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Abstracts

THE QUANTUM ISING MODEL
VIA STOCHASTIC GEOMETRY

GEOFFREY GRIMMETT

We report on joint work with Jakob Björnberg, presented in [5], con-
cerning the phase transition of the quantum Ising model with transverse
field on the d-dimensional hypercubic lattice. The basic results are as
follows. There is a sharp transition at which the two-point functions
are singular. There is a bound on the associated critical exponent that
is presumably saturated in high dimensions. These results hold also
in the ground-state. The value of the ground-state critical point may
be calculated rigorously in one dimension, and the transition is then
continuous.

The arguments used are largely geometrical in nature. Geometric
methods have been very useful in the study of d-dimensional lattice
models in classical statistical mechanics. In contrast, graphical meth-
ods for quantum lattice models have received less attention. In the
case of the quantum Ising model, one may formulate corresponding
‘continuum’ Ising and random-cluster models in d + 1 dimensions (see
[3, 4, 7] and the references therein). The continuum Ising model thus
constructed may be studied via a version of the random-current repre-
sentation of [1, 2]. We call this the ‘random-parity representation’, and
we use it to prove the sharpness of the phase transition for this model
in a general number of dimensions.

The random-parity representation allows the proof of a family of
differential inequalities for the magnetization, viewed as a function of
the underlying parameters. A key step is the formulation and proof
of the so-called switching lemma. Switching lemmas have been proved
and used elsewhere: in [1, 2] for the classical Ising model, and recently
in [6, 8] for the quantum Ising model.

The following theorems for the continuum Ising model are examples
of the main results. The magnetization is written as M , with ρ the
underlying parameter, and ρc the critical point.

Theorem 0.1. Let u, v ∈ Zd where d ≥ 1, and s, t ∈ R.

(i) if 0 < ρ < ρc, the two-point correlation function hσ(u,s)σ(v,t)i of
the Ising model on Zd×R decays exponentially to 0 as |u−v|+
|s− t| → 1,



(ii) if ρ ≥ ρc, hσ(u,s)σ(v,t)i ≥ M(ρ)2 > 0.

Theorem 0.2. In the notation of Theorem 0.1, there exists c = c(d) >
0 such that

M(ρ) ≥ c(ρ− ρc)
1/2 for ρ > ρc.

It is a corollary that the quantum two-point functions decay expo-
nentially to 0 when ρ < ρc, and are bounded below by M(ρ)2 when
ρ > ρc.
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q-lattice animals: a model which interpolates percolation and lattice animals1

Takashi Hara2

In this talk, we introduce a variant of lattice animals, tentatively called q-lattice animals, which
interpolate ordinary lattice animals and percolation. Basic properties of the model, such as the
existence of critical behavior, as well as correlation inequalities which resemble van den Berg-Kesten
inequality in percolation, are derived. We also show, using lace expansion, that the model exhibits
mean-field like critical behavior (whose critical exponents are identical with those of lattice animals)
in dimensions greater than eight (if the model is sufficiently spread out). Our analysis suggests that
the upper critical dimension of the model is eight.

0. Backgrounds.
Critical behavior of certain stochastic geometric systems, such as percolation and lattice animals

are now rather well understood in high dimensions. In particular, there is a dimension, called upper
critical dimension, dc, above which these models exhibit mean-field like critical behavior.

For percolation, mean-field values for the critical exponents are ∞ = 1, ∫ = 1/2, δ = 2, β = 1, η = 0
[1, 2, 3]; and dc is supposed to (almost has been proven to) be six [4, 5]. On the other hand for lattice
animals, mean-field values of critical exponents are ∞ = 1/2, ∫ = 1/4, η = 0 [6, 7]; and dc is supposed
to be eight. (Rigorously speaking, there is still no proof of the conjecture dc ≥ 8 for lattice animals.)

Despite these two distinct critical behavior, lattice animals and percolation are intimately con-
nected. In particular, stochastic geometric objects which appear in these models (lattice animals =
connected clusters) are the same; only the weights attached are different. In this talk, we introduce
a model which interpolates lattice animals and percolation, and investigate its critical behavior.

1. Definition of the model.
We work on a d-dimensional hypercubic lattice, Zd. A bond is an unordered pair of distinct sites

{x, y} ⊂ Zd, with some restrictions. We consider the following two situations.

• Nearest neighbor model: bond is an unordered pair {x, y}, with |x− y| = 1.
• Spread-out model: bond is an unordered pair {x, y}, with 0 < |x− y| ≤ L for some L ≥ 1.

Two bonds b1, b2 are said to be connected, when they share at least one endpoint.
A lattice animal (LA) is a finite connected set of bonds. For n ≥ 1 and x1, x2, . . . , xn ∈ Zd, we

denote by A(x1, x2, . . . , xn) the set of all lattice animals containing x1, x2, . . . , xn.
The q-lattice animal model is a model of lattice animals, whose n-point function is defined as (p

and q are parameters which satisfy 0 ≤ p ≤ 1 and 1− p ≤ q ≤ 1)

Gp,q(x1, x2, . . . , xn) :=
X

A∈A(x1,x2,...,xn)

w(A) where w(A) := p|A| q|@A|. (1)

Here @A denotes the set of boundary bonds of A (i.e. bonds which touch A, but are not in A), and
|A| and |@A| denote the number of bonds in A and @A, respectively.

This model interpolates ordinary lattice animals and ordinary percolation. When q = 1, equation
(1) is nothing but the n-point function of ordinary lattice animals. When q = 1− p, equation (1) is
exactly the n-point function of ordinary percolation, because for percolation with parameter p, if a
lattice animal A contains the origin 0,

P[A is the connected cluster of 0] = p|A|(1− p)|@A|. (2)

The above weight is equal to our w(A) with q = 1− p. Our model has been introduced to investigate
what happens when 1− p < q < 1.

1Based on a joint work with Keita Tamenaga
2Faculty of Mathematics, Kyushu University, Fukuoka 810-8560, Japan. E-mail:hara@math.kyushu-u.ac.jp



2. Critical Behavior.
Let pLA

c and pperc
c be the critical points of ordinary lattice animals and ordinary percolation,

respectively. Using subadditivity arguments, it is easily seen:

Proposition 1. Fix q so that 1− pperc
c < q < 1.

(i) The n-point function of the q-lattice model is finite for p < pLA
c , and is infinite for p > pperc

c .
(ii) There is a critical point pc(q) ∈ (0, 1) such that Gp,q(x1, x2, . . . , xn) is finite for p < pc(q) but is
infinite for p > pc(q).
(iii) The above critical point pc(q) is nonincreasing in q.

Around the critical point, we expect some critical behavior. Define the susceptibility χp,q as

χp,q :=
X

x∈Zd

Gp,q(0, x) =
X

A∈A(0)

w(A) |A|. (3)

Proposition 2. Fix q so that 1− pperc
c < q < 1. As p ↑ pc(q), the susceptibility χp,q diverges, i.e.

lim
p↑pc(q)

χp,q =1. (4)

The proof is based on a correlation inequality stated in Proposition 4.

In high dimensions, we expect that the model exhibits mean-field type critical behavior. This is
the claim of the following theorem:

Theorem 3. Fix q so that 1− pperc
c < q < 1. The following two models

(i) nearest-neighbor q-lattice animals in sufficiently high dimensions,
(ii) spread-out q-lattice animals in d > 8, with sufficiently large L,

exhibit mean-field like critical behavior. More precisely, the susceptibility χp,q and the correlation
length ξp,q diverge as p ↑ pc(q)

χp,q ≈ (pc(q)− p)−1/2, ξp,q ≈ (pc(q)− p)−1/4. (5)

Also the critical two-point function Gpc(q),q(0, x) decays like |x|2−d.

The proof relies on the lace expansion, and the following correlation inequality.

3. Correlation inequality.
Now it is time to state the key correlation inequality. We consider one of the following events:

• a simple “connection” event, such as x and y are in a single lattice animal. This event is written
as x←→ y.

• intersections of simple connection events, such as {x←→ y} ∩ {z ←→ w}.
• “disjoint occurrence” of the above.

If E is one of the above events, we define the “correlation function” G(E) as

G(E) =
X

A

w(A)I[E occurs on A] =
X

A

p|A| q|@A| I[E occurs on A]. (6)

Now the following inequality, which resembles the van den Berg - Kesten (BK) inequality in percola-
tion, holds.

Proposition 4. Let E,F be two of the above events. Then we have

G(E ◦ F ) ≤ G(E) G(F ). (7)

Details will be presented in [8].
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Influence and statistical mechanics

B. T. Graham

1984 Mathematics Road, V6T 1Z2, UBC, Vancouver, Canada.
E-mail:ben@math.ubc.ca

Statistical mechanics is the branch of physics that seeks to explain the properties of matter that
emerge from microscopic scale interactions. Probabilistic models such as percolation help describe
various physical phenomena. The models are generally not exactly solvable; simple local interactions
produce complex long range behaviour.

The technology of influence provides a way to study these processes. We will look at applications
of influence to percolation, directed and undirected first passage percolation, the Ising model, and
the random-cluster model.

This is joint work with Geoffrey Grimmett.

Percolation and the random-cluster model

Bond percolation was introduced by Simon Broadbent and John Hammersley in 1957. It is one of the
simplest spatial models with a phase transition. Despite its simplicity, it seems to encompass many
of the most important features of the phase transition phenomenon.

Bond percolation, defined say on the hypercubic lattice Zd with ‘nearest-neighbour’ edges, is
controlled by a parameter p ∈ [0, 1]. Each edge is open with probability p, and closed otherwise. The
edge states are independent. Two points x, y ∈ Zd are said to connected if they are joined by a chain
of open edges. The open clusters are the maximal sets of connected vertices. Let {0 ↔ 1} denote
the event that the origin belongs to an unbounded open cluster. The model is said to percolate, or
to be supercritical, if Pp(0 ↔1) > 0. There is a threshold value, the critical probability pc(d), such
that there is a unique infinite cluster if p > pc(d), and no infinite cluster if p < pc(d).

Statistical physicists have devised stochastic models for ferromagnetic spin systems in thermal
equilibrium; two of the most famous are the Ising and Potts models. They exhibit phase transi-
tions in two and higher dimensions, providing a simple setting for the study of the phase transition
phenomenon.



A key step in the understanding of the Ising and Potts models was the development of the random-
cluster model by Fortuin and Kasteleyn [F]. It provides a connection between bond percolation and
the magnetic spin models. It is an edge model like bond percolation, but the edge states are not
independent. The connected clusters of the random-cluster model correspond to cluster of like spins
in the Ising and Potts models.

Influence and sharp thresholds

Influence is a concept that has proved to be closely related to the phenomenon of sharp thresholds. Let
X = (X1, . . . , XN ) be a collection of independent Bernoulli(p) random variables. Given x ∈ {0, 1}N ,
let Ukx represent the configuration with xk replaced by 1− xk. For an event A, define the influence
of the k-th coordinate,

Ik(A) = Pp(1A(X) 6= 1A(UkX)).

Theorem.[BKKKL, Tal] There is constant C such that for increasing events A,

d

dp
Pp(A) =

NX

k=1

Ik(A) ≥ C Pp(A)[1− Pp(A)] log
∑ 1
2 maxk Ik(A)

∏
.

