RANDOM CONDUCTANCE MODELS WITH STABLE-LIKE JUMPS I:
QUENCHED INVARIANCE PRINCIPLE

XIN CHEN TAKASHI KUMAGAI JIAN WANG

ABSTRACT. We study the quenched invariance principle for random conductance models with
long range jumps on Z?, where the transition probability from z to y is in average comparable
to |z — y|~ ) with a € (0,2) but possibly degenerate. Under some moment conditions on
the conductance, we prove that the scaling limit of the Markov process is a symmetric a-stable
Lévy process on R%. The well-known corrector method in homogenization theory does not seem
to work in this setting. Instead, we utilize probabilistic potential theory for the corresponding
jump processes. Two essential ingredients of our proof are the tightness estimate and the
Holder regularity of parabolic functions for non-elliptic a-stable-like processes on graphs. Our
method is robust enough to apply not only for Z?¢ but also for more general graphs whose
scaling limits are nice metric measure spaces.
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1. INTRODUCTION AND MAIN RESULTS

Over the last decade, significant progress has been made concerning the quenched invariance
principle on random conductance models. A typical and important example is random walk on
the infinite cluster of supercritical bond percolation on Z?. It is shown that the scaling limit of
the random walk is a (constant time change of) Brownian motion on R? in the quenched sense,
namely almost surely with respect to the randomness of the media. See [2, 9, 14, 17, 20, 33,
34, 37| for related progress on this subject and [16, 32| for overall introduction on this area and
related topics. Besides i.i.d. nearest-neighbour random conductance models, recently there are
great developments on the scaling limit of short range random conductance models on stationary
ergodic media (or the media with suitable correlation conditions), see [3, 4, 5, 18, 29, 36| for
more details. Here, short range means only finite number of conductances are directly connected
to each vertex.

Unlike the short range case, there are only a few results concerning quenched invariance prin-
ciple for long range random conductance models due to their fundamental technical difficulties.
There is a beautiful paper by Crawford and Sly [27] that obtains the quenched invariance princi-
ple for random walk on the long range percolation cluster to an isotropic a-stable Lévy process
in the range 0 < a < 1. While [27] proves the invariance principle for a very singular object
like the long range percolation, the arguments heavily rely on the special properties (see for
instance |13, 15, 26] for related discussions) of the long range percolation and cannot be easily
generalized to the setting of general (long range) random conductance models.

In this paper, we will discuss the quenched invariance principle on long range random con-
ductance models. In particular, we consider the case where the conductance between = and
y is in average comparable to |z — y|~(4t®) with o € (0,2) but possibly degenerate. In this
setting, there is a significant difficulty in applying classical techniques of homogenization for
nearest-neighbour random walk (in random environment) due to the existence of long range
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conductances. To emphasize the novelty of our paper, we first make some remarks. Some
more details and technical difficulties of our methods are further discussed in the end of the
introduction.

(i) The well known harmonic decomposition method (also called the corrector method in
the literature) has been widely used for the nearest-neighbour random walk in random
media, see [2, 3,4, 5,9, 14, 18, 37]. Because of the lack of L? integrability, such method
does not work (at least in a straightforward way) for our long range model here.

(ii) Due to singularity in the infinite cluster of long range percolation, [27] established
the quenched invariance principle of the associated random walk in the sense of weak
convergence on L? (not the Skorohod topology) and only for the case 0 < aw < 1. In
the present paper, we can justify quenched invariance principle of our model under the
Skorohod topology for all « € (0,2). (To be fair, the long range percolation is “more
singular”, and it is not included in our conductance model.) Moreover, compared with
[22|, we can prove the quenched invariance principle for the process with fixed initial
point, see e.g. Remark 4.6 below.

