtained from {X(⇢)
t } through Meyer’s construction as discussed in Section 7.2, and

therefore the conservativeness of (E ,F) follows immediately from that of (E(⇢),F) corresponding
to the process {X(⇢)

t }. ⇤

Since J�,� implies FK(�) under an additional assumption RVD (see Subsection 4.1) and
FK(�) + J�, + CSJ(�) imply E� (see Subsection 4.3), together with the above lemma, we see
that each of Theorem 1.13 (2), (3), (4) and Theorem 1.15 (2), (3), (4) implies the conservativeness
of (E ,F).

As a direct consequence of Lemma 4.21, we have the following corollary.

Corollary 4.22. Suppose that VD, (1.13), E� and J�, hold. Then there exist constants
C, c1, c2 > 0 such that for any R, ⇢ > 0 and for all x 2 M0,

Px(⌧ (⇢)
B(x,R)  t)  C exp

✓
�c1

R

⇢
+ c2

t

�(⇢)

◆
. (4.28)

In particular, for any " > 0, there is a constant c0 > 0 such that for any ball B = B(x,R) with
x 2 M0 and R > 0, and any ⇢ > 0 with �(⇢) � t and R � c0⇢,

Pz(⌧ (⇢)
B  t)  " for all z 2 B(x,R/2) \M0.

Proof. Denote by B = B(x,R) for x 2 M and R > 0. Using Lemma 4.21, we obtain that, for
any t, ⇢ > 0 and all x 2 M0,

Px(⌧ (⇢)
B  t) =Px(e�

c
�(⇢) ⌧

(⇢)
B � e

�c t
�(⇢) )  e

c t
�(⇢) Ex(e�

c
�(⇢) ⌧

(⇢)
B )

C exp
✓
�c1

R

⇢
+ c

t

�(⇢)

◆
.

This proves the first assertion. The second assertion immediately follows from the first one and
the fact that Pz(⌧ (⇢)

B  t)  Pz(⌧ (⇢)
B(z,R/2)  t) for all z 2 B(x,R/2) \M0. ⇤

Given the above control of the exit time, we now aim to prove UHKD(�). As the first step,
we obtain the on-diagonal upper bound for the heat kernel of {Q(⇢)

t }. The proof is a non-trivial
modification of [GH, Lemma 5.6]. For any open subset D of M and any ⇢ > 0, we define
D⇢ = {x 2 M : d(x, D) < ⇢}. Recall that, for B = B(x0, r) and a > 0, we use aB to denote the
ball B(x0, ar)

Proposition 4.23. Suppose that VD, (1.13), FK(�), E� and J�, hold. Then the semigroup
{Q(⇢)

t } possesses the heat kernel q(⇢)(t, x, y), and there are two constants C, c > 0 such that for
any x 2 M and ⇢, t > 0 with �(⇢) � ct,

ess sup x0,y02B(x,⇢)q
(⇢)(t, x0, y0)  C

V (x, ⇢)

✓
�(⇢)

t

◆1/⌫

. (4.29)

Proof. Fix x0 2 M . For any t > 0, R > r + ⇢ and r � ⇢, set U = B(x0, r) and D = B(x0, R).
Then 1

4U⇢ ⇢ 1
2U . By Corollary 4.22, for any " 2 (0, 1) (which is assumed to be chosen small

enough), there is a constant c0 := c0(") > 1 large enough such that for all �(⇢) � t and r � c0⇢,

ess sup x2 1
4U⇢

(1�Q(⇢),U
t 1U (x)) ess sup x2 1

2U (1�Q(⇢),U
t 1U (x))
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=ess sup x2 1
2UPx(⌧ (⇢)

U  t)  ".

Then by (7.2) in Lemma 7.9 with V = 1
4U⇢, we have for any t, s > 0, �(⇢) � t and r � c0⇢,

ess sup x,y2 1
4U⇢

q(⇢),D(t + s, x, y)  ess sup x,y2Uq(⇢),U (t, x, y) + " ess sup x,y2U⇢
q(⇢),D(s, x, y)

 ess sup x,y2U⇢
q(⇢),U⇢(t, x, y) + " ess sup x,y2U⇢

q(⇢),D(s, x, y).

Furthermore, due to Lemma 4.18, there exist constants c1, ⌫ > 0 (independent of c0) such that
for any r, ⇢, t > 0 with �(⇢) � t and r � c0⇢,

ess sup x,y2U⇢
q(⇢),U⇢(t, x, y)  c1

V (x0, r)

✓
�(r)

t

◆1/⌫

:= Qt(r).

According to both inequalities above, we obtain that for any t, s > 0, R > r + ⇢, �(⇢) � t and
r � c0⇢,

ess sup x,y2 1
4U⇢

q(⇢),D(t + s, x, y)  Qt(r) + " ess sup x,y2U⇢
q(⇢),D(s, x, y). (4.30)

Now, for fixed t > 0, let �(⇢) � t and

tk =
1
2
(1 + 2�k)t, rk = 4kc0⇢� ⇢, Bk = B(x0, rk + ⇢)

for k � 0. In particular, t0 = t, r0 = (c0 � 1)⇢ and B0 = B(x0, c0⇢).
Applying (4.30) with r = rk+1, s = tk+1 and t + s = tk yielding that

ess sup x,y2Bk
q(⇢),D(tk, x, y)  Q2�(k+2)t(rk+1) + " ess sup x,y2Bk+1

q(⇢),D(tk+1, x, y), (4.31)

where we have used the facts that �(⇢) � t � tk and rk � c0⇢ for all k � 0. Note that, by (1.13),

Q2�(k+2)t(rk+1) =
c1

V (x0, rk+1)

✓
�(rk+1)
2�(k+2)t

◆1/⌫

 c1

V (x0, rk)

✓
�(rk)

2�(k+1)t

◆1/⌫

21/⌫c0
✓

rk+1

rk

◆�2/⌫

 LQ2�(k+1)t(rk),

where L is a constant independent of c0 and x0. Without loss of generality, we may and do
assume that " is small enough and L � 21/⌫ such that "L  1

2 . By this inequality, we can get
that

Q2�(k+2)t(rk+1)  LQ2�(k+1)t(rk)  L2Q2�kt(rk�1)  · · ·  Lk+2Qt(r0).

Hence, it follows from (4.31) that

ess sup x,y2Bk
q(⇢),D(tk, x, y)  Lk+2Qt(r0) + " ess sup x,y2Bk+1

q(⇢),D(tk+1, x, y),

which gives by iteration that for any positive integer n,

ess sup x,y2B0
q(⇢),D(t0, x, y) L2(1 + L"+ (L")2 + · · · )Qt(r0)

+ "n ess sup x,y2Bn
q(⇢),D(tn, x, y)

2L2Qt(r0) + "n ess sup x,y2Bn
q(⇢),D(tn, x, y),

(4.32)
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as long as Bn ⇢ D.
By Lemma 4.18, VD and (1.13), there exists a constant L1 > 0 (also independent of c0) such

that
ess sup x,y2Bn

q(⇢),Bn(tn, x, y)  c00Qtn(rn)  c000Ln
1Qt(r0).

Again, without loss of generality, we may and do assume that L1  L and so 0 < "L1  1
2 ;

otherwise, we replace L with L + L1 below. In particular,

lim
n!1

"n ess sup x,y2Bn
q(⇢),Bn(tn, x, y)  c000Qt(r0) lim

n!1
("L1)n = 0.

Putting both estimates above into (4.32) with D = Bn, we find that

lim sup
n!1

ess sup x,y2B0
q(⇢),Bn(t, x, y)  2L2Qt((c0 � 1)⇢). (4.33)

Having (4.33) at hand, we can follow the argument of [GH, Lemma 5.6] to complete the proof,
see [GH, p. 540]. Indeed, the sequence {q(⇢),Bn(t, ·, ·)} increases as n !1 and converges almost
everywhere on M ⇥M to a non-negative measurable function q(⇢)(t, ·, ·); see [GT, Theorem 2.12
(b) and (c)]. The function q(⇢)(t, ·, ·) is finite almost everywhere sinceZ

Bn

q(⇢),Bn(t, x, y) µ(dy)  1.

For any non-negative function f 2 L2(M ;µ), we have by the monotone convergence theorem,

lim
n!1

Z
Bn

q(⇢),Bn(t, x, y)f(y) µ(dy) =
Z

q(⇢)(t, x, y)f(y) µ(dy).

On the other hand,

lim
n!1

Z
Bn

q(⇢),Bn(t, x, y)f(y) µ(dy) = lim
n!1

Q(⇢),Bn
t f(x) = Q(⇢)

t f(x),

see [GT, Theorem 2.12(c)] again. Hence, q(⇢)(t, x, y) is the heat kernel of {Q(⇢)
t }. Thus it follows

from (4.33) that there exist constants C, c > 0 (independent of ⇢) such that (4.29) holds for all
x0 2 M , t > 0 and �(⇢) � ct. ⇤

For any ⇢ > 0 and x, y 2 M , set

J⇢(x, y) := J(x, y)1{d(x,y)>⇢}.

Using the Meyer’s decomposition and Lemma 7.2(i), we have the following estimate

p(t, x, y)  q(⇢)(t, x, y) + Ex
h Z t

0

Z
M

J⇢(Ys, z)pt�s(z, y) µ(dz) ds
i
, x, y 2 M0. (4.34)

The following is a key proposition.

Proposition 4.24. Suppose that VD, (1.13), E� and J�, hold. Then there exists a constant
c1 > 0 such that the following estimate holds for all t, ⇢ > 0 and all x 2 M0,

Ex

Z t

0

Z
M

J⇢(X(⇢)
s , z)p(t� s, z, y) µ(dz)

�
 c1t

V (x, ⇢)�(⇢)
exp

⇣
c1

t

�(⇢)

⌘
.
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Proof. By J�,, J⇢(x, y)  c1
V (x,⇢)�(⇢) for all x, y 2 M . By the fact that p(t, z, y) = p(t, y, z),

for all x 2 M0,

Ex

Z t

0

Z
M

J⇢(X(⇢)
s , z)p(t� s, z, y) µ(dz)

�

 c1Ex

"Z t

0

1

V (X(⇢)
s , ⇢)�(⇢)

ds

#

= c1

1X
k=1

Ex

"Z t

0

1

V (X(⇢)
s , ⇢)�(⇢)

ds; ⌧ (⇢)
B(x,k⇢) � t > ⌧ (⇢)

B(x,(k�1)⇢)

#

=: c1

1X
k=1

Ik.

