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INTRODUCTION

LECTURE 1. The homogenization problem of diffusions in divergence
form, and the construction of the process using Dirichlet forms.

LECTURE 2. Harmonic coordinates and corrector, martingale CLT and
the ergodicity of the environment process viewed from the diffusion.

LECTURE 3. The sublinearity of the corrector via Moser iteration.

LECTURE 4. The local limit theorem and the parabolic Harnack
inequality.
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Motivation

Consider a conductor occupying a region O ⊂ Rd and suppose that the
conducting material is inhomogeneous. For example:

• composite materials (glasses, metal alloys, conductors);
• crystals, materials with impurities, materials with holes;
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Motivation

Question.
Given that the variations of the conductivity are on a very small scale,

• Can we describe the macroscopic properties of the material?
• Can we give a satisfactory approximation of the motion of a particle

living in the inhomogeneous medium?

Homogenization is the art of extracting homogeneous effective parameters
from disordered heterogeneous media.
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Lecture 1. Diffusions in divergence form
and construction of the process.

Figure: a possible realization of a random field.
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Sampling a diffusion in Random Environment

To sample a diffusion in Random Environment there are two steps:
• First Step: we sample the Random Environment ω from a probability

space (Ω,G, µ).
• Second Step: we sample the diffusion X according to a law Pω on

C([0,∞];Rd ) depending on the environment ω. The diffusion is
associated to

Lωu(x) = div(aω(x)∇u(x)).

The goal. Understanding the long-time behaviour of Xt under Pω,

εXt/ε2 −→ ? as ε→ 0.
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The Random Environment

A stationary and ergodic Random Environment is a probability space
(Ω,G, µ) equipped with a measurable group of shifts {τx}x∈Rd such that

• (group) τx+y = τx ◦ τy and τ0 = idΩ.
• (stationarity) µ ◦ τ−1

x = µ for all x ∈ Rd .
• (ergodicity) if τxA = A for all x ∈ Rd =⇒ µ(A) ∈ {0, 1}.

Given v : Ω→ R we set

vω(x) := v(τxω), x ∈ Rd , ω ∈ Ω,

to be the random field associated to v . (v τyω(x) = vω(x + y)).

Ergodic theorem: if Eµ[|v |s ] <∞, then µ-a.a.

‖vω‖s,B :=
( 1
|B|

∫
B
|vω(x)|s dx

)1/s
−→ Eµ[|v |s ]1/s , |B| ↑ +∞.
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The symmetric diffusion

Fix an ergodic and stationary random environment (Ω,G, µ) and d ≥ 2.
Consider the operator in divergence form

Lωu(x) = div(aω(x)∇u(x))

where x 7→ aω(x) is a random field associated to a : Ω→ Rd×d which is
symmetric and satisfies:
A.1 there exist λ,Λ : Ω→ [0,+∞] such that

λ(ω)|ξ|2 ≤ a(ω)ξ · ξ ≤ Λ(ω)|ξ|2, ∀ξ ∈ Rd , µ-a.s.

A.2 there exist p, q ∈ [1,+∞] such that 1/p + 1/q < 2/d and

Eµ[λ−q] < +∞, Eµ[Λp] < +∞.

A.3 x 7→ 1/λω(x) and x 7→ Λω(x) belong to L∞loc(Rd ) µ-a.s.

7/34



Notation: for r ≥ 1, B ⊂ Rd

‖f ‖r ,B :=
( 1
|B|

∫
B
|f (x)|r dx

) 1
r
.

By the Ergodic Theorem, for all x ∈ Rd

lim
R→∞

‖1/λω‖q,B(x ,R) = Eµ[λ−q]1/q <∞,

lim
R→∞

‖Λω‖p,B(x ,R) = Eµ[Λp]1/p <∞.

Remark: λω and Λω are not necessarily volume doubling and

sup
R>0

sup
x∈Rd

(
1

|BR(x)|

∫
BR (x)

λω(x) dx
)(

1
|BR(x)|

∫
BR (x)

(λω(x))−
1

p−1 dx
)p−1

is possibly infinite ⇒ Not in a Muckenhaupt class (Similar for Λω).
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Problem: x 7→ aω(x) is not smooth ⇒ Lω = div(aω∇·) is not well
defined.

Solution: we rather consider the Dirichlet form on L2(Rd , dx)

Eω(u, v) :=
∫
Rd

aω∇u · ∇v dx

with u, v ∈ Fω, being Fω the completion of C∞0 (Rd ) with respect to
Eω(·, ·) + (·, ·)L2 in L2(Rd , dx).