(iii) Our approach is to utilize recently developed de Giorgi-Nash-Moser theory for jump pro-
cesses (see for instance [7, 23, 24, 25|). While detailed heat kernel estimates and Harnack
inequalities are established for uniformly elliptic a-stable-like processes, the arguments
rely on pointwise estimates of the jumping density (conductance in this setting), which
cannot hold in our setting unless we assume uniform ellipticity of conductance. Fur-
thermore, as will be shown in the accompanied paper [19], Harnack inequalities do not
hold (even for large enough balls) in general on long range random conductance models.
By these reasons, highly non-trivial modifications are required to work on the present
random conductance setting. Roughly speaking, in this paper we are concerned with
the long rang conductance model with some large scale summable conditions on the
conductance, which in some sense can be viewed as a counterpart of the so-called “good
ball condition” in [6, 8] to the non-local setting. We believe that our methods are rather
robust and could be fundamental tools in exploring scaling limits of random walks on
long range random media.

(iv) The advantage of our methods is that they do not use translation invariance of the
original graph (we do not use the idea of “the environment viewed from the particle”);
hence they are applicable not only for Z¢ but also for more general graphs whose
scaling limits are nice metric measure spaces. Even in the setting of Z%, our results
can apply to the case that the conductance is independent but possibly degenerate and
not necessarily identically distributed; that is, our results are efficient for some long
range random walks on degenerate non-stationary ergodic media. The disadvantage is,
since we use the Borel-Cantelli lemma to deduce quenched estimates, the arguments
require “strong mixing properties” of the random conductance (see (5.4)—(5.10) below).
Hence our method cannot be generalized to general stationary ergodic case on Z¢.

To illustrate our contribution, we present the statement about the quenched invariance prin-
ciple on a half/quarter space F := IR{‘il x R% where di,dy € NU {0}. The readers may refer

to Sections 4 and 5 for general results. Let L := Zil x Z% and let Ep, be the set of edges
associated with L. Consider a Markov generator

(11) L2 f(a) = ()~ fla) 2Ae) weL

y€eL

where d = di + da, a € (0,2) and {w,y(w) : z,y € L} is a sequence of random variables such
that wyy(w) = wye(w) > 0 for all  # y. We use the convention that w, . (w) = w;L(w) = 0
for all z € L. Let (X{)i>0 be the corresponding Markov process. For every n > 1 and w € ,
we define a process x™ on V, = n~ 'L by Xt(")’“J = n"tX%, for any t > 0. Let ]Pé”)"" be
the law of X™* with initial point © € V,,. Let Y := ((Yy)i=0, (P} )ser) be a F-valued strong
Markov process. We say that the quenched invariance principle holds for X“ with limit process
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being Y, if for any {x, € V;, : n > 1} such that lim,,_,o x, = x for some = € F, it holds that
for P-a.s. w € Q2 and every T' > 0, IPSCT:L)’M converges weakly to PY on the space of all probability
measures on Z([0,T]; F'), the collection of cadlag F-valued functions on [0,7] equipped with
the Skorohod topology.

Theorem 1.1. Let d > 4 —2a. Suppose that {w,, : (x,y) € EL} is a sequence of non-negative
independent random variables such that Ew,, =1 for all z,y € L,

(1.2) sup  P(wg, =0) <27*
z,y€L,z#y
and
(1.3) xs;gLE[wgf’y] < 00, mSEELE[wizq]l{w”*Vo}] < 00

forp,q € Z4 with
(1.4) p>max{(d+2)/d,(d+1)/(22-a))}, ¢>(d+2)/d.
Then the quenched invariance principle holds for X with the limit process being a symmetric

a-stable Lévy process Y on F with jumping measure |z| =4~ dz.

Remark 1.2. When a € (0,1), the conclusion still holds true for d > 2 — 2a, if p >
max {(d +2)/d,(d+1)/(2(1 — @))} and ¢ > (d + 2)/d. See Proposition 5.6 for details.

The probability 274 in (1.2) is far from optimal. In fact, it can be replaced by the critical
probability to ensure that condition (4.15) (with V;, = n~'LL and m,, being the counting measure
on V;,) holds almost surely. However, we do not know what exact value of this critical probability.
We note that the integrability condition (1.4) is far from optimal too, and we also do not even
know what could be the optimal integrability condition.

