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Boundary behavior of harmonic functions for
truncated stable processes

Kim, Panki, Seoul National University

June 26, 2007

Abstract: Recently there has been a lot of interest in studying dis-

continuous stable processes due to their importance in theory as well

as applications. Many deep results have been established. However

in a lot of applications one needs to use discontinuous Markov pro-

cesses which are not stable processes. For example, in mathematical

finance, it has been observed that even though discontinuous stable pro-

cesses provide better representations of financial data than Gaussian

processes financial data tend to become more Gaussian over a longer

time-scale. The so called tempered stable processes have this required

property: they behave like discontinuous stable processes in small scale

and behave like Brownian motion in large scale. These processes are

obtained by “tempering” stable processes, that is, by multiplying the

Levy densities of stable processes with strictly positive and completely

monotone decreasing factors. However, no matter how much we tem-

per the stable process, it still can make any size of jumps with positive

probability.

In this talk, we considered an extreme case of “tempering”: we trun-

cated the Levy densities of stable processes and obtained a class of

Levy processes called truncated stable processes. For any α ∈ (0, 2), a

truncated symmetric α-stable process is a symmetric Lévy process with

no diffusion part and with a Lévy density l(x) given by c|x|−d−α 1{|x|<1}

for some constant c. Levy density l(x) coincides with the Levy den-

sity of a symmetric stable process for |x| < 1 and is equal to zero for

|x| ≥ 1. Truncated stable processes are very natural and important in

applications where only jumps up to a certain size are allowed. Jointly

with Renming Song, in [4] we have studied the potential theory of

truncated symmetric stable processes. Among other things, we proved

that the boundary Harnack principle is valid for the positive harmonic

functions of this process in any bounded convex domain and showed

that the Martin boundary of any bounded convex domain with respect



to this process is the same as the Euclidean boundary. However, for

truncated symmetric stable processes, the boundary Harnack principle

is not valid in non-convex domains.

In this talk, we show that, for a large class of not necessarily convex

bounded open sets called bounded roughly connected ∑-fat open sets

(including bounded non-convex ∑-fat domains), the Martin boundary

with respect to any truncated symmetric stable process is still the same

as the Euclidean boundary. The main tool for establishing this is the

fact that, for any bounded roughly connected ∑-fat open set, the Green

function of a truncated symmetric α-stable process is comparable to

that of a symmetric α-stable process.

Recently, a relative Fatou type theorem has been established for

symmetric stable processes. It is known that if u and h are positive

harmonic function for a symmetric α-stable process in a bounded ∑-fat

open set D with h vanishing on Dc, then the non-tangential limit of u/h

exists almost everywhere with respect to the Martin measure of h [3]

(see also [2, 6]. The assumption that h vanishes on Dc is necessary (see

[1]). In this talk, we also show that, for truncated symmetric stable

processes a relative Fatou type theorem is true in bounded roughly

connected ∑-fat open sets.

This is a joint work with Renming Song [5].
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Lp-independence of Spectral Bounds of Non-local

Feynman-Kac Semigroups

Yoshihiro TAWARA∗†

June 26, 2007

Let M = (Ω, Px, Xt) be the symmetric α-stable process on Rd, the pure jump
process generated by L := −(1/2)(−∆)α/2 (0 < α < 2). Let F be a symmetric
function on Rd × Rd vanishing on the diagonal 4 and define an operator F by

Ff(x) = K(d, α)
∫

Rd

(
eF (x,y) − 1

)
f(y)|x − y|−(d+α)dy,

where

K(d, α) =
αΓ(d+α

2 )
21−απd/2Γ(1 − α

2 )
.

We consider a Schrödinger type operator, HF := L+F on Lp(Rd), and study the
growth of the operator norm of its semigroup pF

t := exp(−tHF ). The semigroup
pF

t is expressed as a non-local Feynman-Kac semigroup:

pF
t f(x) = Ex (exp(At(F ))f(Xt)) , At(F ) =

∑

0<s≤t

F (Xs−, Xs).

We then define the spectral bound of pF
t by

λp(F ) = − lim
t→∞

1
t

log ‖pF
t ‖p,p, 1 ≤ p ≤ ∞,

where ‖pF
t ‖p,p is the operator norm of pF

t from Lp(Rd) to Lp(Rd).