We extend this result from product measure to monotonic measures. This allows us to demonstrate

sharp thresholds in the random-cluster and Ising models.

Influence and first passage percolation

The technology of influence has also been applied to first passage percolation. Instead of the edges
simply being open or closed, each edge is assigned a cost ω(e) ∈ R. This induces the first-passage
percolation metric,

dω(x, y) = inf
∞

X

v∈∞

ω(v), x, y ∈ V ;

this is also called the traversal time from x to y. The infimum is taken over all paths ∞ from x to y.
In one dimension, the variance of dω(0, n) grows linearly with n. In two and higher dimensions,

for a wide range of edge weight distributions, the variance of dω(0, x) is sublinear as a function of
|x| [BKS, RB]. We extend this result to the case of directed first passage percolation with Bernoulli
edge weights.
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Brownian survival and Lifshitz tail in perturbed lattice disorder

Ryoki Fukushima (Kyoto University)

1 Introduction

We consider a Brownian motion moving in a randomly distributed killing traps, which is usually referred
to as the “trapping problem”. A quantity of primary interest in this problem is the survival probability
of the Brownian motion up to time t. For the traps attached around the Poisson point process, there are
extensive studies and, among others, Donsker and Varadhan [2] proved that

the annealed survival probability = exp
{
−c t

d
d+2 (1 + o(1))

}
as t→∞,

and Sznitman [3] proved that almost surely

the quenched survival probability = exp
{
−c′t (log t)−2/d(1 + o(1))

}
as t→∞,

where c, c′ > 0 are constants having explicit expressions.
In this talk, we discuss another model where the configuration of the traps is given by

Vξ(x) =
∑
q∈Zd

W (x− q − ξq).

Here W ≥ 0 is supported on a compact set with nonempty interior and ((ξq)q∈Zd ,Pθ) is a collection of
i.i.d. random variables with common distribution

Pθ(ξq ∈ dx) = N(d, θ) exp{−|x|θ} dx

for some θ > 0. This is a model of the so-called “Frenkel defects” in a crystal and well-known as the
“random displacement model” in the theory of random Schrödinger operator. However, the mathematical
studies are restricted to the bounded displacements case so far.

2 Results

Let ((Bt)t≥0, P0) be the standard Brownian motion on Rd. Then, the survival probability St, ξ of the
Brownian motion killed by Vξ is expressed as follows:

St, ξ = E0

[
exp
{
−
∫ t

0

Vξ(Bs) ds
}]
.

We have both annealed and quenched asymptotics of this quantity in a weak sense. In the following
statements, the symbol f(t) � g(t) means that there exists a constant C > 0 such that C−1g(t) ≤ f(t) ≤
Cg(t) for all sufficiently large t.

Theorem 1. (Annealed asymptotics) For any θ > 0, we have

log Eθ[St, ξ] �

 −t
2+θ
4+θ (log t)−

θ
4+θ (d = 2),

−t
d2+2θ

d2+2d+2θ (d ≥ 3).

Theorem 2. (Quenched asymptotics) For any θ > 0, we have

logSt, ξ �

 −t (log t)−
2

2+θ (log log t)−
θ

2+θ (d = 2),

−t (log t)−
2d

d2+2θ (d ≥ 3),

with Pθ-probability one.



Remark. These results coincide with the case of the Poissonian traps in the limit θ → 0 for all d ≥ 2,
and with the case of the periodic traps as θ →∞ for d ≥ 3. When d = 2 and θ →∞, there remain lower
order corrections.

Let us define the density of states (of −1/2∆ + Vξ) by

`(dλ) = lim
N→∞

1
(2N)d

∑
i≥1

δλξ,Ni
(dλ),

where λξ,Ni is the i-th smallest Dirichlet eigenvalue of −1/2∆+Vξ in (−N,N)d (counted with multiplicity).
As is well known, we can relate this measure to Eθ[St, ξ] through the Laplace transform and therefore,
using a Tauberian argument, can derive the asymptotics of `([0, λ]) as λ→ 0. In the following statements,
the symbol f(λ) � g(λ) is used for the similar meaning as before, but “for all small λ” this time.

Corollary 1. For any θ > 0, we have

log `[0, λ] �

 −λ
−1− θ2

(
log λ−1

)− θ2 (d = 2),

−λ− d2− θd (d ≥ 3).
(1)

This result says that the density of states is exponentially thin around the origin, which is referred to
as the “Lifshitz tail effect”.

3 Some remarks on the methods

3.1 Annealed asymptotics

The proof of the annealed asymptotics of the survival probability proceeds in two steps:

(1) Showing that only the best survival strategy counts (the Laplace principle),

(2) Estimating the probability of ((Bt)t≥0, (ξq)q∈Zd) taking the best strategy.

In both of the steps, we need an expression for the “emptiness probability”, that is, Pθ(ξ(U) = 0)
(U ∈ Rd). For the Poisson point process with intensity ν > 0, it equals e−ν|U |. This simple expression
allows one to use large deviation techniques to show the Laplace principle. On the other hand, it has
the expression exp{−

∫
U

dist(x, ∂U)θdx} (for a wide class of sets) in our model. Due to this complicated
form, I could not find a way to use the large deviation techniques. Instead, I have used a coarse graining
method which is a slightly altered version of Sznitman’s “method of enlargement of obstacles” (cf. [4]) to
prove the Laplace principle. The second step will be explained in the talk.

3.2 Quenched asymptotics

In existing works [1, 4], the asymptotics of quenched survival probability is derived by a rather complicated
localizing argument. In this talk, I will introduce a novel way which deduces the upper estimate directly
from the Lifshitz tail effect. It is not only simple but also works in general settings. Therefore, the upper
bound for the quenched asymptotics turns out to be a corollary of that for the annealed asymptotics.
This kind of implication is quite unusual in the theory of random media.
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Incipient infinite clusters in high-dimensions

Remco van der Hofstad ∗

In this talk, we discuss the recent results on the existence of the incipient infinite cluster in high-
dimensional percolation.

Percolation is a paradigm model in statistical physics obtained by independently keeping and removing
edges of a (finite or infinite) graph. The classical model is nearest-neighbor bond percolation on Zd, in
which bonds {x, y} with |x− y| = 1 are independently occupied or vacant with probability p. When the
dimension d ≥ 2, there is a phase transition in the parameter p such that below the critical value there is
no infinite component and above it, there is a unique infinite component (see e.g. [2] and the references
therein).

Despite the simplicity of the model, percolation shows a fascinatingly rich critical behavior. It is
expected (and in some cases proved) that the critical behavior is governed by so-called critical exponents
indicating that many power laws are present close to criticality. For example, it is widely believed that,
at criticality, the probability that the origin is connected to the boundary of a cube of width n decays
like n−1/ρ, where ρ ≥ 0 is a critical exponent. It is expected, though in many cases unproved, that this
critical behavior is universal, i.e., the behavior close to criticality is rather insensitive to the precise details
of the model, such as the chosen bond set. Despite the tremendous amount of research on percolation,
many aspects are still ill understood. For example, the key question whether there exists an infinite
component for nearest-neighbor critical percolation has only been answered negatively in two dimensions
and for d ≥ 19 for the nearest-neighbor model, even though physics arguments predict that, for finite
range models, it should be the case as soon as d ≥ 2. This is the celebrated continuity of the percolation
function problem.

When, at criticality, there does not exist an infinite cluster, then large critical percolation clusters
should have a fractal, self-similar nature. The incipient infinite cluster (IIC) can be thought of as the
infinite cluster which is on the verge of appearing at criticality. The existence of the IIC is not obvious,
which can be understood since we in fact only know in certain cases that there is no infinite cluster at
criticality. A way to describe large critical percolation clusters is through Kesten’s IIC [20], which is
the law of an infinite critical cluster. When the percolation function is continuous, there are no infinite
clusters, and therefore, this object needs to be constructed by an appropriate limiting argument. As a
result, the IIC is not full-dimensional and has a fractal structure.

Kesten [20] constructed the IIC in d = 2 in two ways: (i) by conditioning the cluster of the origin to
be connected to the boundary of a cube of width n centered around the origin and letting n → 1, and
(ii) by taking p > pc, conditioning the origin to be in the infinite connected component and letting p ↓ pc.
Kesten proved that these two constructions give rise to a measure on infinite connected components, and
the two constructions give rise to the same measure. Járai [19, 18] proved that several more natural
constructions, for example by taking a uniform point in the largest critical cluster inside a large cube and
shifting this to the origin followed by letting the cube tend to infinity, give rise to the same IIC measure.
These results show that in two-dimensions, the IIC is a natural and robust object.

In this talk, we discuss the construction of the IIC in high-dimensions, both for oriented as well as
unoriented percolation. In high-dimensional percolation, a lot of progress has been made in the past two
decades. The application of the lace expansion in the seminal paper [6] has incited a wealth of results
being proved [1, 3, 4, 5, 7, 8, 9, 9, 16]. As a result, we now have good insight in the critical nature
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of percolation in high dimensions, even though particularly the supercritical percolation regime in high
dimensions is still not so well understood. For example, it is not know how the expected cluster size,
when conditioning the cluster to be finite, diverges as the percolation parameter approaches the critical
value from above.

The high-dimensional IIC is proved to exist in [16] through two different constructions, both for the
spread-out setting for d > 6, as well as for the nearest-neighbor setting for d sufficiently large. Several
properties have been investigated, such as the fact that the IIC has an essentially unique infinite path, in
the sense that every pair of infinite paths share infinitely many bonds. The collection of vertices contained
in infinite paths is two dimensional, while the IIC itself is four dimensional. The results in [9, 10] suggest
that large critical clusters are like large components of critical branching random walk, suggesting that
large critical clusters should scale to a measure-valued diffusion. As a result, it is conjectured in [12] that
the scaling limit of the high-dimensional IIC is super-Brownian motion conditioned to survive forever.

For the oriented setting, the picture of the IIC is even more complete. The results in [14, 15, 17]
show that the scaling limit of critical spread-out oriented percolation is super-Brownian motion (SBM).
See also [11] for an expository discussion of the relation between SBM and oriented percolation. These
results imply that the scaling limit of the IIC is SBM conditioned to survive forever [12, 13].

In this talk, we discuss the various different constructions of the IIC in high-dimensional percolation,
discuss the fact that the limits agree, and study properties of the IIC.
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Random walks and critical percolation

Gordon Slade, University of British Columbia

We survey recent developments that prove precise estimates showing subdiffusive behaviour
(Alexander–Orbach conjecture) for random walks on four different random environments related
to critical percolation. These environments are:

1. the incipient infinite cluster (IIC) on a tree (a critical branching process conditioned to
survive forever),

2. the invasion percolation cluster on a tree,

3. the IIC for oriented percolation on Zd × Z+ in dimensions d > 6 (spread-out model),

4. the IIC for percolation on Zd for d > 6 (spread-out model).

In each case, the IIC or invasion percolation cluster provides a random infinite graph on which
simple random walk is performed. The behaviour of the random walk is subdiffusive in all cases.
For example, and roughly speaking, the time to exit a ball of radius R centred at the starting
point is almost surely of order R3 in all four examples.