Here is one simple example that satisfies (1.2) and (1.3): for each distinct z,y € Z¢,
P(wsy = |z —yl*) = Bz —y|**) ", Plwey = |z —y[7°) = @Bz —y*)7",
P(wsy =0) =27, Plwey = g(,9)) = 1= Bla —y[*) 7" = Bz —y[**)~! - 277,

where €, > 0 and g(z,y) are chosen so that Ew,, = 1. (It is easy to see that ¢™! < g(z,y) < ¢
for some constant ¢ > 1.)

In the end of the introduction, let us briefly discuss technical difficulties and the ideas of
the proof. There are two essential ingredients in our proof; namely the tightness estimate and
the Holder regularity of parabolic functions for non-elliptic a-stable-like processes on graphs.
In order to obtain the former estimate, we first split small jumps and big jumps, which is a
standard approach for jump processes, and then change the conductance to the averaged one
outside a ball (we call it localization method). By this localization and the on-diagonal heat
kernel upper bound (Proposition 2.2), we can apply the so-called Bass-Nash method to control
the mean displacement of the process (Proposition 2.3). The tightness estimate (Theorem 3.4)
is established by comparing the original process, truncated process and the localized process.
We note that when 0 < o < 1, tightness can be proved in a much simpler way using martingale
arguments (Proposition 3.5). The key ingredient for the Holder regularity of parabolic functions
(Theorem 3.8) is to deduce the Krylov-type estimate (Proposition 3.6) that controls the hitting
probability to a large set before exiting some parabolic cylinder. Once these estimates are
established, we use the arguments in [22] to deduce generalized Mosco convergence, and then
obtain the weak convergence (Theorem 4.5).

2. TRUNCATED a-STABLE-LIKE PROCESSES ON GRAPHS

In the following few sections, we fix graphs and discuss a-stable-like processes on them.
Hence we do not consider randomness of the environment. With a slight abuse of notation, we
still use wy, as the deterministic version. Let G = (V, Ey) be a locally finite and connected
graph, where V is the set of vertices, and Fy the set of edges. For any = # y € V, we write
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p(z,y) for the graph distance, i.e., p(x,y) is the smallest positive length of a path (that is, a
sequence rg = x,x1,- - ,2; =y such that (x;,2,41) € Ey for all 0 < i < 1—1) joining  and y.
Set p(z,z) =0 for all z € V. We let B(z,r) = {y € V : p(z,y) < r} denote the ball in graph
metric with center z € V' and radius > 0. Let u be a measure on V such that p, := p({z})
satisfies for some constant cp; > 1 that

(2.1) e Spr<eym, z€V.

For each p € [1,00), let LP(V;pu) = {f € RY : Y, oy |f(2)[Ppe < oo}, and denote by || f|, the
LP norm of f with respect to pu. Let L°°(V;u) be the space of bounded measurable functions
on V, and let || f||o be the L norm of f. We assume that (G, u) satisfies the d-set condition
with d > 0, i.e., there exist rg € [1,00] and c¢¢ > 1 such that

(2.2) e < p(B(x,7)) < cgrt, eV, 1< <rg.
We consider the operator Lf(x) =3 .y (f(2) — f(a:))p(;}z%uz and the quadratic form
1 Wy,
D(f.f)=5 >, (f@) - f(y))QWuxuy, feZ={fel’V;p):D(f [) <},
z,yeV ’

where a € (0,2) and {w,, : z,y € V} is a sequence such that w, , =0 forallz € V, wy, >0
and wy , = wy, for all x # y, and

Wy Y
o P,y)

Here by convention we set 0/0 = 0. According to (the first statement in) [22, Theorem 3.2],
(D, Z) is a regular symmetric Dirichlet form on L?(V;u). Let X := (X¢)¢>0 be the symmetric
Hunt process associated with (D, F). Set Cy. := wyy/p(z,y)?+®. Under P, Xy = z; then the
process X waits for an exponentially distributed random time of parameter C,, := ZyEV Cpylty
and jumps to point y € V' with probability Cy ,pty/Cy; this procedure is then iterated choosing
independent hopping times. Such a Markov process is called a variable speed random walk on
V.