Definition. (1) A positive Radon measure µ on Rd is said to be in the Kato
class (in notation µ ∈ K), if

lim
ε→0

sup
x∈Rd

∫

|x−y|≤ε

dµy

|x − y|d−α
= 0.

(2) A measure µ ∈ K is said to be Green tight (in notation µ ∈ K∞), if

lim
R→∞

sup
x∈Rd

∫

|y|≥R

dµ(y)
|x − y|d−α

= 0.
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(3) A bounded symmetric Borel function F on Rd × Rd vanishing on the
diagonal 4 is said to be in J∞, if

∫

Rd

|F (x, y)|
|x − y|d+α

dy ∈ K∞.

The main theorem in this talk is as follows:

Theorem. If the function F ∈ J∞, then

λp(F ) = λ2(F ), 1 ≤ p ≤ ∞.

Corollary. If the function F ∈ J∞, then

lim
t→∞

1
t

log Ex(exp(At(F ))) = −λ2(F ).

We use arguments in Donsker-Varadhan’s large deviation theory. To prove
this theorem, we extend M to the Markov process M̄ on the one-point compact-
ification Rd

∞ by making the adjoined point ∞ a trap. Then M̄ has the Feller
property. In the proof of the large deviation upper bound for Markov processes
with compact state space, we need only the Feller property. We thus have the
following upper bound; let P(Rd

∞) be the set of probability measures on Rd
∞

and define a function IF on P(Rd
∞) by

IF (ν) = − inf
φ∈D++(HF )

∫

Rd

HF φ

φ
(x)dν(x),

where

D++(HF ) := {φ = RF
α g : α > κ(F ), g ∈ Cu(Rd) with g ≥ ∃ε > 0}.

Here κ(F ) is a certain constant defined by F and Cu(Rd) is the space of bounded
and uniformly continuous functions on Rd. Then

lim sup
t→∞

1
t

log sup
x∈Rd

Ex (exp(At(F ))) ≤ − inf
ν∈P(Rd

∞)
IF (ν). (1)

For the proof of (1), we can not directly use the Donsker-Varadhan large
deviation theory because the functional At(F ) is not a function of the normalized
occupation time Lt ∈ P(Rd

∞) defined for each Borel set A ∈ Rd by

Lt(A) =
1
t

∫ t

0

1A(Xs)ds.

However, D. Kim extended it to Markov processes with multiplicative functional
exp(At(F )). We here apply the upper bound. We also emphasis that the func-
tion IF is defined on the space of probability measures on Rd

∞ not on Rd. In
this sense, the adjoined point ∞ makes a contribution to the rate function IF .

We will prove that if λ2(F ) ≤ 0, then

inf
ν∈P(Rd

∞)
IF (ν) = λ2(F ),

which implies that λ∞(F ) ≥ λ2(F ) because the left hand side of (1) is equal to
−λ∞(F ). On the other hand, the inequality, λ∞(F ) ≤ λ2(F ), always holds by
the symmetry and the positivity of pF

t . As a result, we see that if λ2(F ) ≤ 0,
then λp(F ) is independent of p. We will prove that λ2(F ) ≤ 0 for F ∈ J∞. In
this way, we obtain the main theorem stated above.



STOCHASTIC FLOWS OF SDES WITH NON-LIPSCHTZIAN
COEFFICIENTS DRIVEN BY SYMMETRIC α STABLE

PROCESSES

TAKAHIRO TSUCHIYA

The construction of flows in the case of Brownian motion was investigated in the
beginning of the 80’s by lots of people. They considered the SDE,

Xt = σ(Xt)dBt, X0 = x,

and assumed that the coefficients σ are sufficiently smooth. Then we obtain that
the mapping, from the initial value to the solution at time t, x 7→ Xt(x), has
modification of homeomorphism. In the case of more general Lévy driven SDE,
the problem of construction of a stochastic flow was studied in depth by Fujiwara-
Kunita and Applebaum-Kunita etc. They considered especially the stochastic flows
of diffeomorphism when the coefficients σ are sufficiently smooth.