The behaviour of the random walk is obtained as a consequence of geometric properties of the
environment. A general theorem of [2] (see [12] for an extension) shows that in a large class of
random environments, if the growth of the volume of a ball of radius R is typically R2, and if the
effective resistance between the exterior of a ball of radius R and its centre typically grows like R,
then the above-mentioned R3 exit time and other related results hold for the random walk in the
random environment. An analysis of the geometry of each environment shows that this general
theorem applies to each of the above four examples:

1. the IIC on the binomial tree [3],

2. the invasion percolation cluster on a regular tree [1],

3. the IIC for oriented percolation on Zd×Z+ in dimensions d > 6 (spread-out model) [2] (the
IIC itself is constructed in [7, 8]),

4. the IIC for percolation on Zd for d > 6 (spread-out model) [11] (the IIC itself is constructed
in [9]).

The results for example 3 depend on the lace expansion [10], while the results of example 4 depend
on both the lace expansion [5, 6] and the critical behaviour of the magnetization [4].

The construction of the IIC will be discussed in the lecture of Remco van der Hofstad. The
results of [11] will be discussed in the lecture of Asaf Nachmias.
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Disconnection of discrete cylinders and random
interlacements
Alain-Sol Sznitman

The disconnection by random walk of a discrete cylinder with a large finite
connected base has been a recent object of interest. It has to do with the
way paths of random walks can create interfaces. In this talk we give an
overview of some current results and explain how this problem is related to
questions of percolation and to the model of random interlacements.

Random walks on random paths and trees
David Croydon

There are many examples of sequences of random graphs that can be rescaled
to yield a non-trivial continuum limit. The existence of a structural scaling
result, however, only leads to further questions regarding the asymptotic
behaviour of other properties of the sequence of graphs considered, such
as: how can we describe the scaling limit of the associated simple random
walks? In this talk, I will discuss recent results that provide some answers
to this question for particular sequences of random graphs, including those
generated by random walk paths, branching processes and branching random
walk, and briefly outline how attempting to understand the random walk on
a critical percolation cluster provides some motivation for this work.

The range of the simple random walk on the integer lattice is perhaps the
simplest example of a random graph that admits a non-deterministic scaling
limit. To define this graph, first let S = (Sn)n≥0 be the simple random walk
on Zd starting from 0, and define the range of the random walk S to be the
graph G = (V (G), E(G)) with vertex set V (G) := {Sn : n ≥ 0}, and edge
set E(G) := {{Sn, Sn+1} : n ≥ 0}. In low dimensions, when d = 1, 2, the
recurrence of S implies that the graph G is equal to the whole lattice, and
so the associated simple random walk, X say, will converge to a standard
Brownian motion. Conversely, for d ≥ 3 the random walk S is transient
and does not explore all of Zd, and so it becomes an interesting problem
to determine the behaviour of X. In the first section of the talk, I will
explain how to establish quenched and annealed scaling limits for the process
X when d ≥ 5, which show that the intersections of the original simple



random walk path are essentially unimportant. For d = 4, the results I
will present are less precise, but they do show that any scaling limit for X
will require logarithmic corrections to the polynomial scaling factors seen in
higher dimensions. Furthermore, I will demonstrate that when d = 4 similar
logarithmic corrections are necessary in describing the asymptotic behaviour
of the return probability of X to the origin.

In the context of random walks on graphs, it is often the case that graph
trees are particularly tractable for the reason that the absence of circuits
make it easy to understand the connections in the graphs. Exploiting this
loop-free property, it is possible to deduce scaling limits for random walks on
sequences of graph trees generated by conditioned Galton-Watson processes.
In particular, if (Tn)1n=1 is a family of graph trees such that, for each n, Tn is
a critical Galton-Watson tree conditioned on its total progeny being equal to
n, then it is known that under mild technical conditions the sequence (Tn)1n=1

can be rescaled to converge to a so-called α-stable tree, where the α ∈ (1, 2] is
an index that depends on the tail of the offspring distribution. In the second
part of the talk, I will summarise how the corresponding simple random walks
have as a scaling limit a natural Brownian motion on the limiting trees, and
how embedding this result into Zd results in a scaling limit for the simple
random walk on the graph generated by branching random walk.

One incentive for considering the above problems is understanding the
random walk on a critical percolation cluster conditioned to be large. It is
becoming clearer how in high dimensions such a random graph has the same
asymptotic structure as the range of the integrated super-Brownian motion
S (or a suitably conditioned version of this set), and so one might also expect
that the associated random walks rescale to a diffusion on S. The canonical
nature of the diffusion scaling limit of the simple random walks on the graphs
generated by branching random walk, which also rescale to the random set
S, mean that it would not be surprising for the random walks on the critical
percolation clusters to share the same diffusion as a scaling limit, at least
in high dimensions d ≥ 8 where S is a dendrite (tree-like topological space).
However, the critical percolation cluster is more difficult than the tree case,
because it is not a loop-free graph, and to understand it we need to extend
the theory to be able to deal with random walks on graphs that are only
asymptotically tree-like. Working on the case of the random walk on the
range of the random walk is a (very small) first step in this direction.



Exponential growth of ponds in invasion percolation
Jesse Goodman

Consider an infinite, connected, locally finite graph G. To each edge attach
a weight chosen uniformly and independently from [0, 1]. Starting from a
distinguished root vertex, grow a subgraph according to the following rule.
Among all the edges on the boundary of the current cluster, select the one
of lowest weight and add it to the cluster. The finished object - i.e., the
increasing union of the subgraphs constructed above - is called the invasion
percolation cluster. By construction, it is an infinite connected subgraph a.s.

As its name suggests, invasion percolation is closely linked with ordinary
(Bernoulli) percolation. For instance, consider the weight Xn of the nth

invaded edge. Then for any (quasi-)transitive graph, lim supXn = pc, where
pc is the percolation threshold (see [1]; the result was proved earlier for
Zd in [2]). This suggests that, apart from some initial edges, the invasion
percolation cluster behaves like a critical percolation cluster, but will be
infinite a.s. The fact that invasion percolation is linked to critical percolation,
even though it contains no external parameter, makes it an example of self-
organized criticality.

The first outlet is defined to be the invaded edge of greatest weight. For
i > 1, the ith outlet is the invaded edge invaded after the (i − 1)st outlet
having greatest weight. The outlets divide the invasion cluster into ponds :
the ith pond consists of the edges invaded after the (i−1)st outlet and before
the ith outlet. From the construction, it follows that the ponds form a chain
of disjoint sub-clusters linked by the outlets, and that the weights of the
outlets decrease toward pc.

We consider invasion percolation on regular trees, where independence
and symmetry allow the invasion cluster to be studied with great precision.
In [3], extending work of [4], a structural representation of the cluster is given
in terms of the outlet weights. It is shown that the weights of outlets are
all drawn from the same distribution, with later outlets conditioned to have
lower weights than earlier ones.

This characterization is extended to show that numerous statistics of the
ponds - including radius, number of edges, and distance of outlet weights from
pc - grow exponentially. Indeed, logarithms of these quantities obey strong
laws of large numbers, invariance principles and large deviation principles,
with parameters that can be calculated explicitly and that are independent
of the degree of the tree.



The asymptotics of a fixed pond are also studied and compared with
results on Z2 from [5] and [6]. We find that the radius of a pond has similar
tail behaviour to in Z2. Unlike Z2, however, we find that on a tree the
invasion cluster exhibits a surprising and marked difference from percolation
with defects.
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Convergence of random walks to fractional kinetic motion

Martin T. Barlow∗ and Jǐŕi Černý

Let Ed be the set of all nearest-neighbour edges in the Euclidean lattice Z
d, (where

d ≥ 2), and let µe, e ∈ Ed, be i.i.d. random variables (defined on a space (Ω,F , P)) with
P(µe > t) ∼ t−α and µe ≥ 1 a.s. We call µe the conductance of the edge e, and for x ∈ Z

d

write µx for the sum of conductances of all edges adjacent to x
Let Xt be the continuous time random walk which jumps from x to y ∼ x with rate

µxy/µx. Write P x
ω for the law of X started at x in the random environment given by

(µe(ω)). Let

X
(n)
t = n−1Xn2t, t ≥ 0.

In [BD08] a quenched invariance principle was proved for X : for P-a.a. ω, X(n) converges
in law to C0W , where W is a standard Brownian motion in R

d. Further C0 > 0 if and
only if Eµe < ∞.

In this paper we consider the case when α < 1, so that Eµe = ∞. We consider the
processes

X̃
(n)
t = n−1Xn2/αt, t ≥ 0.

Let W be a standard Brownian motion in R
d, and Vt be an independent stable subordinator

with index α. The time change of X by V is a common procedure, and yields a symmetric
stable process of index 2α. Let V 1

t be the inverse of V , so that V 1 is a continuous non-
decreasing process. The fractional kinetics process of index α is defined by

Zt = W
V
−1

t
, t ∈ [0,∞).

This is a continuous non-Markovian process: its trajectory follows that of a Brownian
motion, but it has long intervals of constancy.

Theorem 1. The processes X̃(n) converge P - a.s. to a non-zero multiple of the fractional

kinetics process of index α.
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THE ALEXANDER-ORBACH CONJECTURE HOLDS
IN HIGH DIMENSIONS

ASAF NACHMIAS

In this talk we discuss the behavior of the simple random walk on the incipient infi-
nite cluster (IIC) of critical percolation on Zd. The IIC is a random infinite connected
graph containing the origin which can be thought of as a critical cluster conditioned
to be infinite. The spectral dimension ds of an infinite connected graph G is defined
by

ds = ds(G) = −2 lim
n→1

log p2n(x, x)
log n

(if this limit exists) ,

where x ∈ G and pn(x, x) is the return probability of the simple random walk on G

after n steps (note that if the limit exists, then it is independent of the choice of x).
Alexander and Orbach [1] conjectured that ds = 4/3 for the IIC in all dimensions d > 1,
but their basis for conjecturing this in low dimensions was mostly rough correspondence
with numerical results and it is now believed that the conjecture is false when d < 6
[11, 7.4]. In a joint work with Gady Kozma [14] we verify this conjecture in high
dimensions.

Theorem 0.1. Let PIIC be the IIC measure of critical percolation on Zd with large
d (d ≥ 19 suffices) or with d > 6 and sufficiently spread-out lattice and consider the
simple random walk on the IIC. Then PIIC-a.s.

lim
n→1

log p2n(0, 0)
log n

= −2
3

, lim
r→1

log Eτr

log r
= 3 , lim

n→1

log |Wn|
log n

=
2
3

,

where τr is the hitting time of distance r from the origin (the expectation E is only over
the randomness of the walk) and Wn is the range of the random walk after n steps.

Our main contribution is the analysis of the geometry of the IIC. The IIC admits
fractal geometry which is dramatically different from the one of the infinite component
of supercritical percolation. The latter behaves in many ways as Zd after a “renormal-
ization” i.e. ignoring the local structure [9] (see also [8] for a comprehensive exposition).
In particular, the random walk on the supercritical infinite cluster has an invariance
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principle, the spectral dimension is ds = d and other Zd-like properties hold, see
[7, 5, 2, 18, 6, 15].