Fukushima [FOT94, Theorem 7.2.2] ⇒ there exist a reversible diffusion
(Xt ,Pωx ), x ∈ Rd , which is uniquely determined up to the ambiguity of a
properly exceptional set N ω ⊂ Rd , possibly dependent on ω ∈ Ω.

We use A.3 to remove the ambiguity of the exceptional set N ω.
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Quenched Invariance Principle

Theorem (Chiarini, Deuschel 2014)
Let A.1, A.2 and A.3 be satisfied and (Xt ,Pωx ), x ∈ Rd be the minimal
diffusion process associated to (Eω,Fω) on L2(Rd , dx).
Then, for µ-almost all ω, in distribution under Pω0 on C([0,∞),Rd )

εX·/ε2
d−→ D1/2W. ε→ 0,

where W is a standard d-dimensional Brownian motion and D is a
deterministic non-degenerate covariance matrix.
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Related works

The problem of quenched Invariance Principle for diffusions has a long
history:

• Papanicolau, Varadhan (1979), Kozlov (1979), bounded and smooth
coefficients.

• Osada (1983), bounded measurable coefficients.
• Fannjiang, Komorowski (1997), smooth coefficients, antisymmetric

part unbounded.
• Lejay (2001), bounded, measurable coefficients, divergence form

operator with lower order terms.
• Ba, Mathieu (2015), periodic environment, measurable coefficients,

only the first moment is needed.

Further contributions: Hairer, Landim, Olla, Pardoux, Piatnitski,
Snitzman, Zhikov ...
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Related works – the discrete counterpart

The Random Conductance Model

Put random weights on the edges of the Eu-
clidian lattice, cωxy ∈ [0,∞) according to a
stationary and ergodic law P. Look at the
continuous time Markov chain Xt with jump
rates

Pωxy =
cωxy∑

z∼x cωxz
.

What about the long time behavior of Xt?

Many contributions:

Andres, Barlow, Biskup, Deuschel, Hambly, Kumagai, Mathieu, Piatniski,
Slowik...
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The strategy
For the proof of the invariance principle we use the decomposition

Xt = martingale + corrector.

There are two steps.
1. Find a function y : Rd × Ω→ Rd which is Eω-harmonic for µ-a.a ω.

Then Mt := y(Xt , ω) is a Pω0 -martingale and one shows

εM·/ε2
d−→ D1/2W. µ-a.s.

through an application of the CLT for martingales (Helland 1982).
2. Prove the sublinearity of the corrector χ : Rd × Ω→ Rd ,
χ(x , ω) := x − y(x , ω) on balls, that is,

lim
ε→0

sup
x∈B(0,R)

ε |χ(x/ε, ω)| = 0, µ-a.s.

Then one shows εχ(X·/ε2 , ω)→ 0 in Pω0 -probability.

Conclusion: εX·/ε2 = εM·/ε2 + εχ(X·/ε2 , ω) d−→ D1/2W. µ-a.s. �
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Lecture 2. Harmonic coordinates and the
environment process.

Figure: a periodic field.
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The harmonic coordinates and the correctors

We prove that there exist “correctors” χ(x , ω) such that ∇χ(x , ω) is a
stationary field and such that y(x , ω) := x − χ(x , ω) (harmonic
coordinates)

Lωy(x , ω) = 0.

Thus Xt can be decomposed as Xt = y(Xt , ω) + χ(Xt , ω);

Mε
t := εy(Xt/ε2 , ω) is a Pω0 -martingale (Itô formula) with quadratic

variation given by

〈Mε
h,Mε

k〉t = 2ε2
∫ t/ε2

0

d∑
i ,j

aij(Xs , ω) ∂iyh(Xs , ω)∂jyk(Xs , ω)ds
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The Environment Process

The environment process corresponding to the diffusion {Xt , t ≥ 0} under
Pω0 is an Ω valued process defined by

t → ηωt := τXtω ∈ Ω, t ≥ 0.

Proposition
The measure µ is ergodic and invariant for the process ηωt .