If t  ⌧ (⇢)
B(x,k⇢), then d(X(⇢)

s , x)  k⇢ for all s  t. This along with VD yields that for all
k � 1,

1

V (X(⇢)
s , ⇢)�(⇢)

 c2kd2

V (X(⇢)
s , 2k⇢)�(⇢)

 c2kd2

infd(z,x)k⇢ V (z, 2k⇢)�(⇢)

 c2kd2

V (x, k⇢)�(⇢)
 c2kd2

V (x, ⇢)�(⇢)
.

In particular, we have
I1 

c2

V (x, ⇢)�(⇢)
.

Thus, by Corollary 4.22, for all k � 2,

Ik 
c3tkd2

V (x, ⇢)�(⇢)
Px(⌧ (⇢)

B(x,(k�1)⇢) < t)

 c4t

V (x, ⇢)�(⇢)
e
c5

t
�(⇢) kd2e�c6k  c4t

V (x, ⇢)�(⇢)
e
c5

t
�(⇢) e�c7k.

This yields the desired assertion. ⇤

Given all the above estimates, we can obtain the main theorem in this subsection.

Theorem 4.25. Suppose that VD, (1.13), FK(�), E� and J�, hold. Then UHKD(�) is satisfied,
i.e. there is a constant c > 0 such that for all x 2 M0 and t > 0,

p(t, x, x)  c

V (x,��1(t))
.

Proof. For each t > 0, set ⇢ = ��1(ct), where c > 0 is the constant in Proposition 4.23. Then
by Proposition 4.23, for all x 2 M0,

q(⇢)(t, x, x)  c1

V (x,��1(t))
.

Using this, (4.34) and Proposition 4.24, for all x 2 M0, we have

p(t, x, x)  q(⇢)(t, x, x) +
c2t

V (x, ⇢)�(⇢)
exp

⇣
c2

t

�(⇢)

⌘
 c3

V (x,��1(t))
,

thanks to �(⇢) = ct, VD and (1.13). ⇤
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5 Consequences of condition J� and mean exit time condition
E�

In this section, we will first prove (2) =) (1) in Theorem 1.15 and then prove (2) =) (1) in
Theorem 1.13. Without any mention, throughout the proof we will assume that µ and � satisfy
VD, RVD and (1.13) respectively. (Indeed, RVD is only used in the proof of J�,� =) FK(�).)
We note that (2) implies the conservativeness of (E ,F) due to Lemma 4.21.

Recall again that, for any ⇢ > 0, (E(⇢),F) defined in (2.2) denotes the ⇢-truncated Dirichlet
form obtained by ⇢-truncation for the jump density of the original Dirichlet form (E ,F). Let
{X(⇢)

t } be the Hunt process associated with the ⇢-truncated Dirichlet form (E(⇢),F). For any
open subset D ⇢ M , let ⌧ (⇢)

D be the first exit time of the process {X(⇢)
t }. For any open subset

D ⇢ M and ⇢ > 0, set D⇢ = {x 2 M : d(x,D) < ⇢}.

5.1 UHKD(�) + J�, + E� =) UHK(�), J� + E� =) UHK(�)

We begin with the following improved statement for UHKD(�).

Lemma 5.1. Under VD and (1.13), if UHKD(�), J�, and E� hold, then there is a constant
c > 0 such that for any t > 0 and all x, y 2 M0,

p(t, x, y)  c

✓
1

V (x,��1(t))
^ 1

V (y,��1(t))

◆
.

Proof. First, using the first conclusion in Lemma 7.2(ii), Lemma 2.1 and UHKD(�), we can
easily see that the ⇢-truncated Dirichlet form (E(⇢),F) has the heat kernel q(⇢)(t, x, y), and

q(⇢)(t, x, x)  p(t, x, x) exp
⇣
c1

t

�(⇢)

⌘
 c2

V (x,��1(t))
exp

⇣
c1

t

�(⇢)

⌘
,

for all t > 0 and all x 2 M0, where c1, c2 > 0 are independent of ⇢. Then by the symmetry of
q(⇢)(t, x, y) and the Cauchy-Schwarz inequality, for all t > 0 and all x, y 2 M0,

q(⇢)(t, x, y) 
q

q(⇢)(t, x, x)q(⇢)(t, y, y)  c2p
V (x,��1(t))V (y,��1(t))

exp
⇣
c1

t

�(⇢)

⌘
. (5.1)

Second, let U and V be two open subsets of M such that U⇢ and V⇢ are precompact, and
U \ V = ;. According to Lemma 7.10, for any t > 0 and all x 2 U \M0 and y 2 V \M0,

q(⇢)(2t, x, y) Px(⌧ (⇢)
U  t)ess sup tt02tkq(⇢)(t0, ·, y)kL1(U⇢,µ)

+ Py(⌧ (⇢)
V  t)ess sup tt02tkq(⇢)(t0, ·, x)kL1(V⇢;µ)


⇣
Px(⌧ (⇢)

U  t) + Py(⌧ (⇢)
V  t)

⌘
ess sup x02U⇢,y02V⇢,tt02tq

(⇢)(t0, x0, y0).

Then taking U = B(x, r) and V = B(y, r) with r = 1
4d(x, y) in the inequality above, and using

Corollary 4.22 and (5.1), we find that for any t, ⇢ > 0 and all x, y 2 M0,

q(⇢)(2t, x, y) c3 exp
⇣
� c4

r

⇢
+ c5

t

�(⇢)

⌘
ess sup x02B(x,r+⇢),y02B(y,r+⇢)

1p
V (x0,��1(t))V (y0,��1(t))

 c6

V (x,��1(t))

✓
1 +

r + ⇢

��1(t)

◆d2

exp
⇣
� c4

r

⇢
+ c5

t

�(⇢)

⌘
.
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This along with (4.34) and Proposition 4.24 yields that for any t, ⇢ > 0 and all x, y 2 M0,

p(t, x, y)  c7

"
1

V (x,��1(t))

✓
1 +

r + ⇢

��1(t)

◆d2

exp
⇣
� c4

r

⇢

⌘
+

t

V (x, ⇢)�(⇢)

#
exp

⇣
c8

t

�(⇢)

⌘
.

Taking ⇢ = c9��1(t) with some constant c9 > 0 in the inequality above and using the fact that
the function f(r) = (1 + r)d2e�r is bounded on [0,1), we furthermore get that for all t > 0 and
all x, y 2 M0,

p(t, x, y)  c10

V (x,��1(t))
,

which in turn gives us the desired assertion by the symmetry of p(t, x, y). ⇤

Lemma 5.2. Under VD and (1.13), if UHKD(�), J�, and E� hold, then the ⇢-truncated
Dirichlet form (E(⇢),F) has the heat kernel q(⇢)(t, x, y), and it satisfies that for any t > 0 and
all x, y 2 M0,

q(⇢)(t, x, y)  c1

✓
1

V (x,��1(t))
+

1
V (y,��1(t))

◆
exp

⇣
c2

t

�(⇢)
� c3

d(x, y)
⇢

⌘
,

where c1, c2, c3 are positive constants independent of ⇢.
Consequently, for any t > 0 and all x, y 2 M0,

q(⇢)(t, x, y)  c4

V (x,��1(t))

✓
1 +

d(x, y)
��1(t)

◆d2

exp
⇣
c2

t

�(⇢)
� c3

d(x, y)
⇢

⌘
.

Proof. (i) The existence of q(⇢)(t, x, y) has been mentioned in the proof of Lemma 5.1.
Furthermore, according to Lemma 7.2(2), Lemma 2.1 and Lemma 5.1, there exist c1, c2 > 0
such that for all t > 0 and all x, y 2 M0,

q(⇢)(t, x, y)  c1

✓
1

V (x,��1(t))
^ 1

V (y,��1(t))

◆
exp

⇣
c2

t

�(⇢)

⌘
. (5.2)

Therefore, in order to prove the desired assertion, below we only need to consider the case that
d(x, y) � 2⇢.

By Corollary 4.22, for any ball B(x, r), t > 0 and all z 2 B(x, ⇢) \M0 with r > ⇢,

Q(⇢)
t 1B(x,r)c(z) Pz(⌧ (⇢)

B(x,r)  t)  Pz(⌧ (⇢)
B(z,r�⇢)  t)

c3 exp
✓
�c4

r

⇢
+ c3

t

�(⇢)

◆
,

(5.3)

where c3, c4 > 0 are independent of ⇢.
(ii) Fix x0, y0 2 M and t > 0. Set r = 1

2d(x0, y0). By the semigroup property, we have that

q(⇢)(2t, x, y) =
Z

M
q(⇢)(t, x, z)q(⇢)(t, z, y) µ(dz)


Z

B(x0,r)c
q(⇢)(t, x, z)q(⇢)(t, z, y) µ(dz) +

Z
B(y0,r)c

q(⇢)(t, x, z)q(⇢)(t, z, y) µ(dz).
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Using (5.2) and (5.3), we obtain that
Z

B(x0,r)c
q(⇢)(t, x, z)q(⇢)(t, z, y) µ(dz)  c1

V (y,��1(t))
exp

⇣
c2

t

�(⇢)

⌘Z
B(x0,r)c

q(⇢)(t, x, z) µ(dz)

 c5

V (y,��1(t))
exp

⇣
c5

t

�(⇢)
� c4

r

⇢

⌘

for µ-almost all x 2 B(x0, ⇢) and y 2 M . Similarly, by the symmetry of q(⇢)(t, z, y),
Z

B(y0,r)c
q(⇢)(t, x, z)q(⇢)(t, z, y) µ(dz)  c1

V (x,��1(t))
exp

⇣
c2

t

�(⇢)

⌘Z
B(y0,r)c

q(⇢)(t, z, y) µ(dz)

=
c1

V (x,��1(t))
exp

⇣
c2

t

�(⇢)

⌘Z
B(y0,r)c

q(⇢)(t, y, z) µ(dz)

 c6

V (x,��1(t))
exp

⇣
c6

t

�(⇢)
� c4

r

⇢

⌘

for µ-almost all y 2 B(x0, ⇢) and x 2 M . Hence, since x0 and y0 are arbitrary, we get the first
required assertion. Then the second one immediately follows from the first one and VD. ⇤

Now, we can prove the following main result.