Our analysis establishes that balls of radius r in the IIC typically have volume
of order r2 and that the effective resistance between the center of the ball and its
boundary is of order r. These facts alone suffice to control the behavior of the random
walk and yield Theorem 0.1, as shown by Barlow, Járai, Kumagai and Slade [3]. The
key ingredient of our proofs is establishing that the critical exponents dealing with the
intrinsic metric (i.e., the metric of the percolated graph) attain their mean-field values.
In a joint work with Yuval Peres [16], we first demonstrated that these exponents yield
analogous statements to the Alexander-Orbach conjecture in the finite graph setting.
In particular, in [16], the diameter and mixing time of critical clusters in mean-field
percolation on finite graphs were analyzed.

In different settings the Alexander-Orbach conjecture was proved by various authors.
When the underlying graph is an infinite regular tree, this was proved by Kesten [13]
and Barlow and Kumagai [4] and in the setting of oriented spread-out percolation with
d > 6, this was proved recently in the aforementioned paper [3].
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ARM EXPONENTS FOR HIGH-d PERCOLATION

GADY KOZMA

Examine a d-dimensional lattice with d > 6. Let pc be the critical probability
for the existence of an infinite percolation cluster. Assume the lattice satisfies

Ppc(0↔ x) ≈ |x|2−d (1)

where ≈ means that the ration between the right- and left-hand sides is bounded
between two constants (which might depend on the lattice and in particular on d,
but not on x). It is known that (1) holds when d > 6 and the lattice is sufficiently
spread out, or for Zd when d is sufficiently large [HvdHS03, H08]. In this lecture
we will discuss the following theorem (with Asaf Nachmias)

Theorem. Every lattice in dimension d > 6 satisfying (1) satisfies at pc

P(0↔ @B(0, r)) ≈ r−2

The notation here is standard: B(v, r) stands for the ball {x ∈ Zd : |x− v| < r}
and @A for any set of vertices A stands for its external boundary, i.e. all vertices in
Zd \ A with a neighbor in A.

The 2 in the exponent is often called the 1-arm exponent or the cluster radius
exponent. A relate quantity is often denoted by 1/ρ so we get that if ρ exists it
is equal to 1

2 . In dimension 2 it is of great interest to examine the probability
of k disjoint connections between 0 and @B(0, r), and call the related exponent
the “k-arm exponent”, denoted by δk. However, in high dimension it is more-or-
less standard to deduce from (1) that existence of several disjoint connections are
“approximately independent” events and hence δk = kδ1 so determining the 1-arm
exponent determines all the k-arm exponents.

To put the theorem in context, one must note that on a tree, P(0↔ @B(0, r)) ≈
r−1. The discrepancy is explained by the “integrated super-Brownian excursion”
heuristic, which claim that a critical percolation cluster looks like a critical branch-
ing process embedded in Zd using random walks. Hence to reach distance r in Zd,
one must reach distance r2 in the tree.

This means that one cannot prove that ρ = 1
2 assuming only the triangle condi-

tion X

x,y∈Zd

P(0↔ x)P(0↔ y)P(x↔ y) <1. (2)

The triangle condition follows from (1) by a simple sum (when d > 6), and a
significant body of literature exists that shows that merely assuming the triangle
condition gives many critical exponents. This is true for the sub-critical expected
cluster size exponent ∞ [AN84], the super-critical percolation probability exponent
β [BA91], the critical volume exponent δ [BA91], and the intrinsic 1-arm exponent
[KN]. The reason for the success of the triangle condition in all these cases is
that it bounds the effect of the “past” on the “future” when exploring the cluster,
and hence allows to use branching process arguments. It is of great interest to



prove results directly from the triangle condition, since it might hold in many cases
where neither | · | nor d are obvious to define, so (1) might be meaningless or false.
Typical scenarios include long-range percolation and percolation on general graphs
and groups. Unfortunately, this strength is in our case a weakness — the triangle
condition does not “see” the Euclidean structure, and hence cannot distinguish
between the tree case (when ρ = 1) and the Zd case (when ρ = 1

2 ).
Lace expansion is not used directly in the proof, only through [HvdHS03, H08].

The proof revolves around the fact that the size of the largest percolation cluster in
a box has exponential tails [A97]. This fact is used to prove “structure theorems”
for the cluster. The various structure theorems, hold with such high probability,
that they also hold when conditioning on the events of interest. This allows to pull
through many heuristic arguments which were previously not easy to do.

Attending the lectures of van der Hofstad, Slade or Nachmias is not required to
understand this lecture, which is planned to be self-contained.
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Scaling limits for weakly pinned random walks

with two large deviation minimizers

Tadahisa Funaki (Univ. Tokyo)

The scaling limits for d-dimensional random walks perturbed by an attractive force to-
ward the origin are studied under the critical situation that the rate functional of the
corresponding large deviation principle (LDP) admits two minimizers.

Let φ = {φi}
N
i=0 be the Markov chain on R

d with the transition probability density p(x)
starting at aN . Then, it is easy to see that the law of large numbers hN (t) := 1

N φ[Nt] →
a + mt, t ∈ [0, 1] holds, where m =

∫
�

d xp(x) dx is the mean drift. We consider Markov
chains modified by adding a pinning effect at 0 to φ (i.e., allowing occasional jumps to
0). Our goal is to study the scaling limit mentioned above for such modified chains, in
particular when the corresponding LD rate functional admits two minimizers. The paper
[1] discusses the case where p(x) is mean-zero Gaussian, and we extend the results to the
general case under the absence of the wall.

We will first define the weakly pinned Markov chains on R
d imposing the Dirichlet or

free conditions for the arriving points at the final time i = N . Then, we will state our
results on (1) LDP, (2) the free energies ξD,ε and ξF,ε, (3) the minimizers of the LD rate
functional, (4) the scaling limits under critical situation that two minimizers exist, and
finally on (5) the critical exponents for the free energies.

The original motivation comes from the study of the (1+1)-dimensional interface model,
or (1 + d)-dimensional directed polymer model. The so-called Wulff shape (for crystal)
is characterized by a variational formula and our interest is to see what happens if the
variational problem has non-unique solutions. This is a joint work with T. Otobe.

1 Markov chains with weak pinning

Let ε ≥ 0 be a parameter representing the strength of pinning at 0. We define two
probability measures µD,ε

N (called the Dirichlet case: φ0 = aN , φN = bN , a, b ∈ R
d) and

µF,ε
N (called the free case: φ0 = aN) on (Rd)N+1, respectively, by

µD,ε
N (dφ) =

pN (φ)

Za,b,ε
N

δaN (dφ0)
N−1∏

i=1

(
ε δ0(dφi) + dφi

)
δbN (dφN ),

µF,ε
N (dφ) =

pN (φ)

Za,F,ε
N

δaN (dφ0)

N∏

i=1

(
ε δ0(dφi) + dφi

)
,

where Za,b,ε
N and Za,F,ε

N are the normalizing constants and pN (φ) =
∏N

i=1 p(φi − φi−1).

1



Let hN = {hN (t), t ∈ [0, 1]} ∈ C = C([0, 1], Rd) be the macroscopic path of the Markov
chain defined as the polygonal approximation of { 1

N φNt, t = 0, 1/N, . . . , N/N}. We assume
that supx∈ �

d eλ·xp(x) < ∞ for all λ ∈ R
d and the condition on the Legendre transform of

Λ(λ) = log
∫

�
d eλ·xp(x)dx: Λ∗(v) = supλ∈�

d{λ · v − Λ(λ)} < ∞ for all v ∈ R
d.

2 Sample path LDP

The LDP for µN = µD,ε
N or µF,ε

N , which is roughly stated as µN (hN ∼ h) ∼ e−NI(h), h ∈ C,
holds with the rate functional I(h) = Σ(h) − inf Σ, where

Σ(h) =

∫ 1

0
Λ∗(ḣ(t)

)
dt − ξε

∣
∣
∣{t ∈ [0, 1];h(t) = 0}

∣
∣
∣.

The case without pinning (i.e. ξε = 0) was studied by Mogul’skii for the free case. Here,
the pinning free energies ξε = ξD,ε or ξF,ε ≥ 0 are defined respectively by

ξD,ε = lim
N→∞

1

N
log

Z0,0,ε
N

Z0,0,0
N

,

ξF,ε = lim
N→∞

1

N
log

Z0,F,ε
N

Z0,F,0
N

.

0 εD
c εF

c
ε

ξD,ε

ξF,ε

d ≥ 3, m 6= 0
We point out the following properties

of the free energies:

(1) ∃two critical values 0 ≤ εD
c ≤ εF

c s.t. ξD,ε > 0 ⇔ ε > εD
c , ξF,ε > 0 ⇔ ε > εF

c ,

(2) εD
c > 0 (d ≥ 3), εD

c = 0 (d = 1, 2),

(3) m = 0 ⇒ εD
c = εF

c , ξD,ε = ξF,ε, m 6= 0 ⇒ εD
c < εF

c , ξF,ε < ξD,ε for ∀ε > εD
c .

As an immediate consequence of the LDP, we see that the limits under µN are concentrated
on the set of minimizers of the functional Σ.

3 Minimizers of Σ

We assume ξε > 0. Then, two (or more) possible minimizers � h̄, ĥ are given as in the
following pictures.

Dirichlet case (i.e. h(0) = a, h(1) = b):

0

a

b

1

h̄D

0

a

b

1

ĥD

2



Free case (i.e. h(0) = a, h(1) is free):

ξF,ε > Λ∗(0) ξF,ε = Λ∗(0)

0

a

a + m

1

h̄F

0

a

1

ĥF

0

a

a + m

1

ĥF
s , s ∈ [tF1 , 1]

The Young’s relation (the free boundary condition) determining the times tD
1 or tF1 when

ĥD or ĥF first touch 0 is given by the formula: − a
t · ∇Λ∗( − a

t

)
− Λ∗( − a

t

)
= ξε − Λ∗(0),

with ξε = ξD,ε or ξF,ε.

4 Main results

Scaling limits under the critical situation: Σ(h̄) = Σ(ĥ) (we assume ξF,ε > Λ∗(0) in the
free case) are summarized in:

Theorem 1. (1) (Dirichlet case) The limits of hN under µD,ε
N are ĥD if d = 1, both h̄D

and ĥD (coexistence) if d = 2, and h̄D if d ≥ 3.
(2) (Free case) The limits of hN under µF,ε

N are both h̄F and ĥF (coexistence) if d = 1,
and h̄F if d ≥ 2.

The central limit theorem for the first and the last hitting times of the weakly pinned
Markov chains φ at 0 holds under a suitable scaling and conditioning (if necessary).

5 Critical exponents

Proposition 2. (1) (Dirichlet case) As ε ↓ εD
c ,

ξD,ε ∼






C(ε − εD
c )2, d = 1, 3,

e−2π
√

det Q/ε, d = 2,

C(ε − εD
c )/ log(ε − εD

c ), d = 4,

C(ε − εD
c ), d ≥ 5,

where C are different positive constants depending on d and Q is the covariance matrix
of the Cramér transform of p in such a way that its mean becomes 0.
(2) (Free case) (i) If m = 0, ξF,ε = ξD,ε.
(ii) If m 6= 0, we have ξF,ε ∼ C(ε − εF

c ) as ε ↓ εF
c for all d ≥ 1.
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Extended thermodynamic relation and entropy for nonequilibrium
steady states

Hal Tasaki, Department of Physics, Gakushuin University

Thermodynamics is a theoretical framework that describes universal quantitative laws
obeyed by macroscopic systems in equilibrium. Thermodynamics was also an essential the-
oretical guide when equilibrium statistical mechanics was constructed. Here we wish to
address the question whether thermodynamics can be extended to nonequilibrium steady
states which, like equilibrium states, lack macroscopic time-dependence.