We write p(t, z,y) for the heat kernel of X on V; that is, the transition density of the process
X with respect to p which is defined by p(t, z,y) = u;lPx(Xt =y).

2.1. On-diagonal upper estimates for heat kernel. In this subsection, we are concerned
with the truncated Dirichlet form corresponding to (D, .%#). For fixed 1 < § < r¢, define the
Wz, x

operator L f(zx) = D reVip(zm)<o (f(2) - f(:c))W,uz. Then, the associated bilinear form
is given by
s 1 2 Way
D=5 D, (f@) = W) =ttty
2 ; p(z,y)
z,yeVip(z,y)<6
Throughout this part, we always assume that

— _ Way
24 Cras=sp 2. Syt <
yeVip(z,y)>6

By (2.4) and the symmetry of w; ,, we can easily see that for all f € 7,
Wy,
D(f.HSDU HSDF H+2D f@)f e Y. ——L—puy < D°(f, )+ 20,4l f13:

d+a
zeV yeVip(y,z)>68 Pz, y)

Consequently, (D?,.%) is also a regular and symmetric Dirichlet form on L?(V; ). Denote by
X% := ((X?)t=0, (Pz)zev) the associated Hunt process, which is called the truncated process
associated with X in the literature.

In order to get on-diagonal upper estimates for the heat kernel of the truncated process X?,
we need the following scaled Poincaré-type inequality. In the following, given a sequence of
w:={wyy :x,y € V}, for every x € V and r > 1, we set BY(x,r) :={z € B(z,r) : wg, > 0}.
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Lemma 2.1. Suppose that there exist constants C1,Cy > 0 and 1 < rg < rg such that

(2.5) sup Z w;ll/ < Cyrd
zeV yEBY (z,r0)

and

(2.6) inf j(B*(2,70)) > Corf,

where C1 and Cy are independent of ro and rg. Then there is a constant C3 > 0 (also indepen-
dent of 1y and rg) such that for all x € V and measurable function f on V,

en 2 UE-Npeee)u: <Gt > (f2) = 1)

z€B(z,ro) z€B(z,ro),y€B(x,2r0)

where for ACV, (f)a = u(A) " Y en f(@)pa

Proof. For every x € V and measurable function f on V', we have

1 2
> GC - WeeemPi= Y Cgaprgy o UG = Iwk) w

z€B(x,r0) z€B(z,ro) yEBY(z,rog)

<y [( > UC I s ) () w;;mz,y)d*“)}

0 z€B(z,r0) YyEBY(z,r9) yeEBY (2,70)

< cgrg T < sup Z w;},) ( Z (f(z) — f(y))2@%>

2€V yEBY(z,rg) 2€B(z,r0),y€B(z,210)

< 3 Z (f(Z) - f(’y))Q%ﬂzﬂy,

ZGB(%TO)JJEB(LQTO) p(’z7 y

Wz,y

p(z, gyl

where the first inequality follows from (2.1), (2.6) and the Cauchy-Schwarz inequality, in the
second inequality we have used the fact that p(z,y) < ¢ for every y € B¥(z,7¢), and the third
inequality is due to (2.1) and (2.5). This proves (2.7). O

In the following, we denote by p°(t,z,y) the heat kernel of X?°.

Proposition 2.2. Suppose that (2.4) holds, and that there exist constants 6 € (0,1) and
C1,Cy € (0,00) (which are independent of 6 and rg) such that for every 6 <r <4,

(2.8) sug Z w;; < Oy,
2V yeBv (a,r)
(2.9) gg‘f/,u(Bw(x,r)) > Cyr?
and
wxvy 2—a
2.10 su —— <Oy
(2.10) :pe\g Z p(z,y)tto—2 '

yeVip(y,x)<r

Then, for each 0" € (0,1), there is a constant o > 0 (which only depends on 0" and 0) such that
for all 6o <0 < rg,

(2.11) Ptz y) < Cst= >, V257> <t < 6% and z,y €V,
where C3 is a positive constant independent of dg, 6, t, x, y and rq.