Remark: for f ∈ L1(Ω, µ), if f (x , ω) = f (τxω),

1
t

∫ t

0
f (Xs , ω)ds = 1

t

∫ t

0
f (τXtω)ds = 1

t

∫ t

0
f (ηωt )ds → Eµ[ f ],

Pω0 -a.s. for µ-a.a. ω as t →∞.
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By the ergodic theorem for the environment process, for ε→ 0

〈Mε
i ,Mε

j 〉t
t = 2ε2

t

∫ t/ε2

0

d∑
i ,j

aij(0, ηωt ) ∂iyh(0, ηωt ) ∂jyk(0, ηωt ) ds

→ 2Eµ
[ d∑

i ,j
aij(x , ω)

(
δh,i − ∂iχ

h(x , ω)
)(
δk,j − ∂jχ

k(x , ω)
)] .= di ,j

CLT for Martingales (Helland 1982) ⇒ the finite dimensional distributions
of Mε under Pω0 converges for µ a.a. ω to those of D1/2W where W is a
Brownian motion and D = [dij ].

We are left to prove the sublinearity of the corrector χ on balls, that is,

lim
ε→0

sup
x∈B(0,R)

ε |χ(x/ε, ω)| = 0, µ-a.s.

This will imply εχ(X·/ε2 , ω)→ 0 in Pω0 -probability.
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Lecture 3. The sublinearity of the
corrector via Moser iteration.

Figure: two samples of a gaussian random field.
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Sublinearity of the corrector
Aim:

lim
ε→0

sup
x∈B(0,R)

ε |χ(x/ε, ω)| = 0, µ-a.s.

Solution: a priori estimates for solutions to PDE.
The corrector χ = (χ1, . . . , χd ) satisfies a Poisson equation

div(aω(x)∇χk(x , ω)) = div(aω(x)ek), µ-a.s.

Using “Moser iteration” we derive a maximal inequality for the correctors

sup
z∈B(0,R/2)

|χ(z , ω)| ≤
(
1 ∨ CB(0,R)

M

)κ
‖χ(·, ω)‖γ2p∗,B(0,R)

CB(0,R)
M := ‖1/λω‖B(0,R),q‖Λω‖B(0,R),p.

is a random constant, bounded for large R by the ergodic theorem.

lim
R→∞

‖1/λω‖q,B(0,R) = Eµ[λ−q]1/q, lim
R→∞

‖Λω‖p,B(0,R) = Eµ[Λp]1/p.
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Moser iteration scheme

1. Bound from above the Lr -norm of powers of a solution by the
Dirichlet form. (Sobolev inequality)

‖u‖αr . E(uα, uα), α ≥ 1.

2. Bound the Dirichlet norm of uα by a Ls -norm of uα with r > s.
(energy-like estimate for solutions to PDEs.)

E(uα, uα) . ‖u‖αs .

Introduce αk := (r/s)k ≥ 1 then αk r = αk+1s and

‖u‖αk r ≤ C1/αk‖u‖αks ⇒ ‖u‖αk+1s ≤ C1/αk‖u‖αks

Now iterate to get

‖u‖∞ = lim sup
k→∞

‖u‖αk+1s ≤ C
∑∞

j=0 1/αj‖u‖s .
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Our setting

Sobolev inequality: let η ∈ C∞0 (B) and α ≥ 1, then

‖uαη‖2ρ,B . ‖1/λω‖q,B|B|2/d
[
Eωη (uα, uα)
|B| + boundary terms

]
,

where ρ := 2d
d−2+d/q and Eωη (u, u) =

∫
aω∇u · ∇u η2dx .

A priori estimate: in the PDE take as test function φ = ηu2α−1, then

Eωη (uα, uα)
|B| . ‖Λω‖p,B‖∇η‖2∞‖uα‖22p/(p−1),B

For Moser iteration to work we need

ρ > 2p/(p − 1)⇐⇒ 1
p + 1

q <
2
d .
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Figure: p, q condition.
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Lecture 4. The local limit theorem and
the parabolic Harnack inequality.

Figure: the random conductance model.
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Quenched Local CLT

We look again at the diffusion (Xt ,Pωx ), x ∈ Rd , “formally” associated to

Lωu(x) = div(aω(x)∇u(x)).

(Again we make sense of (Xt ,Pωx ), x ∈ Rd with Dirichlet forms theory).

We introduce
• the transition densities pωt (·, ·) of (Xt ,Pωx ) with respect to the

Lebesgue measure dx
• and the gaussian kernel with positive definite covariance matrix Σ

kΣ
t (x) := 1√

(2πt)d detΣ
exp

(
−x · Σx

2t

)
.
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Recall the assumptions:
A.1 there exist λ,Λ : Ω→ [0,+∞] such that

λ(ω)|ξ|2 ≤ a(ω)ξ · ξ ≤ Λ(ω)|ξ|2, ∀ξ ∈ Rd , µ-a.s.

A.2 there exist p, q ∈ [1,+∞] such that 1/p + 1/q < 2/d and

Eµ[λ−q] < +∞, Eµ[Λp] < +∞.