To be concrete, we here consider a system of N classical particles (which generally interact
with each other) confined in a fixed volume. (Our theory covers a much more general class of
systems.) By q = (q1, . . . , qN) and p = (p1, . . . , pN), we collectively denote the coordinates
and momenta, respectively, of the particles. We assume that the time evolution is governed
by the deterministic Newton equation and stochastic dynamics (realized, for example, by
thermal walls) which describes the interaction between the heat baths.

Equilibrium states: First suppose that the system is attached to a heat bath with tem-
perature T . When the system is in touch with the heat bath for a sufficiently long time, it
reaches the equilibrium state with temperature T , which can be described by the canonical
distribution ρ(T )

eq (q, p) ∝ exp[−H(q, p)/(kBT )]. Here H(q, p) is the energy (Hamiltonian) of
the system and kB is the Boltzmann constant.

Consider a thermodynamic operation in which one changes the temperature of the bath
by a very small amount, from T to T +∆T . After a sufficiently long time, the system settles
to a new equilibrium with temperature T +∆T . During this process the system absorbs the
energy Q (as heat) from the bath.

T T + ∆TQ

The Clausius relation, which is at the core of the classical thermodynamics, states that
the heat Q is related to the change of entropy as

S(T + ∆T )− S(T ) =
Q

T
, (1)

where (and in what follows) we assumed that ∆T is small and omitted the terms of O((∆T )2).



It is also known from equilibrium statistical mechanics that the entropy of an equilibrium
state is written as the (Gibbs-)Shannon entropy of the canonical distribution

S(T ) = −kB

∫
dqdp ρ(T )

eq (q, p) log ρ(T )
eq (q, p), (2)

where dqdp is the Lebesgue measure of the phase space.

Nonequilibrium steady states: Our goal is to extend the relations (1) and (2) to
nonequilibrium steady states.

Now suppose that the system is attached to two heat baths with different temperatures
T1 and T2. When the system is in touch with the baths for a sufficiently long time, it settles
to a nonequilibrium steady state (abbreviated as NESS) with no macroscopically observable

changes but with a steady flow of energy called heat current. We denote by ρ(T1,T2)
ss (q, p) the

probability density of the state (q, p) in the NESS. Unlike the equilibrium, we do not have

any general expressions for ρ(T1,T2)
ss (q, p).

Let us consider a thermodynamic operation in the above NESS. We change the temper-
atures of the baths from T1 and T2 to T1 + ∆T1 and T2 + ∆T2, respectively.

T1

T2 T2 + ∆T2

T1 + ∆T1

We then ask if there is any relation like (1). Since there is a steady heat current, the naive
heat Q1, Q2 (heat transferred from each bath to the system) diverge linearly in time. It is
thus impossible to look for a relation which involves the heat itself.

Instead of the “bare” heat, we concentrate on the excess heat (or the “renormalized”
heat), which characterizes the intrinsic heat transfer caused by the change of the tempera-
tures. It is defined by subtracting steady “house-keeping heat” from the (diverging) total
heat.

0 t

Qex

1

J1(t)
J ss

1 (T1, T2)

J ss

1 (T1 + ∆T1, T2 + ∆T2)

Suppose, for example, that the temperatures are changed suddenly at t = 0. Then the
heat current J1(t) from the system to the first bath behaves as in the above figure, where



J ss
1 (T1, T2) denotes the steady heat current in the NESS. The are of the shaded region is the

excess heat Qex
1 .

More generally, when the temperatures T1(t), T2(t) are given as functions of time t, the
excess heat is defined by

Qex
1 =

Z 1

−1
dt {J1(t)− J ss

1 (T1(t), T2(t))}. (3)

Recently, in T. S. Komatsu, N. Nakagawa, S. Sasa, and H. Tasaki, Phys. Rev. Lett.
100, 230602 (2008) (archived as 0711.0246), we have shown (but not proved) the extended
Clausius relation for NESS

S(T1 + ∆T1, T2 + ∆T2)− S(T1, T2) =
Qex

1

T1
+

Qex
2

T2
+ O((T2 − T1)

2∆T ), (4)

which is a natural extension of the equilibrium relation (1). Moreover we found that the
entropy here is given by the following “symmetrized Shannon” entropy

S(T ) = −kB

Z
dqdp ρ(T1,T2)

ss (q, p) log

q
ρ(T1,T2)

ss (q, p) ρ(T1,T2)
ss (q,−p). (5)

We hope that these relations become starting points of further rich exploration of ther-
modynamics and statistical mechanics of NESS.



Hydrodynamic limit for two-species exclusion processes
with one conserved quantity

Makiko Sasada (The University of Tokyo)

1 Introduction

We discuss the hydrodynamical behavior of two-species exclusion processes. A special
case was studied by Quastel [3]. Our results can be applied to establish the hydrodynamic
limit for the evolution of height differences in interfaces governed by the 1-dimensional
SOS dynamics.

We consider two-species exclusion processes on the d-dimensional discrete torus Td
N :=

(Z/NZ)d = {0, 1..., N − 1}d taking the effects of exchange, creation and annihilation into
account. The model is, in general, of nongradient type. We prove that the particle density
converges to the solution of a certain nonlinear diffusion equation under a diffusive rescaling
in space and time.

2 Model

The two-species exclusion process describes the evolution of a system of mechanically
distinguishable particles, say +particles and −particles under the constraint that at most
one particle can occupy each site. The state space of the process is given by χd

N :=
{−1, 0, 1}Td

N and its elements (called configurations) are denoted by η = (η(x), x ∈ Td
N ),

with η(x) = 0 or 1 or −1 depending on whether x ∈ Td
N is empty or occupied by a +particle

or a −particle. Each particle moves to a neighboring empty site with the constant jump
rate C± > 0, respectively. Two different types of neighboring particles exchange their
location with the constant rate CE ≥ 0. Also they annihilate simultaneously when they
are neighboring with the constant rate CA ≥ 0, and two different types of particles are
created with the constant rate CC ≥ 0 if two empty sites are neighboring. The generator
of this Markov process denoted by LN is defined as

(LNf)(η) =
X

x,y∈Td
N ,|x−y|=1

Lxyf(η)

for f : χd
N → R, where

Lxyf(η) = C+1{η(x)=1,η(y)=0}(f(ηx,y)− f(η)) + C−1{η(x)=0,η(y)=−1}(f(ηx,y)− f(η))

+ CE1{η(x)=−1,η(y)=1}(f(ηx,y)− f(η)) + CA1{η(x)=1,η(y)=−1}(f(ηx=0,y=0)− f(η))

+ CC1{η(x)=0,η(y)=0}(f(ηx=−1,y=1)− f(η)).



In the above formula, ηx,y, ηx=−1,y=1 and ηx=0,y=0 stand for

ηx,y(z) =






η(z) if z 6= x, y,
η(y) if z = x,
η(x) if z = y,

ηx=m,y=k(z) =






η(z) if z 6= x, y,
m if z = x,
k if z = y,

respectively.

Remark 1. If CA > 0, CC > 0, the process has a unique conserved quantity
P

x∈Td
N

η(x).
On the other hand, if CA = CC = 0, then the process has two conserved quantitiesP

x∈Td
N

1{η(x)=1} and
P

x∈Td
N

1{η(x)=−1}.

3 Main Theorem

In this talk, we consider the case where CA > 0 and CC > 0, so that the process has a
unique conserved quantity. This process is reversible with respect to the following one
parameter family of translation invariant product measure ∫α.

Definition 1. For each fixed α ∈ [−1, 1], let ∫α be a product measure on χd
N with marginals

given by

∫α{η(x) = 1} =
1− Φ(α) + α

2
∫α{η(x) = 0} = Φ(α)

∫α{η(x) = −1} =
1− Φ(α)− α

2
,

for all x ∈ χd
N , where

Φ(α) =

(
1−
√

4β+α2−4βα2

1−4β if β 6= 1
4

1−α2

2 if β = 1
4

and β = CC
CA

.

The index α stands for the density of particles with charge, namely E∫α [η(0)] = α.
We will abuse the same notation ∫α for the product measures on the configuration spaces
χd

N or χd := {−1, 0, 1}Zd on the torus or on the infinite lattice.
For a directed bond b = (x, y) and a local functions f , let us define ∇xyf by

(∇xyf)(η) =
p

C+1{η(x)=1,η(y)=0}(f(ηx,y)− f(η)) +
p

C−1{η(x)=0,η(y)=−1}(f(ηx,y)− f(η))

+
p

CE1{η(x)=−1,η(y)=1}(f(ηx,y)− f(η)) +
p

CA1{η(x)=1,η(y)=−1}(f(ηx=0,y=0)− f(η))

+
p

CC1{η(x)=0,η(y)=0}(f(ηx=−1,y=1)− f(η)).



Let τx be the shift operator acting on local functions f and configurations η as follows:

τxf(η) = f(τxη), (τxη)(z) := η(z − x), x, z ∈ Zd.

For every cylinder function g : χd → R, consider the formal sum

Γg :=
X

x∈Zd

τxg

which does not make sense but for which

∇Γg = (∇0,e1Γg, ...,∇0,edΓg)

is well defined. We are now in a position to define the diffusion coefficient. For each α,
define

d(α) =
1

χ(α)
inf
g

E∫α [(∇0,e(η(0) + Γg))2]

where infg is taken over all local functions g and e is a unit vector of arbitrary direction.
In this formula χ(α) stands for the so-called static compressibility which in our case is
equal to

χ(α) = E∫α [η(0)2]− E∫α [η(0)]2 = 1− Φ(α)− α2.

For a probability measure µN on χd
N , we denote PµN the distribution on the path

space D(R+, χd
N ) of the Markov process ηt = {ηt(x), x ∈ Td

N} with generator N2LN , which
is accelerated by a factor N2, and the initial measure µN .

Theorem 1. Let (µN )N≥1 be a sequence of probability measures on χd
N such that the

corresponding initial density fields satisfy

lim
N→1

µN [| 1
Nd

X

x∈Td
N

G(
x

N
)η(x)−

Z

Td
G(u)ρ0(u)du| > δ] = 0,

for every δ > 0, every continuous function G : Td := [0, 1)d → R and some initial density
profile ρ0 : Td → [−1, 1]. Then, for every t > 0,

lim sup
N→1

PµN [| 1
Nd

X

x∈Td
N

G(
x

N
)ηt(x)−

Z

Td
G(u)ρ(t, u)du| > δ] = 0,

for every δ > 0 and every continuous function G : Td → R, where ρ(t, u) is the unique
bounded weak solution of the following nonlinear parabolic equation:






@tρ(t, u) = ∆(d̃(ρ(t, u))) =
dX

i=1

@2

@u2
i

d̃(ρ(t, u))

ρ(0, ·) = ρ0(·),

and
d̃(α) =

Z α

−1
d(∞)d∞.



Remark 2. If we assume C+ + C− − CA − 2CE = 0, then our model turns out to be a
gradient system. In this case, d(α) = −Φ0(α)

2 (C+ − C−) + 1
2(C+ + C−) holds.