Proof. The proof is partially motivated by that of [6, Propisition 3.1], but some non-trivial mod-
ification is required. Without mention, throughout the proof constant ¢; will be independent of
§,t, x, yand rg. Since, by the Cauchy-Schwarz inequality, p° (¢, z,y) < p°(t, z, )20 (t,y,y)/?
for any t > 0 and z,y € V, it suffices to verify (2.11) for the case that x = y. The proof is split
into three steps.
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Step (1): We first note that under (2.4) and (2.10), supgey > ey /&%uy < o0o. This

along with (the second statement in) [22, Theorem 3.2] yields that the process X? is conservative.
By [28, Proposition 5 and Theorem 8], we have the following upper bound for p° (¢, z,y):

5 —1/2, —1/2 . _
t < f + b(o)t
(2.12) p°(t,x1,x2) [T Vo ¢€Lg}(v;#) exp ((f)(xl) o(x2) (p) )

for all t > 0 and x1,x2 € V, where

1 w
b = — su E _TrY €¢(y)*¢(5’3) + eﬁb(x)*d)(y) -9

(¢) xeg X p(l‘, y)d+o¢ ( )Ny
yEV:p(y,2)<d

For fixed x1, 22 € V, taking ¢(z) = p(z,x1) A p(z1,x2) for any z € V, we get that

1 w
gy B e T 2
zEV?JE‘/:l)(y7I)<(s P\, Yy
1 w
< g sup #p(% y)2e’ W,
erer:p(yw)g(s P\Y,
L s Wy y 52— 25
< =€’ sup —— Ty < €1€°0°7 Y < 2¢1€,
2" Lev p(x,y)dra—2"

yeV:ip(y,x)<6

where in the first inequality above we have used the facts that s — e® + e~ is increasing on
[0,00) and |p(z) — ¢(y)| < p(x,y) for all z,y € V, the second inequality is due to the fact that
ef+e7% —2 < s%e® for all s > 0, and the fourth inequality follows from (2.10). Combining this
with (2.12), we arrive at that for all t > 0 and 1,22 € V,

(2.13) pa(t 71, %2) < Cpp exp ( — p(z1,22) + 20162575)

Furthermore, it follows from the symmetry of w,.,, the fact that p’(t, =, y)u, < 1 for all t > 0
and z,y € V, (2 10) and (2.13) that for every z € V,

Z (p‘s(t,a;,z) _Pé(tﬁvv))Q%/&Mv

z,0EV :p(2,0)<6 p(

5 5 2w
< Y (Pt + P () Wﬂzﬂv
2,0EV :p(z,0)<d

Wz v
4cMZp tmz)(sup Z W)

zeV z€V vEV :p(v,2)<8
w
< ey Zp t,x z)(sup Z W) < e2(,t) Zexp(—P(Z,x)) < 00,
zeV 2€V veEV:p(2,0)<d PA%

where in the last inequality we used the fact that

dexp(—plza) <emd, D e CMZ,U CMCGZre < 0.

zeV r=02eV:p(z,z)=r r=1
Therefore, according to the Fubini theorem and (2.13), for every z € V,
1 2 W
(214) D LW (L2 )@t e pe =5 Y (0t 2) —p(t3,v)) pe
zeV zZ,veV P

Step (2): Below we fix x € V. Let fy(2) = p(t,x,2) and ¥ (t) = p°(2t,x,z) for all z € V
and t > 0. Then, ¥(t) =Y,y fi(2)?p., and, by (2.14),

) =23 P p oy =2 S L e = () - i)V ety

z
zeV zeV z,yeV ( Y

Let 6% < r(t) < 6 and R := R(J) > 1 be some constants to be determined later. Suppose that
B(x,r(t )/2) (¢=1,---,m) is the maximal collection of disjoint balls with centers in B(x, R).
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Set B; = B(x;,r(t)) and B} = B(x;,2r(t)). Then, B((E,R) C U™,B; C B(z,R+r(t))
U™, Bf; moreover, if z € B(z, R + r(t)) N B for some 1 < ¢ < m, then B(z;,r(t)/2)
B(z,3r(t)), and so