Proposition 5.3. Under VD and (1.13), if UHKD(�), J�, and E� hold, then we have UHK(�).

Proof. (i) We first prove that there are N 2 N with N > (�1 + d2)/�1 and C0 � 1 such that
for each t, r > 0 and all x 2 M0,

Z
B(x,r)c

p(t, x, y) µ(dy)  C0

✓
��1(t)

r

◆✓

, (5.4)

where ✓ = �1 � (�1 + d2)/N , and d2 and �1 are constants from VD and (1.13) respectively.
Indeed, we only need to consider the case that r > ��1(t). For any ⇢, t > 0 and all x, y 2 M0,
by (4.34) and Proposition 4.24, we have

p(t, x, y)  q(⇢)(t, x, y) +
c1t

V (x, ⇢)�(⇢)
exp

✓
c2t

�(⇢)

◆
,

where c1, c2 > 0 are constants independent of ⇢. Now, for fixed large N 2 N (which will be
specified later), define

⇢n = 2n↵r1�1/N��1(t)1/N , n 2 N,

where ↵ 2 (d2/(d2 + �1) _ 1/2, 1). Since r > ��1(t) and 2↵ � 1, we have

��1(t)  ⇢n  2nr,
2nr

⇢n
 ⇢n

��1(t)
. (5.5)

In particular, by (1.13), t/�(⇢n)  c3. Plugging these into Lemma 5.2, we have that there are
constants c4, c5 > 0 such that for every t > 0 and all x, y 2 M0 with 2nr  d(x, y)  2n+1r,

q(⇢n)(t, x, y)  c4

V (x,��1(t))

✓
2nr

��1(t)

◆d2

exp
✓
�c52nr

⇢n

◆
.
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Thus, there is a constant c6 > 0 such that for every t > 0 and all x 2 M0,
Z

B(x,r)c
p(t, x, y) µ(dy) =

1X
n=0

Z
B(x,2n+1r)\B(x,2nr)

p(t, x, y) µ(dy)


1X

n=0

c6

V (x,��1(t))

✓
2nr

��1(t)

◆d2

exp
✓
�c52nr

⇢n

◆
V (x, 2nr)

+
1X

n=0

c6tV (x, 2nr)
V (x, ⇢n)�(⇢n)

= : I1 + I2.

We first estimate I2. Take N large enough so that �1� (�1 +d2)/N > 0. Then using VD, (1.13)
and (5.5), we have

I2 c7

1X
n=0

⇣��1(t)
⇢n

⌘�1
⇣2nr

⇢n

⌘d2

=c7

⇣��1(t)
r

⌘�1�(�1+d2)/N
1X

n=0

2n(d2�↵(d2+�1))

c8

⇣��1(t)
r

⌘�1�(�1+d2)/N
,

where in the last inequality we used the fact d2�↵(d2 +�1) < 0 due to the choice of ↵. We next
estimate I1. Note that for each K 2 N, there exists a constant cK > 0 such that e�x  cKx�K

for all x � 1. Now choose K large enough so that K/N > 2d2 + �1 and (1� ↵)K > 2d2. Then
using VD, (1.13) and (5.5) again, we have

I1 
1X

n=0

c9,K

V (x,��1(t))

⇣ 2nr

��1(t)

⌘d2
⇣ ⇢n

2nr

⌘K
V (x, 2nr)

c10,K

1X
n=0

⇣ 2nr

��1(t)

⌘2d2
⇣ ��1(t)1/N

2n(1�↵)r1/N

⌘K

=c10,K

⇣��1(t)
r

⌘K/N�2d2
1X

n=0

2n(2d2�(1�↵)K)

c11,K

⇣��1(t)
r

⌘K/N�2d2

 c11,K

⇣��1(t)
r

⌘�1

.

Combining with all estimations above, we obtain the desired estimate (5.4).
(ii) For any ball B with radius r, by (5.4), there is a constant c1 > 0 such that

1� PB
t 1B(x) = Px(⌧B  t)  c1

✓
r

��1(t)

◆�✓

all x 2 1
4
B \M0, (5.6)

e.g. see the proof of Lemma 2.7. (Note that due to Lemma 4.21, (E ,F) is conservative.)
Combining (5.6) with (4.26), we find that

1�Q(⇢),B
t 1B(x)  c2

"✓
r

��1(t)

◆�✓

+
t

�(⇢)

#
for all x 2 1

4
B \M0, (5.7)
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where Q(⇢),B
t is the semigroup for the ⇢-truncated Dirichlet form (E(⇢),FB), and the constant c2

is independent of ⇢.
Next, we prove the following improvement of estimate in Lemma 5.2: for all t > 0, k � 1,

and all x0, y0 2 M with d(x0, y0) > 4k⇢,

q(⇢)(t, x, y)  c3(k)
✓

1
V (x,��1(t))

+
1

V (y,��1(t))

◆
exp

⇣
c4

t

�(⇢)

⌘✓
1 +

⇢

��1(t)

◆�(k�1)✓

(5.8)

for almost all x 2 B(x0, ⇢) and y 2 B(y0, ⇢). By (5.2), it su�ces to consider the case that
⇢ � ��1(t). Indeed, fix k � 1, t > 0 and x0, y0 2 M0. Set r = 1

2d(x0, y0) > 2k⇢. By (5.7) and
Lemma 7.11,

Q(⇢)
t 1B(x0,r)c(x)  c5(k)

"✓
⇢

��1(t)

◆�✓

+
t

�(⇢)

#k�1

for almost all x 2 B(x0, ⇢).

It is easy to see that ✓
⇢

��1(t)

◆�✓

� c3
t

�(⇢)
for all ⇢ > ��1(t),

(here c3 is the constant in (1.13)) and so for almost all x 2 B(x0, ⇢),

Q(⇢)
t 1B(x0,r)c(x)  c6(k)

✓
⇢

��1(t)

◆�(k�1)✓

.

Then using (5.2) and the estimate above, we can follow part (ii) in the proof of Lemma 5.2 to
obtain (5.8).

(iii) Finally we prove the desired upper bound for p(t, x, y). For any fixed x0, y0 2 M , let
r = 1

2d(x0, y0). We only need to show that

p(t, x, y)  C

V (x,��1(t))

✓
1 ^ V (x,��1(t))t

V (x, r)�(r)

◆

for all t > 0, 0 < ⇢ < r small enough and almost all x 2 B(y0, ⇢) and y 2 B(x0, ⇢). As before,
by Lemma 5.1, without loss of generality we may and do assume that r/��1(t) is large enough.
Take k = 1 + [(2d2 + �2)/✓] and ⇢ = r/(8k). Using (4.34), Proposition 4.24 and (5.8), we obtain

p(t, x, y)  c7(k)
V (x,��1(t))

✓
1 +

d(x, y)
��1(t)

◆d2
✓

⇢

��1(t)
+ 1

◆�(k�1)✓

+
c00t

V (x, ⇢)�(⇢)

 c8(k)

"
1

V (x,��1(t))

✓
r

��1(t)

◆�(k�1)✓+d2

+
t

V (x, r)�(r)

#

 c9(k)t
V (x, r)�(r)

for all t > 0, and almost all x 2 B(x0, ⇢) and y 2 B(y0, ⇢). The proof is complete. ⇤

J�,� =) FK(�) has been proved in Subsection 4.1 by the additional assumption RVD, and
FK(�) + E� + J�, =) UHKD(�) has been proved in Subsection 4.4. Combining these with
Proposition 5.3, we also obtain J� + E� =) UHK(�).
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5.2 J� + E� =) LHK(�)

Proposition 5.4. If VD, (1.13), E� and J� hold, then we have LHK(�).

Proof. The proof is split into two steps, and the first one is concerned with the near-diagonal
lower bound estimate.

(i) The argument for the near-diagonal lower bound estimate is standard; we present it here
for the sake of completeness. It follows from E� and Lemma 4.16 that there exist constants
c0 � 1 and c1 2 (0, 1) so that for all x 2 M0 and t, r > 0 with r � c0��1(t),

Z
B(x,r)c

p(t, x, y) µ(dy)  Px(⌧B(x,r)  t)  c1.

This and the conservativeness of (E ,F)(which is due to Lemma 4.21) imply that
Z

B(x,c0��1(t))
p(t, x, y) µ(dy) � 1� c1.

By the semigroup property and the Cauchy-Schwarz inequality, we get for all x 2 M0

p(2t, x, x) =
Z

M
p(t, x, y)2 µ(dy) � 1

V (x, c0��1(t))

✓Z
B(x,c0��1(t))

p(t, x, y) µ(dy)
◆2

� c2

V (x,��1(t))
.

(5.9)

Furthermore, by (5.10) below, we can take � > 0 small enough and find that for almost all
y 2 B(x, ���1(t)),

p(2t, x, y) � p(2t, x, x)� c3

V (x,��1(t))
�✓ � c4

V (x,��1(t))
.

This proves that there are constants �1, c5 > 0 such that for all t > 0, almost all x 2 M and
y 2 B(x, �1��1(t)),

p(t, x, y) � c5

V (x,��1(t))
.

(ii) The argument below is motivated by [CZ, Section 4.4]. According to the result in
Subsection 5.1, Lemma 4.21 and Lemma 2.7, UHK(�) and so EP�, holds, i.e. for all x 2 M0

and t, r > 0,
Px(⌧B(x,r)  t)  c6t/�(r).

In particular, there are a 2 (0, 1/2) and �2 2 (0, �1) (independent of t) such that for all t > 0,
�1��1((1� a)t) � �2��1(t), and for all x 2 M0 and t > 0,

Px(⌧B(x,2�2��1(t)/3)  at)  1/2.

For A ⇢ M , let
�A = inf{t > 0 : Xt 2 A}.