Remark 3. Generalized exclusion process with ∑ = 2 is corresponding to our model with
C+ = C− = CA = CC = 1 and CE = 0.

Remark 4. The SOS dynamics describe the evolution of the integer-valued heights of in-
terfaces on the discrete lattice. In the 1-dimensional case, the height difference of SOS
dynamics and the configuration of the two-species exclusion process have one-to-one cor-
respondence, see, e.g. [1].
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Behavior of the massless Gaussian field interacting with the wall

Hironobu Sakagawa ∗

The massless Gaussian field is one of the probabilistic models of phase separating random interfaces
and is represented as a Gibbs random field with long range correlations. The field exhibits many interesting
behaviors, especially under the effect of various external potentials (wall, pinning, etc.) and its study has
been quite active in recent years (cf. [7] and references therein). In this talk, we discuss the following two
topics related to the behavior of the massless Gaussian field interacting with the wall.

• Entropic repulsion of the massless field with self-potentials.

• Confinement of the massless field between two hard walls.

1. The massless Gaussian field

Let d ≥ 2 and ΛN = [−N,N ]d ∩ Zd. For a configuration φ = {φx}x∈ΛN ∈ RΛN , consider the following
massless Hamiltonian with quadratic interaction potential:

HN (φ) :=
1
8d

X

{x,y}∩ΛN 6=φ
|x−y|=1

(φx − φy)2.

The corresponding Gibbs measure with 0-boundary conditions is defined by

PN (dφ) :=
1

ZN
exp

©
−HN (φ)

™ Y

x∈ΛN

dφx

Y

x/∈ΛN

δ0(dφx), (1)

where dφx denotes Lebesgue measure on R and ZN is a normalization factor. By summation by parts, this
coincides with the law of the centered Gaussian lattice field on RΛN whose covariance matrix is given by
(−∆N )−1, the inverse of a discrete Laplacian on ΛN with Dirichlet boundary conditions outside ΛN . The
configuration φ is interpreted as an effective modelization of a random phase separating interface embedded
in d + 1-dimensional space and the spin φx at site x ∈ ΛN denotes its height. This model is called a lattice
massless field or a harmonic crystal.

It is well-known that the field has long range correlations under PN and the following asymptotic
behavior of the variance holds:

VarPN (φ0) = (−∆N )−1(0, 0) ∼
(

g2 log N if d = 2,

gd if d ≥ 3,
(2)

as N →1, where g2 = 2
π and gd = (−∆)−1(0, 0) for d ≥ 3. ∆ is a discrete Laplacian on Zd. Under PN , the

interface is said to be delocalized when d = 2 because the variance diverges as N →1. While, when d ≥ 3
the interface is localized because the variance remains finite. If d ≥ 3, the above variance estimate ensures
the existence of the infinite volume limit P1. Actually this is given by the law of the centered Gaussian
field on RZd

with covariance matrix (−∆)−1.

∗Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama
223-8522, JAPAN. E-mail address: sakagawa@math.keio.ac.jp



2. Entropic repulsion of the massless field with self-potentials

Entropic repulsion is a problem to study how high an interface is pushed up by a hard wall. The corresponding
event is given by

≠+
N := {φ;φx ≥ 0 for every x ∈ ΛN}.

The representative result is the following:

Theorem 1 ([1], [2]). Let d ≥ 2. For every ε > 0 and δ > 0 it holds that

lim
N→1

inf
x∈ΛN,ε

PN

≥ØØ 1p
logd(N)

φx −
p

4gd

ØØ≤ δ
ØØ ≠+

N

¥
= 1, (3)

where log2(N) = (log N)2, logd(N) = log N for d ≥ 3 and ΛN,ε = {x ∈ ΛN ; dist(x,Λc
N ) ≥ εN}.

Namely, the field is pushed up to the level
√

4gd

p
logd(N). Compared this result with (2), we see that the

hard wall pushes up the interface further at the order of
√

log N for every d ≥ 2 and the interface turns to
be delocalized when d ≥ 3. This is caused by the random fluctuation of the interface naturally arises from
the Lebesgue measure dφ in the Gibbs measure (1), in other words, by entropic effects of the measure. The
interface is shifted above to keep enough width of the fluctuation.

We consider the generalization of Theorem 1 to the massless field with self-potentials. For U : R → R,
let PU

N be a Gibbs measure corresponding to the Hamiltonian:

HU
N (φ) := HN (φ) +

X

x∈ΛN

U(φx).

ZU
N denotes the corresponding partition function. Then, the conditioned measure PN ( · |≠+

N ) in (3) can be
considered as a Gibbs measure with the (formal) self-potential U(r) = 1 · I(r < 0). The following result
means that entropic repulsion for the massless field occurs even under quite weak repulsive force. We only
require that the self-potential is non-increasing and the corresponding Gibbs measure is well-defined.

Theorem 2 ([6]). Let d ≥ 2 and U : R → R be an arbitrary non-increasing, non-constant function which
satisfies ZU

N <1. Then, for every ε > 0, δ > 0 and ∞ > 0, the following holds.

lim
N→1

PU
N

≥
]
n

x ∈ ΛN,ε;
1p

logd(N)
φx ≤ (1− δ)

p
4gd

o
≥ ∞|ΛN,ε|

¥
= 0.

Also, if U satisfies the condition: there exists a ∈ R such that U(r) = const. for every r ≥ a, then we have

lim
N→1

PU
N

≥
]
n

x ∈ ΛN,ε;
1p

logd(N)
φx ≥ (1 + δ)

p
4gd

o
≥ ∞|ΛN,ε|

¥
= 0.

3. Confinement between two hard walls

In the single wall case the interface has a room to move away from a hard wall and it is repelled to the level
that it can fluctuate freely without feeling the constraint by the wall. Next we consider the situation where
this is not the case, namely, we are interested in the behavior of the interface confined between two hard
walls. The corresponding event is given by

WA(L) := {φ; |φx| ≤ L for every x ∈ A}, A ⊂ Zd.

This problem was originally investigated by Bricmont et.al. [3], see also section 4 of [7]. They showed that
under the two walls condition the field turns to be massive and the following large L asymptotics holds. PL

1
denotes the infinite volume limit of the conditioned measure PN ( · |WΛN (L)).

• Free energy :

lim
N→1

− 1
Nd

log PN (WΛN (L)) =

(
e−O(L), if d = 2,

e−O(L2), if d ≥ 3,



• Mass (inverse correlation length):

lim
|x|→1

− 1
|x| log EP L

1 [φ0φx] =

(
e−O(L), if d = 2,

e−O(L2), if d ≥ 3,

• Variance :

VarP L
1

(φ0) = O(L), if d = 2,

0 ≤ VarP1(φ0)−VarP L
1

(φ0) ≤ e−O(L2), if d ≥ 3.

Our main purpose here is to make refinement of these results. Especially, we can show the precise
asymptotic behavior of these quantities in the higher dimensional case d ≥ 3. We first give the free energy
estimate.

Proposition 1 ([4]). Let d ≥ 3. For every L large enough, there exists N0 = N0(L) such that the following
holds for every N ≥ N0 :

− 1
Nd

log PN (WΛN (L)) = e−
1

2gd
L2(1+oL(1)).

Next, we consider the correlation and variance of the field under the two walls condition. For math-
ematical rigorousness of the proof, we treat a slightly modified model. Let TN be a d-dimensional lattice
torus with size 2N (we identify N and −N in ΛN ) and consider the following Hamiltonian:

HN,m(φ) :=
1
8d

X

{x,y}⊂TN

|x−y|=1

(φx − φy)2 +
1
2
m2

X

x∈TN

φ2
x.

PN,m is the corresponding Gibbs measure on RTN with periodic boundary conditions and PL
1,m denotes the

infinite volume limit of the conditioned measure PN,m( · |WTN (L)). Then we have the following estimates:

Theorem 3 ([5]). Let d ≥ 3. For every ε > 0, there exists L0 = L0(ε) > 0 such that the following holds for
every L ≥ L0 :

1.
lim inf
m→0

lim inf
k→1

n
−1

k
log EP L

1,m
£
φ0φ[kz]

§o
≥ e−

1+ε
4gd

L2

,

lim sup
m→0

lim sup
k→1

n
−1

k
log EP L

1,m
£
φ0φ[kz]

§o
≤ e−

1−ε
4gd

L2

,

for every z ∈ Sd−1 = {z ∈ Rd; |z| = 1}.

2.
lim inf
m→0

n
VarP1(φ0)−VarP L

1,m
(φ0)

o
≥ e−

1+ε
2gd

L2

,

Also, if d ≥ 5 then we have

lim sup
m→0

n
VarP1(φ0)−VarP L

1,m
(φ0)

o
≤ e−

1−ε
2gd

L2

.

Remark 1. Path description of the behavior of the interface between two walls (centering of the interface)
is also discussed in [4].
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Title: Gibbs measures on combinatorial structures.

Speaker: Shankar Bhamidi, UBC and PIMS

Abstract:

We shall report on some work in progress in understanding various aspects of Gibbs distributions on com-
binatorial structures and shall describe why such problems are of crucial importance, both in practice and
for the rich mathematical theory that one can develop.

We shall first look at the space of all unordered trees, labeled trees on N nodes, say TN . For each tree
t ∈ Tn consider the case where the Hamiltonian consists of the number of leaves namely

H(t) = β# of leaves in t

for some constant β. Now consider the probability measure on Tn given by

pN (t) =
exp(βH(t))

ZN (β)

Note that as β → 1 we shall end up with star like trees while as β → −1 we shall end up with path like
trees. We shall identify these regimes of this model (star like, continuum random tree like and path like
regimes) and exhibit where the phase transitions occur. We shall also show how these methods can be used
to get large deviation results for the uniform random tree model as well as how general theory and work
of the speaker and his co-workers (Arnab Sen and Steve Evans at UC Berkeley) implies the convergence
of the spectral distribution of the adjacency matrix of a tree t ∼ pN (·) to a non-degenerate non-random
distribution.

We shall then report on some recent work on a related model, the exponential random graph model.
Let us first put this problem in the context of recent research and describe why such problems are cruicial.
A variety of random graph models have been developed in recent years to study a range of problems on
networks, driven by the wide availability of data from many social, telecommunication, biochemical and
other networks. The exponential random graph model is a key model, extensively used in the sociology
literature. This model seeks to incorporate in random graphs the notion of reciprocity, that is, the larger
than expected number of triangles and other small subgraphs. A simple example is the following: Consider
the space of all simple graphs on N vertices and call this space X . Let X ∈ X be a graph and let E(X) and
T1(X) denote the number of edges and number of triangles in the graph respectively. Fix constants β0 and
β1 and consider the probability measure pN (X) given by

pN (X) =
exp(H(X))

ZN (β)

where the Hamiltonian is given by
H(X) = β0E(X) + β1T1(X)

Sampling from these distributions is crucial for parameter estimation hypothesis testing, and more
generally for understanding basic features of the network model itself. In practice sampling is typically
carried out using Markov chain Monte Carlo, in particular either the Glauber dynamics or the Metropolis-
Hasting procedure.