In this presentation, we consider the stochastic flow problem in the case of jump-
type SDE,

Yt = σ(Yt−)dZt, Y0 = y

where Z is a symmetric α stable process under non-Lipschitz conditions of the
coefficients. The case of Brownian motion is studied by Yamada and Ogura and
developed by Fang and Zhang. The reason why we select symmetric α processes
to replace Brownian motions is due to its interesting property depending on index
α. When α is equal to two it is just Brownian motion SDE, and when α is smaller
than two, it turns to be a jump type SDE. The goal is to describe how stochastic
flows are affected by the index of α.

This talk is organized as follows. In the first section, we discuss non-contact
problems of solutions where the Riesz potential operator plays an essential role.
The Riesz potential Iα is defined by

Iα(f)(x) :=
Z

Rd

f(y)
|x− y|d−α

dy =
µ

1
| · |d−α

∗ f

∂
(x),

for f ∈ C0(Rd). In the second section, we summarize the results of the pathwise
uniqueness property. Pathwise uniquness guarantees the well-definedness of the
mapping from initial data to the solution, y 7→ Yt(y). In the third section, we
show the continuity of the map with respect to initial data using following the
lemma, Here, hypergeometric functions and Bessel functions are the key to the
proof of the lemma. The fourth section is devoted to the behavior of the mapping
at infinity, lim sup|y|→1 |Y t(y)| = 1 a.s.. Finally, in the last section, combining
these properties and applying Jordan’s curve theorem, we construct stochastic flows.

Theorem 1. If ρ(u) = u(log 1
u ) 1

α , then, for every σ such that

|σ(x)− σ(y)| ≤ ρ(|x− y|) for x, y ∈ R1,

the map y 7→ Yt(y) has a homeomorphic modification for every t ≥ 0.



This is an answer to determine the possibility of constructing stochastic flows
y 7→ Yt(y) under non-Lipschitz coefficients and characterize the possibility by index
α.
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Asymptotic properties of branching symmetric Markov
processes

Yuichi Shiozawa∗

In this talk, we study the asymptotic properties of a branching symmetric Markov process
such as the extinction problem, the growth of the numbers of particles and the asymptotic
distribution of particles. In particular, we characterize them in terms of the principal eigen-
value and the ground state of the Schrödinger operator associated with underlying Markov
process, branching rate measure and branching mechanism function. We finally apply our
results to branching Brownian motions and branching symmetric α-stable processes.

Let X be a locally compact separable metric space and m a positive Radon measure on
X with full support. We denote by M = (Xt, Px, ≥) an m-symmetric Hunt process on X.
Throughout this talk, we assume that the associated semigroup ptf(x) = Ex [f(Xt)] satisfies
the following:

Assumption 0.1. (i) (Irreducibility) If a Borel set A is pt-invariant, that is, pt(χAf) =
χAptf(x) for any f ∈ L2(X; m) ∩ Bb(X) and t > 0, then m(A) = 0 or m(X \ A) = 0. Here
Bb(X) stands for the set of bounded Borel measurable functions on X.
(ii) (Strong Feller property) For any f ∈ Bb(X), ptf is a bounded and continuous function
on X.
(iii) (Ultracontractivity) For any t > 0, it holds that kptk1,1 < 1 , where k · kp,q denotes
the operator norm from Lp(X; m) to Lq(X; m).

Note that Assumption 0.1 (ii) implies the absolutely continuity of the transition probabil-
ity of M with respect to m by the m-symmetry of pt. Let Gα(x, y), α > 0, be the α-resolvent
of M. If M is transient, then we set G(x, y) := G0(x, y).

Definition 0.2. A positive smooth Radon measure on X is said to be in K1(Gα), if
for any ε > 0, there exist a compact set K ⊂ X and a positive constant δ > 0 such
that supx∈X

R
X\K Gα(x, y) µ(dy) < ε, and for all measurable sets B ⊂ K with µ(B) < δ,

supx∈X

R
B Gα(x, y) µ(dy) < ε. Further, the class K1 is defined by

K1 =

(
K1(G), M is transient
T

α>0 K1(Gα), M is recurrent.