Now, for all x 2 M0 and y 2 M with d(x, y) � �1��1(t),

Px(Xat 2B(y, �1�
�1((1� a)t)))

�Px(Xat 2 B(y, �2�
�1(t)))

54



�Px

✓
�B(y,�2��1(t)/3)  at; sup

s2[�B(y,�2��1(t)/3),at]
d(Xs, X�B(y,�2��1(t)/3)

)  2�2��1(t)/3
◆

�Px(�B(y,�2��1(t)/3)  at) inf
z2B(y,�2��1(t)/3)

Pz(⌧B(z,2�2��1(t)/3) > at)

�1
2

Px(�B(y,�2��1(t)/3)  at)

�1
2

Px
⇣
X(at)^⌧B(x,2�2��1(t)/3)

2 B(y, �2�
�1(t)/3)

⌘
.

For any x, y 2 M with d(x, y) � �1��1(t) � �2��1(t), B(y, �2��1(t)/3) ⇢ B(x, 2�2��1(t)/3)c.
Then by J�,� and Lemma 7.1, for all x 2 M0,

Px
⇣
X(at)^⌧B(x,2�2��1(t)/3)

2 B(y, �2�
�1(t)/3)

⌘

= Ex

2
64 X

s(at)^⌧B(x,2�2��1(t)/3)

1{Xs2B(y,�2��1(t)/3)}

3
75

� Ex

"Z (at)^⌧B(x,2�2��1(t)/3)

0
ds

Z
B(y,�2��1(t)/3)

J(Xs, u) µ(du)

#

� c7Ex

"Z (at)^⌧B(x,2�2��1(t)/3)

0
ds

Z
B(y,�2��1(t)/3)

1
V (u, d(Xs, u))�(d(Xs, u))

µ(du)

#

� c8Ex
⇥
(at) ^ ⌧B(x,2�2��1(t)/3)

⇤
V (y, �2�

�1(t)/3)
1

V (y, d(x, y))�(d(x, y))

� c8atPx
⇥
⌧B(x,2�2��1(t)/3) � at

⇤
V (y, �2�

�1(t)/3)
1

V (y, d(x, y))�(d(x, y))

� c9tV (y,��1(t))
V (x, d(x, y))�(d(x, y))

,

where in the third inequality we have used the fact that

d(Xs, u)  d(Xs, x) + d(x, y) + d(y, u)  d(x, y) + �2�
�1(t)  2d(x, y).

Therefore, for almost all x, y 2 M with d(x, y) � �1��1(t),

p(t, x, y) �
Z

B(y,�1��1(t))
p(at, x, z)p((1� a)t, z, y) µ(dz)

� inf
z2B(y,�1��1((1�a)t))

p((1� a)t, z, y)
Z

B(y,�1��1((1�a)t))
p(at, x, z) µ(dz)

� c10

V (y,��1(t))
· c9tV (y,��1(t))
V (x, d(x, y))�(d(x, y))

=
c11t

V (x, d(x, y))�(d(x, y))
.

The proof is complete. ⇤

Remark 5.5. We emphasis that the on-diagonal lower bound estimate (5.9) is based on E�

only.
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The following lemma has been used in the proof above.

Lemma 5.6. Under VD, (1.13), J� and E�, the heat kernel p(t, x, y) is Hölder continuous with
respect to (x, y). More explicitly, there exist constants ✓ 2 (0, 1) and c3 > 0 such that for all
t > 0 and x, y, z 2 M ,

|p(t, x, y)� p(t, x, z)|  c3

V (x,��1(t))

✓
d(y, z)
��1(t)

◆✓

. (5.10)

Proof. The proof is essentially the same as that of [CK1, Theorem 4.14], and we should
highlight a few di↵erent steps. Let Z := {Vs, Xs}s�0 be a space-time process where Vs = V0� s.
The filtration generated by Z satisfying the usual conditions will be denoted by { eFs; s � 0}.
The law of the space-time process s 7! Zs starting from (t, x) will be denoted by P(t,x). For every
open subset D of [0,1)⇥M , define ⌧D = inf{s > 0 : Zs /2 D} and �D = inf{t > 0 : Zt 2 D}.

According to Subsection 5.1, J� +E� imply UHK(�). Then by Lemma 2.7, EP�, holds, i.e.
there is a constant c0 2 (0, 1) such that for all x 2 M0,

P(0,x)(⌧B(x,r)  c0�(r))  1/2. (5.11)

Let Q(t, x, r) = [t, t + c0�(r)] ⇥ B(x, r). Then, following the argument of [CK2, Lemma 6.2]
and using the Lévy system for the process {Xt} (see Lemma 7.1), we can obtain that there is a
constant c1 > 0 such that for all x 2 M0, t, r > 0 and any compact subset A ⇢ Q(t, x, r)

P(t,x)(�A < ⌧Q(t,x,r)) � c1
m⌦ µ(A)

V (x, r)�(r)
, (5.12)

where m ⌦ µ is a product measure of the Lebesgue measure m on R+ and µ on M . Note that
unlike [CK2, Lemma 6.2], here (5.12) is satisfied for all r > 0 not only r 2 (0, 1], which is due
to the fact (5.11) holds for all r > 0.

Also by the Lévy system of the process {Xt} (see Lemma 7.1), we find that there is a constant
c2 > 0 such that for all x 2 M0, t, r > 0 and s � 2r,

P(t,x)(X⌧Q(t,x,r)
/2 B(x, s)) = E(t,x)

Z ⌧Q(t,x,r)

0

Z
B(x,s)c

J(Xv, u) µ(du) dv

 E(t,x)
Z ⌧Q(t,x,r)

0

Z
B(Xv ,s/2)c

J(Xv, u) µ(du) dv

 c2
�(r)
�(s)

,

(5.13)

where in the last inequality we have used Lemma 2.1 and E�.
Having (5.12) and (5.13) at hand, one can follow the argument of [CK1, Theorem 4.14] to

get that the Hölder continuity of bounded parabolic functions, and so the desired assertion for
the heat kernel p(t, x, y). ⇤

Remark 5.7. The proof above is based on (5.11), (5.12) and (5.13). According to Lemma 4.16,
(5.11) is a consequence of E�; while, from the argument above, (5.13) can be deduced from
J�, and E�,. (5.12) is the so called Krylov type estimate, which is a key to yield the Hölder
continuity of bounded parabolic functions, and where J�,� is used.
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6 Applications and Example

6.1 Applications

We first give examples of � such that condition (1.13) is satisfied (see [CK2, Example 2.3]).

Example 6.1. (1) Assume that there exist 0 < �1  �2 < 1 and a probability measure ⌫ on
[�1,�2] such that

�(r) =
Z �2

�1

r� ⌫(d�), r � 0.

Then (1.13) is satisfied. Clearly, � is a continuous strictly increasing function with �(0) =
0. Note that some additional restriction of the range of �2 should be imposed for the
corresponding Dirichlet form to be regular. (For instance, �2 < 2 when M = Rn.) In this
case,

J(x, y) ⇣ 1
V (x, d(x, y))

R �2

�1
d(x, y)� ⌫(d�)

, x, y 2 M. (6.1)

When �1 = �2 = � (i.e. ⌫({�}) = 1), a symmetric jump process whose jump density is
comparable to (6.1) is called a symmetric �-stable like process.

(2) Similarly, consider the following increasing function

�(r) =
✓Z �2

�1

r�� ⌫(d�)
◆�1

for r > 0, �(0) = 0,

where ⌫ is a finite measure on [�1,�2] ⇢ (0,1). Then (1.13) is satisfied. Again, � is a
continuous strictly increasing function, and some additional restriction of the range of �2

should be imposed for the corresponding Dirichlet form to be regular. In this case,

J(x, y) ⇣ 1
V (x, d(x, y))

Z �2

�1

1
d(x, y)�

⌫(d�), x, y 2 M.

A particular case is when ⌫ is a discrete measure. For example, when ⌫(A) =
PN

i=1 �↵i(A)
for some ↵i 2 (0,1) with 1  i  N and N � 1,

J(x, y) ⇣
NX

i=1

1
V (x, d(x, y))d(x, y)↵i

.

We now give an important class of examples where �, �2 in (1.13) could be strictly larger
than 2, and then discuss the stability of heat kernel estimates.

The first class of examples are given as subordinations of di↵usion processes on fractals.
First, let us define the Sierpinski carpet as a typical example of fractals. Set E0 = [0, 1]n. For
any l 2 N with l � 2, let

Q =
n
⇧n

i=1[(ki � 1)/l, ki/l] : 1  ki  l, ki 2 N, 1  i  n
o

.

For any l  N  ln, let Fi (1  i  N) be orientation preserving a�ne maps of E0 onto some
element of Q. (Without loss of generality, let F1(x) = l�1x for x 2 E0 and assume that the
sets Fi(E0) are distinct.) Set I = {1, . . . , N} and E1 = [i2IFi(E0). Then there exists a unique
non-empty compact set M̂ ⇢ E0 such that M̂ = [i2IFi(M̂). M̂ is called a Sierpinski carpet if
the following hold:
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(SC1) (Symmetry) E1 is preserved by all the isometries of the unit cube E0.

(SC2) (Connectedness) E1 is connected.

(SC3) (Non-diagonality) Let B be a cube in E0 which is the union of 2d distinct elements of Q.
(So B has side length 2l�1.) If Int(E1 \B) 6= ;, then it is connected.

(SC4) (Borders included property) E1 contains the set {x : 0  x1  1, x2 = · · · = xd = 0}.

Note that Sierpinski carpets are infinitely ramified in the sense that M̂ can not be disconnected
by removing a finite number of points. Let

Ek :=
[

i1,··· ,ik2I

Fi1 � · · · � Fik(E0), Mpre :=
[
k�0

lkEk and M :=
[
k�0

lkM̂.

Mpre is called a pre-carpet, and M is called an unbounded carpet. Both Hausdor↵ dimensions of
M̂ and M with respect to the Euclidean metric are d = log N/ log l. Let µ be the (normalized)
Hausdor↵ measure on M . The following has been proved in [BB1]:

There exists a µ-symmetric conservative di↵usion on M that has a symmetric jointly con-
tinuous transition density {q(t, x, y) : t > 0, x, y 2 M} with the following estimates for all
t > 0, x, y 2 M :

c1t
�↵/�⇤ exp

✓
� c2

⇣ |x� y|�⇤
t

⌘ 1
�⇤�1

◆
 q(t, x, y) (6.2)

 c3t
�↵/�⇤ exp

✓
� c4

⇣ |x� y|�⇤
t

⌘ 1
�⇤�1

◆
,

where 0 < ↵  n and �⇤ � 2. In fact, it is known that there exist µ-symmetric di↵usion processes
with the above heat kernel estimates on various fractals including the Sierpinski gaskets and
nested fractals, and typically �⇤ > 2. For example, for the two-dimensional Sierpinski gasket,
↵ = log 3/ log 2 and �⇤ = log 5/ log 2 (see [B, K2] for details).