In the talk we characterize the high and low temperature regimes of the exponential random graph
model. We establish that in the high temperature regime the mixing time of the Glauber dynamics is
Θ(n2 log n), where n is the number of vertices in the graph; in contrast, we show that in the low temperature
regime the mixing is exponentially slow for any local Markov chain. Our results, moreover, give a rigorous
basis for criticisms made of such models. In the high temperature regime, where sampling with MCMC is
possible, we show that any finite collection of edges are asymptotically independent; thus, the model does
not possess the desired reciprocity property, and is not appreciably different from the Erdős-Rényi random
graph. The last bit is based on joint work done with Guy Bresler and Allan Sly of UC Berkeley.



Phase Transitions for Linear Stochastic Evolutions1

Nobuo YOSHIDA2 (Kyoto University)

We consider a discrete-time stochastic growth model on the d-dimensional lattice. The
growth model describes various interesting examples such as oriented site/bond percolation,
directed polymers in random environment, time discretizations of binary contact path pro-
cess. We first investigate the regular/slow growth phase transition in terms of the growth
rate of the total populaiton. Then, we explain that the regular/slow growth phase transi-
tion is related to the delocalization/localization transition of the spatial distribution of the
population.

1 The set-up

Let A = (Ax,y)x,y∈Zd be a random matrix and let A1, A2, ... be its independent copies, defined
on a probability space (Ω,F , P ). Here are the set of assumptions we assume for A:

0 ≤ Ax,y ∈ L2(P ) for all x, y ∈ Zd. (1.1)
Ax,y = 0 a.s. if |x − y| > rA for some non-random rA ∈ N. (1.2)

(Ax+z,y+z)x,y∈Zd
law= A for all z ∈ Zd. (1.3)

The columns {A·,y}y∈Zd are independent. (1.4)

The set {x ∈ Zd ;
∑

y∈Zd ax+yay 6= 0} contains a linear basis of Rd,
where ay = P [A0,y].

(1.5)

We define a Markov chain Nt = (Nt,y)y∈Zd , t ∈ N, with values in [0,∞)Zd
by

Nt,y =
∑
x∈Zd

Nt−1,xAt,x,y, t = 1, 2, ... (1.6)

Here and in the sequel, we suppose that the initial state N0 is non-random, 6= 0, and ∈ `1(Zd).
If we regard Nt ∈ [0,∞)Zd

as a row vector, (1.6) can be interpreted as

Nt = N0A1A2 · · ·At, t = 1, 2, ...

2 Results

We look at the growth rate of the “total number” of particles:

|Nt| =
∑
y∈Zd

Nt,y t = 1, 2, ...

which will be kept finite for all t by our assumptions. It is easy to show that |Nt|/|a|t is a
martingale, where

|a| =
∑

y

ay, ay = P [A0,y], (2.1)

1Talk at “Random processes and systems”, February 16–19, Kyoto University.
2[e-mail] nobuo@math.kyoto-u.ac.jp, [URL] http://www.math.kyoto-u.ac.jp/ e nobuo



so that |a|t can be considered as the mean growth rate of |Nt|. We first investigate whether
the limit:

|N∞| def= lim
t→∞

|Nt|/|a|t (2.2)

vanishes almost surely or not. Our results on the positivity of (2.2) can be summarized as
follows (cf. [Yo08a]):

i) If d ≥ 3 and the matrix At is not “too random”, then, |N∞| > 0 with positive probability.

ii) In any dimension d, if the matrix At is “random enough”, then, |N∞| = 0, almost surely.
Moreover, the convergence is exponentially fast.

iii) For d = 1, 2, |N∞| = 0, almost surely, under mild assumptions on At. Moreover, the
convergence is exponentially fast for d = 1.

We will refer i) as regular growth phase, and ii)—iii) as slow growth phase. In the regular
growth phase, |Nt| grows as fast as its mean growth rate with positive probability, whereas in
the slow growth phase, the growth of |Nt| is slower than its mean growth rate almost surely.
There is a close connection between the growth rate of |Nt| and the spatial distribution of
the particles:

ρt(x) =
Nt,x

|Nt|
1{|Nt|>0}, x ∈ Zd (2.3)

as t ↗ ∞. The connection is roughly as follows (with some technical assumptions disre-
garded).

(iv) The regular growth implies that, conditionally on the event {|N∞| > 0}, the spatial
distribution (2.3) has a Gaussian scaling limit togeter with the delocalization property:

lim
t→∞

sup
x∈Zd

ρt(x) = 0, in probability. (2.4)

cf. [Na08].

(v) In contrast to (iv) above, the slow growth triggers the path localization (cf. [Yo08b]). In
the slow growth phase, there exists c ∈ (0, 1) such that,

{|Nt| > 0 for all t ∈ N} =

{
sup
x∈Zd

ρt(x) ≥ c, i.o.

}
a.s. (2.5)
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Heat transport: a weak coupling approach
Stefano Olla, joint work with Carlangelo Liverani

Let us consider a region Λ ⊂ Zd, set N = |Λ|, the number of sites in Λ. At each
site we have a ν-dimensional, ν ≥ 2, nonlinear oscillator and we assume that such
oscillators interact weakly via a non-liner potential. The Hamiltonian is given by
(qi, pi)i∈Λ ∈ R2νN

HΛ
ε :=

X

i∈Λ

1
2
kpik2 +

X

i∈Λ

U(qi) + ε
X

|i−j|=1

V (qi − qj),

where U, V ∈ C∞(Rν , R). We assume the potential U is a strictly convex with
U(0) = 0 and ∇U(0) = 0, moreover it is radially symmetric (U(q) = Ū(kqk) with
c−1 ≤ Ū 00 ≤ c for some finite positive constant c. We assume V 0(q)2 ≤ CU(q). For
simplicity of notations, we choose ν = 2.

In addition to the hamiltonian dynamics, we consider random forces that con-
serve the kinetic energy of each atom, given by independent diffusions on the spheres
kpik2 = cost). In order to define such diffusions, consider the vector fields

Xi := p1
i ∂p2

i
− p2

i ∂p1
i

=: Jpi · ∂pi ,

and the second order operator
S =

X

i∈Λ

X2
i

The generator of the process is given by

Lε,Λ =: Aε + σ2S

where Aε = {HΛ
ε , ·}, the usual Hamiltonian operator.

The single particles energies are

Eε
i (q, p) =

1
2
kpik2 + U(qi) +

1
2d

ε
X

|i−j|=1

V (qi − qj).

The time evolution of these energies is given by:

(1)
dEε

i

dt
= ε

X

|i−k|=1

ji,k

where the energy currents are defined by

(2) ji,k =
1
2d
∇V (qi − qk) · (pi + pk)

Note that ji,k = −jk,i and that this is a function only of qi, pi, qk, pk.
If ε = 0 the dynamics is given by non-interacting oscillators, and consequently

the energy of each oscillator is a conserved quantity. So for ε = 0 there is a family of
equilibrium measure parametrized by the vector a = (ai)i∈Λ of the energy of each
oscillator. This is given by µΛ

a , the Liouville measure associated to the Hamiltonian
flow HΛ

0 on the surface

Σa := {q, p : ai = E0
i (q, p) =

1
2
kpik2 + U(qi)} =

O

i∈Λ

Σai .

This is also called microcanonical measure. Clearly, letting µa be the Liouville
measure on the 3 dimensional surface Σa, we have µΛ

a = ⊗i∈Λµai . By the symmetry
between p and −p it follows that µa(ji,k) = 0 for each a.



We are interested in the stochastic process of the time rescaled energies

EEE ε
i (t) = Eε

i (q(ε−2t), p(ε−2t)).

In order to define the parameters of the macroscopic evolution, consider the
dynamics of 2 non-interacting oscillators (ε = 0), each starting with the micro-
canonical distribution with corresponding energy a1 and a2. Let us denote by
Ea1,a2(·) the corresponding expectation in this equilibrium measure. This permits
us to define the following positive function on R2

+

(3) γ2(a1, a2) =
Z ∞

0
Ea1,a2 (j1,2(ωt)j1,2(ω0)) dt

We prove that γ2 ∈ C∞(R2
+). Notice that γ2 is a symmetric function of a1, a2.

Correspondingly we define the macroscopic current by the antisymmetric function

(4) α(a1, a2) = σ2(∂a1 − ∂a2)γ
2(a1, a2).

Here is our main result:

Theorem 1. In the limit ε → 0, the process {EEE ε
i }i∈Λ converges, in law, to the

stochastic process {EEE i}i∈Λ determined by the stochastic differential equations

(5) dEEE i =
X

|i−k|=1

α(EEE i, EEEk)dt +
X

|i−k|=1

σγ(EEE i, EEEk)dB{i,k}

where B{i,k} = −B{k,i} are independent standard Brownian motions.

Notice that the generator of this diffusion on RΛ
+ is given by

(6) L =
X

i∈Λ

X

|k−i|=1

°
σ2γ(EEE i, EEEk)2(∂EEEi − ∂EEEk)2 + α(EEE i, EEEk)(∂EEEi − ∂EEEk)

¢

and, for any inverse temperature β > 0, the product probability measure

(7)
Y

i∈Λ

βe−βEEEk

is stationary and reversible for the diffusion generated by (6).
By (4) we can rewrite the generator as

(8) L = σ2
X

i,k∈Λ,
|k−i|=1

(∂EEEi − ∂EEEk)γ2(EEE i, EEEk)(∂EEEi − ∂EEEk)

The process (5) is close the the one studied by Varadhan in [1]. In this paper
Varadhan proves an hydrodynamic limit, i. e. that under certain condition on the
initial distribution, for any test function G on Rd we have the convergence

(9) lim
N→∞

1
Nd

X

i

G(i/N)EEE i(N2t) =
Z

G(y)u(y, t)dy

where u(y, t) is the solution of a nonlinear heat equation

(10) ∂tu = ∇D(u)∇u

Yet our case it is not covered by such result (due to the degenacy at zero of the
diffusion coefficients and the non strict convexity of the potential of the invariant
measure). In any case the extension of Varadhan’s work to the present case would
allow to obtain the heat equation in the present setting via a diffusive limit. We
plan to work on such an extension in the future.
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Self-avoiding walk and the renormalisation group
David Brydges (University of British Columbia)

Self-avoiding walks on Zd are simple-random walk paths without self-interstections.
Self-avoiding walks of the same length are declared to be equally likely. The basic
question is how far on average is their endpoint from the origin? The lace expan-
sion has answered this in dimensions 5 and higher. For d = 2, the scaling limit
is conjectured to be SLE8/3 modulo reparametrisation. For d = 3, there are only
numerical results.

I will describe some parts of work in progress with Gordon Slade for the case
d = 4. Our immediate goal is to prove that the critical two-point function (Green
function) for a spread-out model of self-avoiding walks on Z4 decays like |x|−2 at
large distances, as it does for simple random walk.



Critical behavior and limit theorems for long-range oriented percolation
in high dimensions

Akira Sakai1

1. Motivation Oriented percolation on Zd ×Z+ is a stochastic-geometrical model defined as
follows:

• Each bond b = ((u, n), (v, n + 1)), where u, v ∈ Zd and n ∈ Z+, is either occupied or
vacant. Let b = (u, n) and b = (v, n + 1).