C
C

car(t)? = (B2, 3r(t Z]l{zeB u(B(zi,r()/2)) = ear(t)’i: 2 € B},

where in the second inequality we used the fact that B(x;,r(t)/2), i = 1,--- ,m, are disjoint,
and in the first and the last inequality we have used (2.2). Thus, every z € B(z, R+ r(t)) is in
at most ¢ := c3/cq of the ball B} (hence at most ¢ of the ball B;). In particular,

(215) > > = > A= ), D ipkE)<e Y,

=1 z€B; i=1 ze B(z,R+r(t)) z€B(z,R+r(t)) i=1 z€B(z,R+r(t))

According to (the proof of) Lemma 2.1, (2.8) and (2.9) imply that for every 6 <r <65,z €V
and measurable function f on V,

(2.16) Z (f(2) - (f)BW(z,r))Q,Uz < cer® Z (f(z) - f(y))Qi’%_mﬂzNy

z€B(z,r) 2€B(z,r),y€B(x,2r) 'O(Z’ y)

Hence, noticing that §% < r(t) < 4,

Z (fe(2) _ft(y))27€i+a,uzﬂy = Cl Z Z Z fe(z ) ﬁ%ﬂzﬂy

o=t p(z:y) y)

[Zth —QZth (ft) B (zr(t)) 1 } =: T(c;)a(fl—b),

=1 z€B; i=1 z€B;

where in the second inequality we have used (2.16).
Furthermore, since f;(z)p, < 1 for all z € V and ¢t > 0, we have

Yo Rz Y FEp=vt)- > e v > fil2)
z€eU | B; z€B(z,R) 2€Vip(z,x)>R z€Vip(z,z)>R
So, by (2.13), we can choose R := R(§) = 2c1e* such that for all §%* <t < 6%,
Z fi(z) < Z exp (— p(z, @) + 20162550‘)

z€Vip(z,z)>R 2€V:p(z,x)>2c1 €40

<cpm Z exp ( —p(z, ac)/2)uz

2€V:p(z,x)>2c1 €49

<cem Z w(B(z,7)e™? < egd™? < egr(t) 7Y,

r=2c1e4d

where the last inequality follows from the fact that r(¢) < d. On the other hand, due to (2.9)
and the fact that ) i fi(2)p. <1 for all t >0,

Su‘g(ft)Bw(z,r(t)) < SH‘BM(BW(ZW(U))_I e < Cy ()7
ze ze

zeV
This along with (2.15) yields that

I, dz Z fi(z Cy tesr(t) ™ Z fi(2)pe < Cytesr(t)™2

i=1 z€B; z€B(z,R+r(t))

Therefore, combining all estimates above, we arrive at that for every 6% < r(t) < 4,

(2.17) W (t) < —cor(t)® (1/)(75) - clgr(t)_d> :



8 XIN CHEN TAKASHI KUMAGAI JIAN WANG

Step (3): For any 0’ € (0,1) and any 1 < § < rg large enough, we claim that there exists
to € [67%,6%¢] such that

] S
2.18 —(t > 0",
(2.18) (55-000))
Indeed, suppose that (2.18) does not hold. Then,
1 —1/d ,
2.19 ——a(t <8, vl <t
2c
10

which means that 1(t) > 2¢106~% for all 6% < t < 6% Hence, taking r(t) = 6% in (2.17),
we find that ¢/(t) < —2 legd?4(t) for any 6% < t < 679, which along with the fact
P(t) < pyt < ey for all t > 0 yields that ¥(t) < cape—2 ead TP (t=8%) fop any 67 <t < 6% In
particular, w(éela) < cMe*2_1‘395_9a(59/a*59a). On the other hand, according to (2.19), we have
@0(59/") > 2¢106~%. Thus, there is a contradiction between these two inequalities above for &
large enough, and so (2.18) is true.