Let M = (≠,Xt,Px) be the branching symmetric Markov process on X with motion com-
ponent M, branching rate measure µ ∈ K1 and branching mechanism function {pn(x)}1n=0

so that
P1

n=0 pn(x) = 1. Namely, if we denote by T the splitting time of a particle, then the
law of T is determined by

Px(T > t |σ(X)) = exp (−Aµ
t ) ,

∗Address: College of Science and Engineering, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu,
Shiga, 525-8577, Japan. E-mail: shio@se.ritsumei.ac.jp



where Aµ
t is the positive continuous additive functional corresponding to the measure µ ∈

K1. A particle of M starts at x ∈ X according to the law Px and then splits into n particles
with probability pn(XT−) at time T . After that, each particle moves independently according
to the law of PXT− .

Let Zt denote the total number of particles at time t and e0 := inf{t > 0 : Zt = 0}.
Here we say that M goes extinct, if Px(e0 < 1) = 1 for any x ∈ X. Denote by Q(x) :=P1

n=0 npn(x) the expected number of particles at branching site x ∈ X. We assume that
supx∈X Q(x) < 1. Since Qµ and µ denote the intensity of creations and the intensity of
killings respectively, we say that the operator L(Q−1)µ := L+(Q− 1)µ expresses the balance
between these intensities, where L denotes the L2(X)-generator of M. In fact, if we denote
by ∏1 the principal eigenvalue of −L(Q−1)µ, then we obtain the following:

Theorem 0.3. Assume that Px(≥ < 1) = 1 for all x ∈ X. Then the branching pro-
cess M goes extinct if and only if ∏1 ≥ 1. Moreover, if ∏1 < 1, then it holds that
Px (limt→1 Zt = 1 | e0 = 1) = 1 for all x ∈ X.

We are now concerned with the growth rate of Zt and the asymptotic distribution of
particles. In the sequel, we assume that ∏1 < 0. If we denote by h the corresponding ground
state, then Mt := e∏1t

R
X h(x) Zt(dx) is a Px-martingale for any x ∈ X, and thus M1 :=

limt→1Mt exists Px-a.s. Let R(x) :=
P1

n=0 n(n− 1)pn(x) and assume that supx∈X R(x) <
1. We then have

Theorem 0.4. (with Z.-Q. Chen) There exists a subspace ≠0 ⊂ ≠ of full Px-probability for
any x ∈ X such that, for any ω ∈ ≠0 and for every bounded Borel measurable function f on
X with compact support whose set of discontinuous points has zero m-measure, it holds that

e∏1tZt(f)(ω) = M1(ω)

Z

X

fh dm.

Theorem 0.4 says that the number of particles on a bounded set grows exponentially
with rate −∏1 and the ground state determines the asymptotic distribution of particles.

Example 0.5. Let 1 < α ≤ 2 and denote by M the absorbing symmetric α-stable process on
an interval (−R, R). We consider the binary branching process with motion component M.
Let us take the Dirac measure at the origin as branching rate. We then see from Theorem
0.3 that M goes extinct if and only if

0 < R ≤
Ω

(α− 1)2α−2Γ
≥α

2

¥2
æ1/(α−1)

.

Furthermore, if R >
n

(α− 1)2α−2Γ
°

α
2

¢2
o1/(α−1)

, then Theorem 0.4 implies that for any

x ∈ (−R, R), Px-a.s.

lim
t→1

e∏1tZt((−r, r))

=






C(a, R)√
−2∏1

sinh{2
p
−2∏1R}

≥
sinh2{

p
−2∏1R}− sinh2{

p
−2∏1(R− r)}

¥
M1 α = 2

µZ 1

−1
h(x) dx−O

°
(R− r)(α+2)/2

¢∂
M1 1 < α < 2.

We can further show that M1 is strictly positive Px-a.s. on the event that {e0 = 1}.