• We say that (x, n) is connected to (y, l), denoted (x, n)→ (y, l), if (x, n) = (y, l) or if there
is a sequence of l − n occupied bonds b1, b2, . . . , bl−n such that b1 = (x, n), bl−n = (y, l)
and bi = bi+1 for all i ≥ 1.

• Each bond ((u, n), (v, n + 1)) is occupied with probability pD(v − u), independently of
the other bonds, where D is a Zd-symmetric probability distribution, hence p ≥ 0 is the
expected number of occupied bonds per vertex. We denote by Pp the associated probability
measure, and by Ep its expectation.

Let

ϕp(x, n) = Pp
°
(o, 0)→ (x, n)

¢
, Zp(k;n) =

X

x∈Zd

eik·xϕp(x, n), ϕ̂p(k, z) =
∞X

n=0

znZp(k;n).

For Cn = {x ∈ Zd : (o, 0) → (x, n)} and C =
S∞

n=0 Cn, we have Ep[|Cn|] = Zp(0;n) and
Ep[|C|] = ϕ̂p(0, 1). We denote the radius of convergence of ϕ̂p(0, z) by |z| = mp.

We consider the following long-range model: Let α > 0 and suppose that h : Rd → [0,∞) is
a rotation-invariant bounded function satisfying the asymptotic behavior h(x) ∼ Ch|x|−d−α for
some constant Ch ∈ (0,∞). We define

D(x) =
h(x/L)P

y∈Zd h(y/L)
(x ∈ Zd),

where L < ∞ is the spread-out parameter which controls the breadth of the potential. Notice
that the variance of D does not exist when α ≤ 2.

It has been known that this model exhibits a phase transition: there is a pc = pc(d, α, L) ≥ 1
such that

χp := ϕ̂p(0, 1)

(
<∞ (p < pc),
=∞ (p ≥ pc),

Θp := Pp(|C| =∞)

(
= 0 (p ≤ pc),
> 0 (p > pc).

It is of great interest to investigate critical behavior and limit theorems for the observables
around p = pc:

χp ≈
p↑pc

(pc − p)−γ , Θp ≈
p↓pc

(p− pc)β, mp −mpc ≈
p↑pc

(pc − p)τ ,

Ppc(|C| ≥ n) ≈
n↑∞

n−1/δ, Zpc(0;n) ≈
n↑∞

nη.

More precisely, we are interested in the existence (in which sense?) of the critical exponents
γ, β, δ, τ, η, the dependence of their values on d, α, L and a limit distribution representing the
critical system.

1Creative Research Initiative “Sousei”, Hokkaoid University. http://www.math.sci.hokudai.ac.jp/∼sakai/



2. Results The first result is about the infrared bound on the Fourier-Laplace transform of
the two-point function ϕp:

Theorem 1 ([4]). For d > dc ≡ 2(α∧ 2), there is an L0 = L0(d, α) <∞ such that the following
holds for all L ≥ L0: there is a C = C(d, α, L) <∞ such that, for any p ∈ (0, pc), k ∈ [−π, π]d,
m < mp and θ ∈ [−π, π],

|ϕ̂p(k,meiθ)| ≤ C

1− D̂(k) + p(mp −m) + |θ|
.

It is expected that the above infrared bound does not hold for d < dc (there is some evidence
to support this expectation [6]).

Corollary 2 ([1, 2, 3, 4]). For d > dc, there is an L0 = L0(d, α) < ∞ such that mpc = 1 and
the following hold for all L ≥ L0:

χp ≥
p↑pc

(pc − p)−1, Θp ≥
p↓pc

p− pc, mp − 1 ≥
p↑pc

pc − p, Ppc(|C| ≥ n) ≥
n↑∞

n−1/2.

Here, f ≥ g means that f/g is bounded away from zero and infinity. In this sense, γ = β = τ = 1
and δ = 2.

The following theorem is the main result:

Theorem 3 ([4, 5]). For k ∈ Rd and n ∈ N, we let

kn = k ×
(

n−
1

α∧2 (α 6= 2),
(n log n)−1/2 (α = 2).

For d > dc, there is an L0 = L0(d, α) < ∞ such that the following hold for all L ≥ L0: for any
d, α, L and p ∈ (0, pc], there are constants C1, C2 ∈ (0,∞) such that

Zp(0;n) ∼ C1m
−n
p ,

Zp(kn;n)
Zp(0;n)

∼ exp(−C2|k|α∧2) (k ∈ Rd).

In particular, η = 0 in a stronger sense.

The key ingredient for the proof of Theorem 3 is a new fractional-moment method for the
lace-expansion coefficients [5], by which we can overcome difficulties due to the heavy tail of D.
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Non-Equilibrium Dynamics of Determinantal Processes
with Infinite Particles

Hideki Tanemura, Chiba University
(joint work with Makoto Katori, Chuo University)

We denote by M the space of nonnegative integer-valued Radon measures on R, which
is a Polish space with the vague topology. Any element ξ of M can be represented as
ξ(·) =

P
j∈Λ δxj(·) with a sequence of points in R, x = (xj)j∈Λ satisfying ξ(K) = ]{xj :

xj ∈ K} < 1 for any compact subset K ⊂ R. The index set Λ = N ≡ {1, 2, . . . } or a
finite set. We call an element ξ of M an unlabeled configuration, and a sequence x a labeled
configuration. As a generalization of a notion of determinantal (Fermion) point process on R
for a probability measure on M [8, 7], we give the following definition for M-valued processes.

Definition 1 An M-valued process (P, •(t), t ∈ [0,1)) is said to be determinantal with the
correlation kernel K, if for any M ≥ 1, any sequence (Nm)M

m=1 of positive integers, any time
sequence 0 < t1 < · · · < tM < 1, the (N1, . . . , NM)-multitime correlation function is given
by a determinant,

ρ
≥
t1, ξ

(1); . . . ; tM , ξ(M)
¥

= det
1≤j≤Nm,1≤k≤Nn

1≤m,n≤M

"

K(tm, x(m)
j ; tn, x

(n)
k )

#

,

where ξ(m)(·) =
PNm

j=1 δ
x
(m)
j

(·), 1 ≤ m ≤M .

The process •(t) =
PN

j=1 δXj(t) with the SDEs

dXj(t) = dBj(t) +
X

1≤k≤N,k 6=j

dt

Xj(t)−Xk(t)
, 1 ≤ j ≤ N, t ∈ [0,1), (0.1)

where Bj(t)’s are independent one-dimensional standard Brownian motions, starting from
its equilibrium measure µGUE

N,σ2 is determinantal [2]. We call the process •(t) Dyson’s model.

In this talk we first show that, for any fixed configuration ξN ∈M with ξ(R) = N , Dyson’s
model starting from ξN is determinantal and its correlation kernel KξN

is given by using
the multiple Hermite polynomials. For ξ ∈M, when limL→1Kξ∩[−L,L] converges to a locally
integrable function, the limit is written as Kξ and an M-valued process is defined such that
it is determinantal with the correlation kernel Kξ. In this case, we say that the process
(Pξ, •(t), t ∈ [0,1)) is well defined with the correlation kernel Kξ. In case ξ(R) = 1, the
process (Pξ, •(t), t ∈ [0,1)) is Dyson’s model with infinite particles. We give sufficient
conditions so that the process (Pξ, •(t), t ∈ [0,1)) is well defined, in which the correlation
kernel is generally expressed using a double integral with the heat kernels of an entire function
represented by an infinite product. The class of configurations satisfying the conditions,
denoted by Y, is large enough to carry the Poisson point processes, Gibbs states with regular



conditions, as well as µsin, the determinantal point process with the sine kernel. We also
show that the process (Psin, •(t), t ∈ [0,1)), which is obtained from the limit of equilibrium
Dyson’s model with finite particles [5], is given by

Psin(·) =

Z

M

µsin(dξ)Pξ(·) (0.2)

and that this infinite-dimensional reversible process is Markovian.
We also discuss generalizations of the above results to the other determinantal processes.
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Interacting Brownian motions with 2D Coulomb potentials

Hirofumi Osada (Kyushu University)

Interacting Brownian motions (IBMs) are infinitely numerous Brownian par-
ticles moving in Euclidean spaces with the effect of interaction potentials and
self potentials.

In this talk I consider the case that the interacting potentials are 2D
Coulomb potentials (logarithmic potentials).

I first present general theorems for the construction of IBMs with 2D
Coulomb potentials as diffusions. Second, I present a representation the-
orem of IBMs as a solution of infinitely dimensional stochastic differential
equations.

As an application, I give two examples. One is the Dyson model in infinite
dimensions and the other is the Ginibre IBMs. Both models are translation
and rotation invariant in space, and as such, are prototypes of dimensions
d = 1, 2, respectively. Their equilibrium states are thermodynamical limits of
the spectrum of random matrices called GOE, GUE and GSE (Dyson model)
and the Ginibre ensemble (Ginibre IBMs).

The dynamical properties of these diffusions are very different from one of
the IBMs with Ruelle class interacting potentials (the Gibbsian case) because
of the strong, long range effect of the logarithmic potentials. I talk about a
conjecture on this.

Kinetic limit of the weakly nonlinear Schrödinger equation
with random initial data

Herbert Spohn

Zentrum Mathematik, Technische Universität München

Abstract: We are interested in the nonlinear Schrödinger equation on the
d-dimensional lattice Zd. This is a hyperbolic evolution equation for the
complex-valued wave field √ : Zd → C and reads

i
d

dt
√(x, t) =

X

y∈Zd

α(x− y)√(y, t) + ∏|√(x, t)|2√(x, t) . (1)



α are the finite range hopping amplitudes, α : Zd → R, α(x) = α(−x).
∏ is the strength of the nonlinearity, ∏ ≥ 0. We work on the lattice, since
the equilibrium measure for (1) is ultraviolet divergent. (1) is of Hamiltonian
type. If the canonical variables are introduced through √(x) = (qx+ipx)/

√
2,

then the Hamiltonian for (1) reads

H(√) =
X

x,y∈Zd

α(x− y)√(x)∗√(y) + 1
2∏

X

x∈Zd

|√(x)|4 . (2)

One could also consider other nonlinear wave equations, but the nonlinear
Schrödinger equation is invariant under the interchange of q and p which is
of advantage in the proof.

(1) is solved as initial value problem. The initial data are random. Usually
they have infinite energy, more precisely a bounded energy per unit volume.
A standard choice would be to take √ as a Gaussian random field with
E(√(x)) = 0, E(√(x)√(y)) = 0, E(√(x)∗√(y)) = C(x−y) with bC(k) ≥ 0 and
C a function of rapid decay.

A standard approximation is to consider ∏ small and to study the first
time scale on which the nonlinearity becomes effective, which would be times
of order ∏−2 in our context. Thus, if we denote the time t covariance by
C(x− y, t) = E(√(x, t)∗√(y, t)) then one has to study the limit of

C(x− y, ∏−2t) for ∏→ 0 . (3)

The limit covariance is expected to be governed by a kinetic equation with
a cubic nonlinear collision operator. For this reason (3) is called “kinetic
limit”.

The kinetic limit seems to be of perturbative nature. Still it is surpris-
ingly difficult to prove, despite considerable efforts in the past. We will
explain on recent progress towards a proof, which is worked out jointly
with Jani Lukkarinen, University of Helsinki. For a more details we refer
to arXiv:math-ph/0807.5072.
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