Next, assume that we can take 1 < § < rg large enough such that (2.18) holds. Since
t — 9(t) is non-increasing on (0, 00) and ty < 6%,

1 —1/d :
(¢(t)> >67, Vol <t <o
2610

Let
1 ~1/d
to == sup{t>0: <¢(t)> <5/2}.
2¢10

By the non-increasing property of 1 on (0,00) again, if fy < 6% then P(t) < Y(ty) =
2¢10(6/2)7% < et~ for any 8% < ¢ < 6. This proves (2.11).
When 'EQ > 5010‘7

1 ~1/d , N
6% < (zp(t)> <6/2, V'Y<t <o
2010

Then, taking r(t) = ( L 1/J(t))_1/d in (2.17), we have ¢/ (t) < —e12p(t) 1% for any 67 <t <

2c10
to. Hence, 9(s) < c13 (s — 0« +¢(69/0‘)—0‘/d) —d/a < cpas™ Y for any 269 < s <ty If p > 62,
then (2.11) holds. If 8% < iy < 6, then, for all #H < s < 6%, 9(s) < ¥(ty) = 2¢10(6/2)% <

c155~ %% so (2.11) also holds. The proof is complete. O

2.2. Localization method and moment estimates of the truncated process. In this
part, we fix 29 € V and R > 1. Define a symmetric regular Dirichlet form (D*0% Z@0.R) a5
follows

2 Wgy

m#xﬂy, fegwon,

Aro,R _ ) —
DRt = 3 (F@) = 1) o=

z,yeV
FR —{f e LX(V;pu): DE(f, f) < oo},

where

wf”?y -

o Wey, if x € B(xo, R) or y € B(zg, R),
1, otherwise.
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Note that, according to the definition of w; ,, for any x € V,

W,y Wy We,y
—_—_— _ g + s
Z p(z, y)dte Z p(z, y)dto Z p(z, y)dto

yeV y¢B(xo,R) y€B(zo,R)
Wzv W,y
< sup —=—— 4+ sup _— 4+ —_—
2€B(z0,R) z; plz, v) e 2¢B(z0,R) ye%#z plz,y)tre y€B(xo,R) pla y)*re

W0 1
< swpH (2, v)d+a Tem sup Z > 2)d+aty

z€B(w0,R) ey, 2¢B(wo,R) . yeV: 2k~ 1< p(y,z) <2k p(ya

R

y€B(zo,R) 2€B(z0,R) ey

(2.20)

Wz v
< sup ) (2, U)d+a+cMCGZ (k—1) d+a+ > sup ) (z, v)TFa

z€B(z0,R) ey P yeB(x0,R) 2€B(20,R) yey P

Wz,v
<c+e(l+RY sup ( > =: C(x0, R) < o0,
ZGB((E(),R) 1;/ p(Z,’U)d+Oz
where (2.3) was used in the fourth inequality. In particular, by (2.20) and (the second statement
in) [22, Theorem 3.2|, the associated Hunt process X% := ((X/?)i>0, (P+)zev) is conservative.
Here and in what follows, we omit the index xg for simplicity. R
We also consider the following truncated Dirichlet form (D%0:%f gzo. Ry

DORR(ff) = 3 (f@) - fW) ey, f € PR

d+a
z,y€Vip(z,y)<R p(z,y)

Let XBR .= ((XR R)t>o, (P;)zev) be the associated Hunt process. In particular, due to (2.20)
again, the process X 1R {5 also conservative. Denote by p R(t,z,y) and pF(t, 2, y) heat kernels
of the processes X® and X® R respectively.

The following statement is concerned with moment estimates of X B.R which are key to yield
exit time estimates of the original process X in the next section. We mainly use the method of
Bass [12] (see also Barlow [6] and Nash [35]), but some non-trivial modifications are required.