ON THE STRONG FELLER PROPERTY OF FEYNMAN-KAC
SEMIGROUP FOR CAF OF ZERO ENERGY UNDER HEAT

KERNEL ESTIMATES

Kazuhiro Kuwae (Kumamoto University)

1. Framework

Throughout this talk, we fix d, β ∈]0,1[ and t0 ∈]0,1]. Let (X, d) be a locally
compact separable metric space, m a positive Radon measure on X with full
support. We consider a one point compactification X∆ with a cemetery point ∆.
Let Bb(X) be a family of bounded Borel measurable functions. In what follows,
f denotes a function in Bb(X). Let (E ,F) be a symmetric regular Dirichlet form
on L2(X; m) and M = (≠, Xt, ≥, Px) the associated m-symmetric Hunt process.
Here ≥ := inf{t ≥ 0 | Xt = ∆} is the life time. We further assume that there
exists a properly exceptional set N and M|X\N admits a heat kernel pt(x, y),
x, y ∈ X \ N, t > 0: Ex[f(Xt)] =

R
X pt(x, y)f(y)m(dy), x ∈ X \ N , t > 0,

f ∈ Bb(X).

Condition 1.1 (Ahlfors regularity). ∃r0 ∈]0,1], ∃C > 0 s.t. C−1rd ≤
m(Br(x)) ≤ Crd for ∀x ∈ X, ∀r ∈]0, r0[.

Condition 1.2 (Heat Kernel Estimates). Let Φ, ™ be positive decreasing
functions on [0,1[ with Φ(0) = ™(0) = 1. Further assume the condition H(Φ):
sups∈[0,1[ s

dΦ(s) <1 and the condition (ΦEd,β): ∃M > 0, ∀x, y ∈ X\N , t ∈]0, t0[

M−1

td/β
™

µ
d(x, y)

t1/β

∂
≤ pt(x, y) ≤ M

td/β
Φ

µ
d(x, y)

t1/β

∂
.

Condition 1.3. For V (r) := supx∈X m(Br(x)) < 1, r > 0, it holds that ∃∞ > 0
s.t.

R1
1 V (s)s∞−1Φ(s)ds <1, where Φ is the function specified in Condition 1.2.

Theorem 1.1 (Doubly Feller Property). Under Conditions 1.1 and 1.2, the
heat kernel pt(x, y) has a continuous extension on ]0,1[×X ×X and the semi-
group (Pt)t>0 defined by Ptf(x) :=

R
X pt(x, y)f(y)m(dy) x ∈ X using this exten-

sion has a doubly Feller property (i.e. it has strong Feller and Feller properties).

2. Girsanov transformation

Definition 2.1 (Kato class measure S0
K). A positive Borel measure µ on X is

said to be in the Kato class (write µ ∈ S0
K) if lim

t→0
sup
x∈X

Z t

0

Z

X

ps(x, y)µ(dy)ds = 0.

In Lemmas 4.4 and 4.5 of [6], we show S0
K ⊂ S1 under (ΦEd,β), where S1 is the

family of smooth measures in the strict sense ([3]).

Take u ∈ Fb and let ρ := eu. Then ρ − 1 ∈ F . Let Mρ be the MAF of finite
energy appears as the martingale part in the Fukushima decomposition for ρ− 1.
Set Mt :=

R t

0
dMρ

s
ρ(Xs−) ,t < ≥ and let Lρ

t be the solution of Doleans-Dade equation:



Lt = 1 +
R t

0 Ls−dMs, t < ≥. Define ePtf(x) := Ex[L
ρ
t f(Xt)], x ∈ X \ Nρ with

some properly exceptional set Nρ appears in the above Fukushima decomposition.

Chen-Zhang proved that the semigroup ( ePt) is ρ2m-symmetric and determined
the domain of the associated Dirichlet form on L2(X; ρ2m).

Theorem 2.1. Under Conditions 1.1 and 1.2, if µhui ∈ S0
K, then ( ePt) admits a

continuous heat kernel pρ
t (x, y), t > 0, x, y ∈ X and the semigroup (P ρ

t ) defined
by P ρ

t f(x) :=
R

X pρ
t (x, y)f(y)m(dy), x ∈ X has a doubly Feller property.

3. Feynman-Kac semigroup for CAF of zero energy

Suppose that (E ,F) has no killing part. If u ∈ F ∩ Cb(X) satisfies µhui ∈ S0
K ,

then u admits the Fukushima decomposition in the strict sense: u(Xt)−u(X0) =
Mu

t + Nu
t , ∀t < ≥ Px-a.s. for all x ∈ X, where Nu is a CAF of zero energy, and a

local CAF in the strict sense ([2]). Set Qu
t f(x) := Ex[eNu

t f(Xt)], x ∈ X.