Next, let us consider a more general situation. Let (M, d, µ) be a metric measure space
as in the setting of this paper that satisfies VD and RVD. Assume that there exists a µ-
symmetric di↵usion process {Zt} that admits no killings inside M , and has a symmetric and
jointly continuous transition density {q(t, x, y) : t > 0, x, y 2 M} with the following estimates
for all t > 0, x, y 2 M :

c1

V (x, �1(t))
exp

⇣
� c2

⇣ (d(x, y))
t

⌘�1
⌘
 q(t, x, y) (6.3)

 c3

V (x, �1(t))
exp

⇣
� c4

⇣ (d(x, y))
t

⌘�2
⌘
,

where  : R+ ! R+ is a strictly increasing continuous function with  (0) = 0,  (1) = 1 and
satisfying (1.13). The lower bound in (6.3) implies that

q(t, x, y) � c1e�c2

V (x, �1(t))
for d(x, y)   �1(t)

and so we conclude by Proposition 3.1(ii) that the process {Zt} has infinite lifetime.
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Clearly (6.2) is a special case of (6.3) with V (x, r) ⇣ r↵,  (s) = s�⇤ and �1 = �2 = 1/(�⇤�1).
A typical example that the local and global structures of  di↵er is a so called fractal-like
manifold. It is a 2-dimensional Riemannian manifold whose global structure is like that of the
fractal. For example, one can construct it from Mpre by changing each bond to a cylinder and
smoothing the connection to make it a manifold. One can naturally construct a Brownian motion
on the surfaces of cylinders. Using the stability of heat kernel estimates like (6.3) (see for instance
[BBK1] for details), one can show that any divergence operator L =

P2
i,j=1

@
@xi

(aij(x) @
@xj

) in
local coordinates on such manifolds that satisfies the uniform elliptic condition obeys (6.3) with
 (s) = s2 + s�⇤ .

We now subordinate the di↵usion {Zt} whose heat kernel enjoys (6.3). Let {⇠t} be a subor-
dinator that is independent of {Zt}; namely, it is an increasing Lévy process on R+. Let �̄ be
the Laplace exponent of the subordinator, i.e.

E[exp(��⇠t)] = exp(�t�̄(�)), �, t > 0.

It is known that �̄ is a Bernstein function, i.e. it is a C1 function on R+ and (�1)nDn�̄  0 for
all n � 0. See for instance [SSV] for the general theory of subordinations. See also [BSS, K1, Sto]
for subordinations on fractals. By the general theory, there exist a, b � 0 and a measure µ on
R+ satisfying

R1
0 (1 ^ t) µ(dt) < 1 such that

�̄(�) = a + b�+
Z 1

0
(1� e��t) µ(dt). (6.4)

Below, we assume that �̄ is a complete Bernstein function; namely, the measure µ(dt) has a
completely monotone density µ(t), i.e. (�1)nDnµ � 0 for all n � 0. Assume further that �̄
satisfies (1.13) with di↵erent �1,�2 from those for  , and that furthermore �1,�2 2 (0, 1). Then
a = b = 0 in (6.4) and one can obtain µ(t) ⇣ �̄(1/t)/t (see [KSV, Theorem 2.2]).

The process {Xt} defined by Xt = Z⇠t for any t � 0 is called a subordinate process. Let
{⌘t(u) : t > 0, u � 0} be the distribution density of {⇠t}. It is known (see for instance [BSS, Sto])
that the Lévy density J(·, ·) and the heat kernel p(t, ·, ·) of X are given by

J(x, y) =
Z 1

0
q(u, x, y)µ(u) du, (6.5)

p(t, x, y) =
Z 1

0
q(u, x, y)⌘t(u) du for all t > 0, x, y 2 M. (6.6)

Define
�(r) =

1
�̄(1/ (r))

. (6.7)

Then � also satisfies (1.13) (with di↵erent �1,�2 from those for �̄ and  ). From now on, we
discuss whether p(t, ·, ·) satisfies HK(�) or not. The most classical case is when (M, d, µ) is the
Euclidean space Rd equipped with the Lebesgue measure µ, {Zt} is Brownian motion on Rd (and
so �⇤ = 2 and �1 = �2 = 1), and �̄(t) = t↵/2 with 0 < ↵ < 2. In this case {⇠t} is an ↵/2-stable
subordinator and the corresponding subordinate process is the rotationally symmetric ↵-stable
process on Rd. For a di↵usion on a fractal whose heat kernel enjoys (6.2) for some �⇤ > 2, it is
proved in [BSS, Theorem 3.1] that p(t, ·, ·) satisfies HK(�) with �(r) = r�⇤↵/2 when �̄(t) = t↵/2.
(Note that �⇤↵/2 > 2 when ↵ > 4/�⇤.) The proof uses (6.6) and some estimates of ⌘t(u) such
as

⌘t(u)  c5tu
�1�↵/2, t, u > 0.
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Now let us consider the case  (s) = s�⇤,1 + s�⇤,2 with 2  �⇤,1  �⇤,2 (e.g. the fractal-like
manifold is a special case in that �⇤,1 = 2), and �̄(t) = t↵1/2 + t↵2/2 for some 0 < ↵1  ↵2 < 2.
For this case, {⇠t} is a sum of independent ↵1/2- and ↵2/2-subordinators, so the distribution
density ⌘t(u) is a convolution of their distribution densities. Hence we have

⌘t(u)  c6t/(u1+↵1/2 ^ u1+↵2/2). (6.8)

By elementary but tedious computations (along similar lines as in the proof of [BSS, Theorem
3.1]), one can deduce that p(t, ·, ·) satisfies HK(�) with

�(r) = r↵2�⇤,1/21{r1} + r↵1�⇤,2/21{r>1}, (6.9)

which is (up to constant multiplicative) the same as (6.7). In fact, the computation by using (6.6)
also requires various estimates of ⌘t(u), which are in general rather complicated. An alternative
way is to prove first J� by using (6.5), which is easier since we have µ(t) ⇣ �̄(1/t)/t. Then we
can obtain

p(t, x, y)  c7t

V (x, d(x, y))�(d(x, y))

by plugging (6.8) into (6.6). Integrating this, we have Px(Xt /2 B(x, r))  c8t/�(r) for all
x 2 M and r, t > 0. Note that since the di↵usion process {Zt} has infinite lifetime, so does
the subordinated process {Xt}. Then, following the argument of Lemma 2.7, we can get that
Px(⌧B(x,r)  t)  c9t/�(r) for all x 2 M and r, t > 0. Consequently, by taking " > 0 su�ciently
small, we have

Px(⌧B(x,r) � �("r)) = 1� Px(⌧B(x,r) < �("r)) � 1� c9�("r)
�(r)

� c10 > 0,

which implies E�,�. Under VD and RVD, J� implies E�, (which is due to Section 4.1 and
Lemma 4.14). Therefore, by Theorem 1.13, we conclude that p(t, ·, ·) satisfies HK(�).

The above argument shows that HK(�) is satisfied for the subordinated process {Xt} when
�̄(t) = t↵1/2 +t↵2/2. It follows from our stability theorem, Theorem 1.13, that for any symmetric
pure jump process on the above mentioned space whose jumping kernel enjoys J� with � given
by (6.9), it enjoys the two-sided heat kernel estimates HK(�).

The stability results we discuss above are new in general, especially for high dimensional
Sierpinski carpets. However, if we restrict the framework so that (roughly) ↵ < �⇤ in (6.2)
(which is the case for di↵usions on the Sierpinski gaskets, for instance), then the stability for the
heat kernel was already established in [GHL2]. See [GHL2, Examples 6.16 and 6.20] for related
examples.

6.2 Counterexample

In this subsection, we show that J� does not imply HK(�) through the following counterexample.

Example 6.2. (J� does not imply HK(�).) In [BBK2, CK1], it is proved in the setting
of graphs or d-sets that J� is equivalent to HK(�), when V (x, r) ⇣ rd and �(r) = r↵ with
0 < ↵ < 2. Here, we give an example that this is not the case in general.

Let M = Rd, �(r) = r↵ + r� with 0 < ↵ < 2 < �, and

J(x, y) ⇣ 1
|x� y|d�(|x� y|) , x, y 2 Rd.
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Note that �(r) ⇣ r↵ if r  1, and �(r) ⇣ r� if r � 1. This example clearly satisfies J�. We first
prove the following

p(t, x, y) 
⇢

c1t�d/↵, t 2 (0, 1],
c2t�d/2, t 2 [1,1).

(6.10)

Indeed, for the truncated process {X(1)
t } with

J0(x, y) = J(x, y)1{|x�y|1} ⇣
1

|x� y|d�(|x� y|)1{|x�y|1},

it is proved in [CKK, Proposition 2.2] that (6.10) holds. Since (6.10) is equivalent to

✓(kuk22)  c3 E(u, u) for every u 2 F with kuk1 = 1, (6.11)

where ✓(r) = r1+↵/d _ r1+2/d (see for instance [Cou, theorem II.5]), it follows from the fact
J0(x, y) � J(x, y) that (6.11) and so (6.10) hold for the original process {Xt}. So if we take
t = c4(r↵ _ r2) for c4 > 0 large enough, then for all x, x0 2 Rd and r > 0,

Px(Xt 2 B(x0, r)) =
Z

B(x0,r)
p(t, x, z) dz  c5(t�d/↵ _ t�d/2)rd  1

2 .

This implies Px(⌧B(x0,r) > t)  1
2 . Using the strong Markov property of X, we have for all

x, x0 2 Rd, Px(⌧B(x0,r) > kt)  2�k and so Ex⌧B(x0,r)  c6t = c4c6(r↵ _ r2). Thus E� fails, and
so HK(�) does not hold either.

7 Appendix

7.1 The Lévy system formula

The following formula is used many times in this paper. See, for example [CK2, Appendix A]
for the proof.