And consider further the following:
A.4 for µ-a.a. ω, for a.a z ∈ Rd , all balls B ⊂ Rd and all compacts

I ⊂ (0,+∞)
lim
ε→0

Pωz
[
εXt/ε2 ∈ B

]
=
∫

B
kΣ

t (x) dx

uniformly in t ∈ I.
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Theorem (Chiarini, Deuschel 2015)
Assume A.1, A.2 and A.4. Let R > 0 and I ⊂ (0,∞) be compact. Then
for µ-almost all ω ∈ Ω we have that for almost all z ∈ Rd

lim
ε→0

sup
x∈B(z,R)

sup
t∈I

∣∣∣ε−dpωt/ε2(z , x/ε)− kΣ
t (x)

∣∣∣ = 0. (1)

If we further assume that λω(·)−1,Λω(·) ∈ L∞loc(Rd ) for µ-almost all
ω ∈ Ω, then (1) is satisfied for all z ∈ Rd .

Related works:
• Andres, Deuschel, Slowik (2015), quenched local CLT on Zd with

degenerate conductances. They show in particular that the condition
1/p + 1/q < 2/d is sharp.

• Barlow, Hambly (2009), quenched local CLT on Zd based on Harnack
inequality.

• Croydon, Hambly (2008), quenched local CLT on graphs based on
resistance estimates.
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The key estimate

The key tool is a parabolic Harnack inequality

sup
(s,z)∈Q−

u(s, z) ≤ CB(x ,R)
PH inf

(s,z)∈Q+
u(s, z)

where u is positive and caloric (i.e. ∂tu = Lωu) in

Q := (t, t + R2)× B(x ,R).

The Harnack constant CB(x ,R)
PH depends increasingly on

‖1/λω‖q,B(x ,R) and ‖Λω‖p,B(x ,R).

The ergodic theorem grants good control of CB(x/ε,R/ε)
PH as ε→ 0.

27/34



We can control oscillations

pωt (z , x) is caloric in (0,+∞)× Rd for a.a. z ∈ Rd .

Parabolic Harnack Inequality

⇓

We find εω0 (x ,R) > 0 such that for
√
t/2 > R and all ε < εω0 (x ,R)

sup
y∈B(x ,R)

ε−d
∣∣∣pωt/ε2(z , x/ε)− pωt/ε2(z , y/ε)

∣∣∣ ≤ c
( R√

t

)θ
t−d/2

where c, θ depend only on lim supε→0 C
B(x/ε,R/ε)
PH <∞.
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How to get Harnack inequality

sup
(s,z)∈Q−

u(s, z) ≤ CB(x ,R)
PH inf

(s,z)∈Q+
u(s, z)

• Control the L∞-norm of a caloric function u on a cylinder by the
Lα-norm for α > 0 on a slightly larger cylinder (Moser iteration).

sup u . ‖u‖α

• Control the L∞-norm of u−1 on a cylinder by the Lα-norm for α > 0
on a slightly larger cylinder (Moser iteration).

‖u−1‖−1
α . inf u

• Link the Lα-norm of u and the Lα-norm of u−1 (Bombieri-Giusti).
Remark: in the uniformly elliptic case the link is provided by
John-Niremberg inequality for BMO functions.
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Bombieri-Giusti’s lemma

Fix a measure space (U,B,m) and sets Uσ′ ⊂ Uσ with 0 < σ′ < σ ≤ 1
and U1 := U. Fix δ ∈ (0, 1) and 0 < α0 ≤ ∞. Let f : U → R measurable.
Assume that:

• (Mean Value Inequality) ∃C , γ > 0 such that

‖f ‖α0,Uσ′ ≤
[
C(σ − σ′)−γm(U)−1

]1/α−1/α0 ‖f ‖α,Uσ

for all δ ≤ σ′ < σ ≤ 1 and all 0 < α ≤ min{1, α0/2}.
• (Mean Value Inequality for the Logarithm). For all λ > 0

m(log f > λ) ≤ Cm(U)λ−1.

Then,
‖f ‖α0,Uδ

≤ Am(U)1/α0

where A depends only on δ, γ, C and a lower bound on α0.
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Still an open problem!

Conjecture. It is believed that

Eµ[λ−1] <∞, Eµ[Λ] <∞

is a sufficient condition for the quenched
invariance principle to hold.
(Periodic case: Ba, Mathieu 2015)

On the other hand the condition

1
p + 1

q <
2
d

is sharp for a quenched local CLT to hold
Andres, Deuschel Slowik (2015).
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