Theorem 3.1. Under Conditions 1.1 and 1.2, the semigroup (Qu
t ) admits a con-

tinuous integral kernel qu
t (x, y), t > 0, x, y ∈ X. If further the Condition 1.3 is

satisfied, then (Qu
t ) has the strong Feller property (write SFP).

Remark 3.1. The SFP of (Qu
t ) yields the same result as in [8]. The existence

of the continuous integral kernel qu
t (x, y), t > 0, x, y ∈ X is shown in [4] for

Brownian motions and in [7] for symmetric stable-like processes. The SFP of
(Qu

t ) is also proved in [8] (resp. in [9]) for Brownian motions (resp. for symmetric
Lévy processes under some additional conditions).

We have many examples: Relativistic α-stable processes, stable like processes
on d-sets, Brownian motion on smooth complete Riemannian manifolds with Ricci
curvature lower bound and with positive injectivity radius, diffusions on nested
fractals or Sierpinski Carpet and so on.
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Schramm-Löwner’s Equation Driven by Stable Processes

Zhen-Qing Chen (University of Washington)

Stochastic Löwner evolution (SLE) driven by Brownian motion, based on the classi-
cal deterministic Löwner equation, was introduced by Oded Schramm in 2000. It played
a fundamental role in recent breakthroughs by Greg Lawler, Oded Schramm, Wendelin
Werner as well as others in settling the Brownian intersection exponent problem and in
mathematically rigorous proof for the existence and conformal invariance of continuum
limit of various two-dimensional lattice models in statistical physics. However the Brow-
nian SLEs exclude physical models that exhibit branching phenomena such as branching
polymers and diffusion-limited aggregation. Studying such models call for SLE driven by
discontinuous Lévy processes, in particular, stable processes.

Stable processes is a family of discontinuous random processes indexed by a parameter
α ∈ (0, 2), which itself is a focus of recent research activities in probability theory, due to
its importance in theory and in applications. The importance of α-stable processes can be
illustrated by the central limit theorem: stable distributions together with Gaussian dis-
tributions are the only limiting distribution of normalized sums of independent, identically
distributed random variables. Stable distributions and stable processes have recently been
used quite successfully to model certain physical systems that exhibit large deviation and
high variability.

In this talk, we will present some recent results on Schramm-Löwner’s equation driven
by symmetric stable processes.

Let Wt be a right continuous real-valued function. For each initial point z ∈ C \ {0},
the Löwner differential equation

@tgt(z) =
2

gt(z)−Wt
, g0(z) = z (1)

has a unique solution up to a time 0 < Tz ≤ 1 where gt(z) = Wt. More precisely, let
Tz = sup{t : infs∈[0,t] |gs(z) −Ws| > 0}, then the initial value problem (1) has a unique
solution on [0, Tz) and if Tz <1 then lim inft→Tz |gt(z)−Wt| = 0. The subset

Kt = {z ∈ H : Tz ≤ t}

is a compact subset of the upper half plane H and is called the hull of the Löwner equation
(1). It is well-known that the map z 7→ gt(z) is a conformal map (i.e., analytic and one-
to-one) from H \ Kt onto H, with Laurent series gt(z) = z + 2t

z + O(1/z2) near 1. By
Riemann mapping theorem, the Löwner’s equation is characterized by the compact hulls
{Kt, t ≥ 0}.



When Wt = ∑Bt, where Bt is standard Brownian motion on R and ∑ > 0, equation
(1) is called Schramm-Löwner’s equation, whose hulls {Kt, t ≥ 0} are found to be related
to various two-dimensional lattice models in statistical physics.

Now let Wt be the sample path of symmetric α-stable process on R with 0 < α < 2.
To investigate the geometry of its random hulls {Kt, t ≥ 0}, we look at the inverse map
ft(z) := g−1

t (z) : C → C \ Kt of (1). We prove that for each fixed t > 0, almost surely,
z 7→ ft(z) is Hölder continuous in z = x + iy with 0 < y < 1 and so z 7→ ft(z) can be
extended continuously to @H. We then use it to show that Kt has Hausdorff dimension 1
and that {Kt, t ≥ 0} has tree-like structure almost surely.

Joint work with Steffen Rohde.
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