Lemma 7.1. Let f be a non-negative measurable function on R+⇥M ⇥M that vanishes along
the diagonal. Then for every t � 0, x 2 M0 and stopping time T (with respect to the filtration
of {Xt}),

Ex

2
4X

sT

f(s, Xs�, Xs)

3
5 = Ex

Z T

0

Z
M

f(s, Xs, y) J(Xs, dy) ds

�
.

7.2 Meyer’s decomposition

We use the following construction of Meyer [Me] for jump processes. Assume that J(x, y) =
J 0(x, y) + J 00(x, y) for any x, y 2 M , and that there exists a constant C > 0 such that

J (x) =
Z

J 00(x, y) µ(dy)  C for all x 2 M.

Note that, by Lemma 2.1 the assumption above holds when VD, (1.13) and J�, are satisfied.
Let {Yt} be a process corresponding to the jumping kernel J 0(x, y). Then we can construct a
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process {Xt} corresponding to the jumping kernel J(x, y) by the following procedure. Let ⇠i,
i � 1, be i.i.d. exponential random variables of parameter 1 independent of {Yt}. Set

Ht =
Z t

0
J (Ys) ds, T1 = inf

�
t � 0 : Ht � ⇠1

 
and Q(x, y) =

J 00(x, y)
J (x)

.

We remark that {Yt} is a.s. continuous at T1. We let Xt = Yt for 0  t < T1, and then define
XT1 with law Q(XT1�, y) µ(dy) = Q(YT1 , y) µ(dy). The construction now proceeds in the same
way from the new space-time starting point (T1, XT1). Since J (x) is bounded, there can be a.s.
only finitely many extra jumps added in any bounded time interval. In [Me] it is proved that
the resulting process corresponds to the jumping kernel J(x, y).

In the following, we assume that both {Xt} and {Yt} have transition densities. Denote by
pX(t, x, y) and pY (t, x, y) the transition density of {Xt} and {Yt}, respectively. The relation
below between pX(t, x, y) and pY (t, x, y) has been shown in [BGK1, Lemma 3.1 and (3.5)] and
[BBCK, Lemma 3.6].

Lemma 7.2. For almost all x, y 2 M , we have

(1)

pX(t, x, y)  pY (t, x, y) + Ex
Z t

0
ds

Z
J 00(Ys, z) pX(t� s, z, y) µ(dz).

(2) Let A 2 �(Yt, 0 < t < 1). Then for almost all x 2 M ,

Px(A)  et kJ k1Px(A \ {Xs = Ys for all 0  s  t}). (7.1)

In particular,
pY (t, x, y)  pX(t, x, y)et kJ k1 .

Note that, by (7.1), if the process {Xt} has transition density functions, so does {Yt}.

7.3 Some results related to FK(�).

The following is a general equivalence of FK(�) for regular Dirichlet forms.

Proposition 7.3. Assume that VD and (1.13) hold. Then the following are equivalent.

(1) FK(�).

(2) Nash(�)B; namely, there exist constants C1, ⌫ > 0 such that for each x 2 M and r > 0,

V (x, r)⌫

�(r)
kuk2+2⌫

2  C1E(u, u)kuk2⌫
1 , u 2 FB(x,r).

(3) There exist constants C1, ⌫ > 0 such that for any ball B = B(x, r), the Dirichlet heat
kernel pB(t, ·, ·) exists and satisfies that

ess sup y,z2BpB(t, y, z)  C1

V (x, r)

⇣�(r)
t

⌘1/⌫
, t > 0.
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Proof. (1) =) (2) =) (3) can be proved similarly to [GH, Lemmas 5.4 and 5.5] by choosing
a = CV (x, r)⌫/�(r) in the paper.

(3) =) (1) can be proved similarly to the approach of [GH, p. 553]. Note that [GH] discusses
the case �(r) = r�, but the generalization to � is easy by using (1.13). ⇤

Under VD and RVD, we have further statements for FK(�).

Proposition 7.4. Assume that VD, RVD and (1.13) hold. Consider the following inequalities:

(1) FK(�).

(2) There exist constants c1, ⌫ > 0 such that for each x 2 M and r > 0,

kuk2+2⌫
2  c1

V (x, r)⌫
kuk2⌫

1

⇣
kuk22 + �(r)E(u, u)

⌘
, u 2 FB(x,r).

(3) Nash(�)loc; namely, there exists a constant c2 > 0 such that for each s > 0,

kuk22  c2

⇣ kuk21
infz2supp u V (z, s)

+ �(s)E(u, u)
⌘
, u 2 F \ L1(M ;µ).

We have (1) () (2) (= (3).

Proof. (1) () Nash(�)B is in Proposition 7.3. (2) () Nash(�)B is given in [BCS, Propo-
sition 3.4.1] (they are proved for the case �(t) = t2 but the modifications are easy), while
(3) =) (2) is given in [BCS, Proposition 3.1.4]. We note that in all the proofs above RVD
is used only in (2) =) Nash(�)B, and (2) (= Nash(�)B holds trivially. We thus obtain the
desired results. ⇤

We now define the weak Poincaré inequality which will be used in the forthcoming paper
[CKW].

Definition 7.5. We say that the weak Poincaré inequality (PI(�)) holds if there exist constants
C > 0 and  � 1 such that for any ball Br = B(x, r) with x 2 M and for any f 2 Fb,Z

Br

(f � fBr
)2 dµ  C�(r)

Z
Br⇥Br

(f(y)� f(x))2 J(dx, dy),

where fBr
= 1

µ(Br)

R
Br

f dµ is the average value of f on Br.

Proposition 7.6. Assume that VD and (1.13) hold. Then either PI(�) or UHKD(�) implies
Nash(�)loc. Consequently, if VD, RVD and (1.13) are satisfied, then either PI(�) or UHKD(�)
implies FK(�).

Proof. (i) When �(t) = t2, this fact that PI(�) =) Nash(�)loc is well-known; see for example
[Sa, Theorem 2.1]. Generalization to this setting is a line by line modification. Then the second
assertion follows from Proposition 7.4.

(ii) That UHKD(�) implies Nash(�)loc can be proved similarly to [Ki, Corollary 2.4]. (We
note that in [Ki, Corollary 2.4] it is proved for the case �(t) = t�, but the modifications are
easy.) One also can prove this similarly to the approach of [GH, p. 551–552]. Note that [GH]
discusses the case �(r) = r�, but the generalization to � is also easy. ⇤
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Proposition 7.7. Under VD and (1.13), FK(�) implies that the semigroup {Pt} is locally
ultracontractive, which in turn yields that

(1) there exists a properly exceptional set N ⇢ M such that, for any open subset D ⇢ M , the
semigroup {PD

t } possesses the heat kernel pD(t, x, y) with domain D \ N ⇥D \ N .

(2) Let '(x, y) : M0 ⇥M0 ! [0,1] be a upper semi-continuous function such that for some
open set D ⇢ M and for some t > 0,

pD(t, x, y)  '(x, y)

for almost all x, y 2 D. Then the inequality above holds for all x, y 2 D \ N .

Proof. The statement of Proposition 7.3 tells us that, under VD, (1.13) and FK(�), there exist
constants C1, ⌫ > 0 such that for any ball B = B(x, r) with x 2 M and r > 0, and any t > 0,

kPB
t kL1(B;µ)!L1(B;µ) 

C⌫

V (x, r)

✓
�(r)

t

◆1/⌫

.

Therefore, the semigroup {Pt} is locally ultracontractive. The other assertions follow from
[BBCK, Theorem 6.1] and [GT, Theorem 2.12].

7.4 Some results related to the (Dirichlet) heat kernel

Recall that for any ⇢ > 0, (E(⇢),F) is the ⇢-truncated Dirichlet form, which is obtained by
⇢-truncation for the jump density of the original Dirichlet form (E ,F), i.e.

E(⇢)(f, g) =
Z

(f(x)� f(y))(g(x)� g(y))1{d(x,y)⇢} J(dx, dy).

As mentioned in Section 2, if VD, (1.13) and J�, hold, then (E(⇢),F) is a regular Dirichlet
form on L2(M ;µ). Let {X(⇢)

t } be the process associated with (E(⇢),F). For any non-negative
open set D ⇢ M , as before we denote by {PD

t } and {Q(⇢),D
t } the semigroups of (E ,FD) and

(E(⇢),FD), respectively. (We write {Q(⇢),M
t } as {Q(⇢)

t } for simplicity.) Most of results in this
subsection have been proved in [GHL2]. To be self-contained, we present new proofs by making
full use of the probabilistic ideas.

The following lemma was proved in [GHL2, Proposition 4.6].

Lemma 7.8. Suppose that VD, (1.13) and J�, hold. Let D be the open subset of M . Then
there exists a constant c > 0 such that for any t > 0, almost all x 2 D and any non-negative
f 2 L2(D;µ) \ L1(D;µ),

|PD
t f(x)�Q(⇢),D

t f(x)|  ckfk1
t

�(⇢)
.

Proof. Note that PD
t f(x) = Ex(f(Xt)1{⌧D>t}) and Q(⇢),D

t f(x) = Ex(f(X(⇢)
t )1{⌧ (⇢)

D >t}). Let

T⇢ = inf
�
t > 0 : d(Xt, Xt�) > ⇢

 
.
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It is clear that Xt = X(⇢)
t for all t < T⇢. Thus by [BGK1, Lemma 3.1(a)],

|PD
t f(x)�Q(⇢),D

t f(x)| 
��Ex(f(Xt)1{T⇢t<⌧D})

��+ ��Ex(f(X(⇢)
t )1{T⇢t<⌧

(⇢)
D })

��
 2kfk1 Px(T⇢  t)

 2kfk1

 
1� exp

 
�t ess sup z2M

Z
B(z,⇢)c

J(z, y) µ(dy)

!!

 2kfk1t ess sup z2M

Z
B(z,⇢)c

J(z, y) µ(dy),

where the inequality 1 � e�r  r for all r > 0 was used in the last inequality. The desired
conclusion now follows from Lemma 2.1. ⇤

We need the following comparison of heat kernels in di↵erent domains.

Lemma 7.9. Let V , U and D be open subsets of M such that U⇢ := {z 2 M : d(z, U) < ⇢} is
precompact, V ⇢ U and U⇢ ⇢ D. Then for all t, s > 0,

ess sup x,y2V q(⇢),D(t + s, x, y) ess sup x,y2Uq(⇢),U (t, x, y)

+ ess sup x2V Px(⌧ (⇢)
U  t) ess sup x,y2U⇢

q(⇢),D(s, x, y).
(7.2)

Proof. For simplicity, in the proof {X(⇢)
t } denotes the subprocess of {X(⇢)

t } on exiting D. For
any fixed x, y 2 V , one can choose r > 0 small enough such that B(x, r) ⇢ V and B(y, r) ⇢ V .
Let 0  f, g 2 L1(D;µ) be such that supp f ⇢ B(x, r) and supp g ⇢ B(y, r). Then we have

E
h
f(X(⇢)

0 )g(X(⇢)
t+s)

i

= E
h
f(X(⇢)

0 )g(X(⇢)
t+s) : ⌧ (⇢)

U > t
i

+ E
h
f(X(⇢)

0 )g(X(⇢)
t+s) : ⌧ (⇢)

U  t
i

= E
h
f(X(⇢)

0 )1{⌧ (⇢)
U >t}E

X
(⇢)
t g(X(⇢)

s )
i

+ E
"
f(X(⇢)

0 )1{⌧ (⇢)
U t}E

X
(⇢)

⌧
(⇢)
U g(X(⇢)

t+s�⌧
(⇢)
U

)

#

= E
h
f(X(⇢)

0 )1{⌧ (⇢)
U >t}Qsg(X(⇢)

t )
i

+ E
"
f(X(⇢)

0 )1{⌧ (⇢)
U t}E

X
(⇢)

⌧
(⇢)
U g(X(⇢)

t+s�⌧
(⇢)
U

)

#

= E
h
f(X(⇢)

0 )Q(⇢),U
t (Qsg)(X(⇢)

0 )
i

+ E
"
f(X(⇢)

0 )1{⌧ (⇢)
U t}E

X
(⇢)

⌧
(⇢)
U g(X(⇢)

t+s�⌧
(⇢)
U

)

#

 kfkL1(D;µ)kQsgkL1(D;µ) ess sup x0,y02Uq(⇢),U (t, x0, y0)

+ kfkL1(D;µ) ess sup x02V Px0(⌧ (⇢)
U  t)kgkL1(D;µ) ess sup x0,y02U⇢,st0t+sq

(⇢),D(t0, x0, y0)

 kfkL1(D;µ)kgkL1(D;µ) ess sup x0,y02Uq(⇢),U (t, x0, y0)

+ kfkL1(D;µ) ess sup x02V Px0(⌧ (⇢)
U  t)kgkL1(D;µ) ess sup x0,y02U⇢,st0t+sq

(⇢),D(t0, x0, y0),

where we have used the strong Markov property and the fact that X(⇢)

⌧
(⇢)
U

2 U (⇢) in the first

inequality.
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Furthermore, by the Cauchy-Schwarz inequality,

q(⇢),D(t, x0, y0) =
Z

q(⇢),D(t/2, x0, z)q(⇢),D(t/2, z, y0) µ(dz)


sZ �

q(⇢),D(t/2, x0, z)
�2

µ(dz)

sZ �
q(⇢),D(t/2, y0, z)

�2
µ(dz)

=
q

q(⇢),D(t, x0, x0)
q

q(⇢),D(t, y0, y0),

and so
ess sup x0,y02U⇢q(⇢),D(t, x0, y0) = ess sup x02U⇢q(⇢),D(t, x0, x0).

Therefore,

ess sup x02U⇢q(⇢),D(t, x0, x0) = sup
kfkL1(U⇢;µ)1

hQ(⇢),D
t f, fi = sup

kfkL1(U⇢;µ)1
hQ(⇢),D

t/2 f, Q(⇢),D
t/2 fi,

which implies that the function s 7! ess sup x0,y02U⇢q(⇢),D(s, x0, y0) is decreasing, i.e.

ess sup x0,y02U⇢,st0t+sq
(⇢),D(t0, x0, y0) = ess sup x0,y02U⇢q(⇢),D(s, x0, y0).

Hence,

E
h
f(X(⇢)

0 )g(X(⇢)
t+s)

i
kfkL1(D;µ)kgkL1(D;µ)

 ess sup x0,y02Uq(⇢),U (t, x0, y0)

+ ess sup x02V Px0(⌧ (⇢)
U  t)ess sup x0,y02U⇢q(⇢),D(s, x0, y0).

Taking the esssup with respect to f, g and letting r ! 0, we can get

q(⇢),D(t + s, x, y) ess sup x0,y02Uq(⇢),U (t, x0, y0)

+ ess sup x2V Px(⌧ (⇢)
U  t) ess sup x0,y02U⇢

q(⇢),D(s, x0, y0)

proving the desired assertion. ⇤

The following lemma gives us the way to get heat kernel estimates in term of the exit time
and the on-diagonal heat kernel estimates, e.g. see [GHL1, Theorem 5.1 and (5.13)].

Lemma 7.10. Let U and V be open subsets of M such that U \ V = ;. For any t, s > 0 and
almost all x 2 U and y 2 V ,

q(⇢)(t + s, x, y)  Px(⌧ (⇢)
U  t) ess sup st0t+skq(⇢)(t0, ·, y)kL1(U⇢;µ)

+ Py(⌧ (⇢)
V  s) ess sup tt0s+tkq(⇢)(t0, ·, x)kL1(V⇢;µ).

Proof. For any fixed x 2 U and y 2 V , choose 0 < r < 1
2d(x, y), and let f = 1B(x,r) and

g = 1B(y,r). Then by the time reversal property of the symmetric process {X(⇢)
t } and the strong

Markov property,

E
h
f(X(⇢)

0 )g(X(⇢)
t+s)

i
= E

h
f(X(⇢)

0 )g(X(⇢)
t+s); ⌧

(⇢)
U < t

i
+ E

h
f(X(⇢)

0 )g(X(⇢)
t+s); ⌧

(⇢)
U � t

i
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= E
h
f(X(⇢)

0 )g(X(⇢)
t+s); ⌧

(⇢)
U < t

i
+ E

h
g(X(⇢)

0 )f(X(⇢)
t+s); ⌧

(⇢)
V < s

i

 E
⇥
f(X(⇢)

0 )1{⌧ (⇢)
U t}E

X
(⇢)
⌧U g(X(⇢)

t+s�⌧
(⇢)
U

)
⇤

+ E

g(X(⇢)

0 )1{⌧ (⇢)
V s}E

X
(⇢)
⌧V f(X(⇢)

t+s�⌧
(⇢)
V

)
�

 E
h
f(X(⇢)

0 )1{⌧ (⇢)
U t}

⇤
ess sup z2U⇢,st0t+sEzg

⇥
X(⇢)

t0

i

+ E
h
g(X(⇢)

0 )1{⌧ (⇢)
V s}

i
ess sup z2V⇢,tt0t+sEzf

⇥
X(⇢)

t0
⇤
.

Dividing both sides with µ(B(x, r))µ(B(y, r)) and letting r ! 0, we can obtain the desired
estimate. ⇤

The following result was proved in [GHL2, Theorem 3.1].

Lemma 7.11. Assume that for any ball B with radius r > 0 and any t > 0,

Pz(⌧ (⇢)
B  t)   (r, t) for almost all z 2 1

4
B,

where  (r, ·) is a non-decreasing function for all r > 0. Then for any ball B(x, r), t > 0 and any
integer k � 1,

Q(⇢)
t 1B(x,k(r+⇢))c(z)   (r, t)k for almost all z 2 B(x, r/4). (7.3)

Consequently, for any ball B(x,R) with R > ⇢, t > 0 and any integer k � 1,

Q(⇢)
t 1B(x,kR)c(z)   (R� ⇢, t)k�1 for almost all z 2 B(x,R).

Proof. We prove (7.3) by induction in k. Indeed, for k = 1,

Q(⇢)
t 1B(x,r+⇢)c(z)  Pz(⌧ (⇢)

B(x,r)  t)   (r, t) for almost all z 2 B(x, r/4).

For the inductive step from k to k + 1, we use the strong Markov property and get that for
almost all z 2 B(x, r/4),

Q(⇢)
t 1B(x,(k+1)(r+⇢))c(z) = Ez

2
41{⌧ (⇢)

B(x,r)<t}P
X

(⇢)

⌧
(⇢)
B(x,r)

⇣
X(⇢)

t�⌧
(⇢)
B(x,r)

/2 B(x, (k + 1)(r + ⇢))
⌘35

 Pz(⌧ (⇢)
B(x,r) < t) ess sup y2B(x,r+⇢),stQ

(⇢)
s 1B(y,k(r+⇢))c(y)

  (r, t)k+1.

Here, in the first inequality above we have used the facts that X(⇢)

⌧
(⇢)
B(x,r)

2 B(x, r + ⇢), and for

z /2 B(x, (k + 1)(r + ⇢)) and y 2 B(x, r + ⇢), it holds d(z, y) � d(x, z)� d(y, x) � k(r + ⇢). The
last inequality above follows from the assumption that  (r, ·) is a non-decreasing function for
all r > 0. This proves (7.3).

Finally, let r = R� ⇢ > 0. Then by (7.3), for any y 2 B(x,R) and k � 1,

Q(⇢)
t 1B(x,(k+1)R)c(z)  Q(⇢)

t 1B(y,kR)c(z)  �(R� ⇢, t)k for almost all z 2 B(y, r/4).

Covering B(x,R) by a countable family of balls like B(y, r/4) with y 2 B(x,R) and renaming
k to k � 1, we prove the second assertion. ⇤
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7.5 SCSJ(�) + J�, =) (E ,F) is conservative

We will prove the following statement in this subsection of the Appendix. Although this theorem
is not used in the main body of the paper, we include it here since it indicates that FK(�) is
not required to deduce the conservativeness. See the paragraph after the statement of Theorem
1.15 for related discussions.

Theorem 7.12. Assume that VD and (1.13) hold. Then,

SCSJ(�) + J�, =) (E ,F) is conservative.

Under VD, (1.13) and J�,, in view of Lemma 2.1 and Meyer’s construction of adding and
removing jumps in Subsection 7.2, (E ,F) is conservative if and only if so is (E(⇢),F) for some
(and hence for any) ⇢ > 0. Therefore, to prove the conservativeness of (E ,F), it su�ces to
establish it for (E(⇢),F) for some ⇢ > 0. Our proof is based on Davies’ method [Da], similar to
what is done in [AB, Section 6] for di↵usion processes.

We first give some notations. Fix x0 2 M and r > 0, let Br = B(x0, r). Suppose SCSJ(�)
holds. Let 'n be the associated cut-o↵ function for Bn⇢ ⇢ B(n+1)⇢ in SCSJ(�), and {an;n � �1}
an increasing sequence with a�1 = a0 � 0. Set

e' = a0 +
1X

n=0

(an+1 � an)(1� 'n). (7.4)

Note that

e' = a0 +
n�1X
k=0

(ak+1 � ak)(1� 'k)  an on Bn⇢, (7.5)

and for 0  j < n,

'̃ � a0 +
j�1X
k=0

(ak+1 � ak)(1� 'k) = aj on M \Bj⇢. (7.6)

We have the following statement.

Lemma 7.13. Assume that VD, (1.13), J�, and CSJ(�) hold. Then for any f 2 Fb,
Z

M
f2 d�(⇢)(e', e')  A0

✓
1
8

Z
M
'̃2 d�(⇢)(f, f) +

C0

�(⇢)

Z
M
'̃2f2 dµ

◆
, (7.7)

where

A0 := sup
n�0

✓
an+1 � an

an�1

◆2

. (7.8)

Proof. By considering f'n in place of f and then taking n ! 1 if needed, we may assume
without loss of generality that f 2 Fb has compact support. Thus in view of (7.5), the right
hand side of (7.7) is finite. Let Un = B(n+1)⇢ \Bn⇢ and U⇤

n = B(n+2)⇢ \B(n�1)⇢. Note that

�(⇢)(1� 'n, 1� 'm) = �(⇢)('n,'m) = 0

68



for any m � n + 3, and �(⇢)(1 � 'n, 1 � 'n) = �(⇢)('n,'n) = 0 outside U⇤
n. Then using the

Cauchy-Schwarz inequality, CSJ(�) and Proposition 2.4(2) (with " = 1
48 in CSAJ(⇢)

+ ), we have

Z
M

f2 d�(⇢)(e', e')  2
1X

n=0

X
nm

(an+1 � an)(am+1 � am)
Z

M
f2 d�(⇢)('n,'m)

= 2
1X

n=0

X
nmn+2

(an+1 � an)(am+1 � am)
Z

M
f2 d�(⇢)('n,'m)

=
1X

n=0

X
nmn+2

(an+1 � an)2
Z

M
f2 d�(⇢)('n,'n)

+
1X

n=0

X
nmn+2

(am+1 � am)2
Z

M
f2 d�(⇢)('m,'m)

 6
1X

n=0

(an+1 � an)2
Z

M
f2 d�(⇢)('n,'n)

= 6
1X

n=0

(an+1 � an)2
Z

U⇤n

f2 d�(⇢)('n,'n)


1X

n=0

(an+1 � an)2
 

1
8

Z
Un

d�(⇢)(f, f) +
c1

�(⇢)

Z
U⇤n

f2 dµ

!


1X

n=0

✓
an+1 � an

an�1

◆2
 

1
8

Z
Un

'̃2 d�(⇢)(f, f) +
c1

�(⇢)

Z
U⇤n

'̃2f2 dµ

!
,

where in the last inequality we have used the fact that an�1  '̃  an+2 on U⇤
n from (7.5) and

(7.6). The proof is complete. ⇤

We also need the following lemma.

Lemma 7.14. Assume that VD, (1.13), J�, and SCSJ(�) hold. Let '̃ and A0 be as in (7.4)
and (7.8), respectively. Suppose that A0  1. Let f have compact support, and set u(t) = Q(⇢)

t f .
Then, we have Z t

0
ds

Z
M
'̃2 d�(⇢)(u(s), u(s))  2kf '̃k22 exp

✓
4C0t

�(⇢)

◆
. (7.9)

Proof. Let (an)n��1 and 'n as above. For any N � 1, set

'̃0,N = a0 +
NX

n=0

(an+1 � an)(1� 'n)

and
hN (t) = ku(t)'̃0,Nk22.

We write u(t, x) = Q(⇢)
t f(x). Since u(t) and e'2

0,Nu(t) 2 F ,

h0N (t) =� 2E(⇢)(u(t), '̃2
0,Nu(t))

69



=� 2
Z

M⇥M
(u(t, x)� u(t, y))('̃2

0,N (x)u(t, x)� '̃2
0,N (y)u(t, y)) J (⇢)(dx, dy)

=� 2
Z

M⇥M
(u(t, x)� u(t, y))2'̃2

0,N (x) J (⇢)(dx, dy)

� 2
Z

M⇥M
('̃2

0,N (x)� '̃2
0,N (y))u(t, y)(u(t, x)� u(t, y)) J (⇢)(dx, dy)

� 2
Z

M⇥M
(u(t, x)� u(t, y))2'̃2

0,N (x) J (⇢)(dx, dy)

+
1
4

Z
M⇥M

('̃0,N (x) + '̃0,N (y))2(u(t, x)� u(t, y))2 J (⇢)(dx, dy)

+ 4
Z

M⇥M
u(t, y)2('̃0,N (x)� '̃0,N (y))2 J (⇢)(dx, dy)

� 2
Z

M⇥M
(u(t, x)� u(t, y))2'̃2

0,N (x) J (⇢)(dx, dy)

+
1
2

Z
M⇥M

('̃2
0,N (x) + '̃2

0,N (y))(u(t, x)� u(t, y))2 J (⇢)(dx, dy)

+ 4
Z

M⇥M
u(t, y)2('̃0,N (x)� '̃0,N (y))2 J (⇢)(dx, dy)

�
Z

M⇥M
(u(t, x)� u(t, y))2'̃2

0,N (x) J (⇢)(dx, dy)

+ 4
Z

M⇥M
u(t, x)2('0,N (x)� '0,N (y))2 J (⇢)(dx, dy)

=�
Z

M⇥M
'̃2

0,N d�(⇢)(u(t), u(t)) + 4
Z

M⇥M
u(t) d�(⇢)('0,N ,'0,N ),

where in the first inequality we used the fact that 2ab  a2

4 + 4b2 for all a, b 2 R, and in the last
inequality

'0,N :=
NX

n=0

(an+1 � an)'n = �'̃0,N + aN+1.

So by (the proof of) Lemma 7.13 and the assumption A0  1,

h0N (t)  �1
2

Z
M
'̃2

0,N d�(⇢)(u(t), u(t)) +
4C0

�(⇢)
hN (t). (7.10)

In particular,

h0N  4C0

�(⇢)
hN

and hence
hN (t)  hN (0) exp

✓
4C0t

�(⇢)

◆
= kf '̃0,Nk22 exp

✓
4C0t

�(⇢)

◆
.

Using the inequality above and integrating (7.10), we obtain

hN (t)� hN (0) +
1
2

Z t

0
ds

Z
M
'̃2

0,N d�(⇢)(u(s), u(s))  kf '̃0,Nk22(e4C0t/�(⇢) � 1).

Since hN (0) = kf '̃0,Nk22, letting N !1 gives us the desired assertion. ⇤
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Proof of Theorem 7.12. We mainly follow the argument of [Da, Theorem 7] and make
use of Lemma 7.14 above. Let f � 0 be a bounded function with compact support and let
u(t) = Q(⇢)

t f . As mentioned in the remark below Theorem 7.12, it is su�cient to verify that
Q(⇢)

t 1 = 1 µ-a.e for every t > 0. Since
R
M Q(⇢)

t f dµ =
R
M f Q(⇢)

t 1 dµ, it reduces to show thatZ
M

f dµ 
Z

M
u(t) dµ (7.11)

for some t > 0.
For any n � 0, let an = sn with s > 1 such that s(s � 1)  1, and set a�1 = 1. In

particular, with A0 defined by (7.8), we have A0 = s2(1 � s)2  1. Let 'n and '̃ be defined
as in the paragraph containing (7.4). Set U⇤

n = B(n+2)⇢ \ B(n�1)⇢. Then for t 2 (0, 1], by the
Cauchy-Schwarz inequality and Lemma 7.14, for any t 2 (0, 1),

hf,'ni � hu(t),'ni = �
Z t

0

d

ds
hu(s),'ni ds

=
Z t

0
ds

Z
M
�(⇢)(u(s),'n)

=
Z t

0
ds

Z
M
'̃ · '̃�1 d�(⇢)(u(s),'n)


✓Z t

0
ds

Z
M
'̃2 d�(⇢)(u(s), u(s))

◆1/2 ✓Z t

0
ds

Z
M
'̃�2 d�(⇢)('n,'n)

◆1/2


p

2kf '̃k2e2C0t/�(⇢)(sup
U⇤n

'̃�1)

 Z
U⇤n

�(⇢)('n,'n)

!1/2

,

where in the last inequality we used again the fact that �(⇢)('n,'n) = 0 outside U⇤
n. Note that

on U⇤
n, we have from (7.5) and (7.6) that an�1  e'  an+2 and so supU⇤n

e'�1  a�1
n�1. On the

other hand, using SCSJ(�) with f 2 F \ Cc(M) such that f |B(n+2)⇢
= 1, we find that

Z
U⇤n

�(⇢)('n,'n)  c1

�(⇢)
µ(U⇤

n).

Combining all all the conclusions above, we get

hf,'ni � hu(t),'ni 
p

2 kf '̃k2 exp
✓

2C0t

�(⇢)
+

1
2

log
✓

c1

�(⇢)
µ(U⇤

n)
◆
� log an�1

◆
.

Noting that due to VD, µ(U⇤
n)  µ(B(n+2)⇢)  c2(⇢)nd2 for any n � 0, and an = sn for s > 1,

one can easily see that the right hand side of the inequality above converges to 0 when n !1.
Since Z

M
u(t) dµ = lim

n!1

Z
M

u(t)'n dµ and
Z

M
f dµ = lim

n!1

Z
M

f'n dµ,

we get (7.11) and the conservativeness of (E ,F). ⇤

Remark 7.15. By using the arguments above, one can study the stochastic completeness in
terms of SCSJ(�) for jump processes in general settings, namely to obtain some su�cient con-
dition for the stochastic completeness without VD assumption. See [AB, Theorem 1.16 and
Section 7] for related discussions about di↵usions.
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