Proposition 2.3. Suppose that there exist 1 < Ry < rg and 6 € (0,1) such that for every
Ry < R<rg and R? <r <R,

w%y 2—a
(2.21) sup ——— 2 < O,

x€B(x0,3R) yEVip(z,y)<r
2.22 o e - d
( ) a:eBl(I;o,?»R)M( ) .
and
. sup > wy <O,
z€B(z0,3R) yEBY(z,7)

where C1 and Cy are positive constants independent of xy, Ry, R, r and rg. Then for every
0’ € (0,1), there exists a constant Ry > Ry (which depends on 0, 6’ and Ry only) such that for
every Ri < R<rg andx €V,

. 1/2 o ,
(2.24) E,[p(X["", 2)] < C3R <Rta> [1 + log <Rtﬂ , VRVt <R,

where C3 is a positive constant independent of g, R1, R, t, x and rg.
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Proof. Throughout the proof, we first suppose that there exist positive constants ¢(xg, R) and
¢(xo, R) such that
(2.25) é(xo, R) < inf wyy < sup ey < c(zo, R).

z,yeV z,yeV

If (2.25) is not satisfied, then, by taking Wy, 1= Wgy + € and then letting € | 0, we can prove
that (2.24) still holds true. Moreover, all the constants in the proof below are independent of
€ unless specifically claimed.

Step (1): By (2.21), (2.22), (2.23) and the definition of W, for every Ry < R < r¢ and
R’ <r <R,

w%y 2—0(
2.26 sup g ——r e < crt T,
( ) zeV p(l’, y)d+a—2

yeVip(z,y)<r
infeey (B (z,7)) = c17? and sup,ey > ye B (a,r) QD;%, < cor?, where B®(x,r) := {2 € V :
p(z,x) <r, Wy, >0}. Let ¢ € (0,1) and 6y = (6 + 0") /2. Taking p = R in Proposition 2.2, we
find that there exists a constant Ry > Ry (which only depends on # and #’) such that whenever
Ry<R<rqg,

(2.27) PRt 2, y) <ot ¥, V2R <t < R, z,ye V.

For every t > 0, we define
M) =S ol a )y, QW) = — S 5P v, y) [log 5 2, 1)] 1y
yev yev

Below, we fix € V and set f;(y) = p>f(t,z,y) for all y € V and ¢t > 0.
By (2.25), we can obtain upper and lower bounds for p*f (¢, z, y) (see [28] for upper bounds
on graph or [21] for two-sided estimates in the Euclidean space), which yields that

S Ul) = AEIo8 fi(5) ~lor fi(2)

Y,2€Vip(y,2)<R

< Z (ft(y) + ft(z)) (| log fi(y)| + |log ft(Z)Dp(yi%Msz < 0.

y,2€Vip(y,2)<R

Thus,
=Y (log fily) + VLF i)y
yeVv
1 Wy
=3 > (fe(y) = fe(2)) (log fi(y) — log ft(z))W/ﬁyuz,
y,2€Vip(y,2)<R ’
where L® is the generator associated with (ﬁ“O’R’R, ﬁxO’R’R), ie.,
. Wy
LREf@) = Y (fy) — f@) 2y
p(z,y)
yeVip(z,y)<R
Therefore,
Q'(t) = - (log fiy) + VL fy(y) sy

yeVv
= % Z (fi(y) — fi(2)) (log fi(y) —log ft(z))p(;z%uyuz > 0.

y,2€V:p(y,2)<R

In particular, Q(-) is a non-decreasing function on (0,00).
On the other hand, for all Ry < R < rg, by the Cauchy-Schwarz inequality,

M'(t) =Y pla,y) L fi(y)my

yeVv
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- - - _ Wy
2 y’zev%vz)gl% (p(m’ y) p(x7 Z)) (ft(y) ft(Z)) P(y, Z)d+a Hy
1/2

S 411 Z (p(‘r7y) _p(w,z))2(ft(y)+ft(z))muyuz

¥,2€V:p(y,2)<R

1/2
(fe(y) *ft(Z))Q Wy~
- Z 7dJroz Hylbz
y,2€V:p(y,2)<R ft(y) + ft(z) p(y, Z)
1/2
CM UAJy7Z
<|osw D s
2 zev yeVip(y,2)<R Py, 2)
1/2

o 3 (fily) = fi(2))? iy

fiylt
y,2€Vip(y,2)<R ft(y) + ft(Z) p(y7 Z)dJra Y

1/2

< c3RIT/2 Z (fely) = fi(2))> by,

d+auylu’z P
y,2€V:p(y,2)<R ft(y)+ft(z) p(y,Z)

where the equality above follows from the fact

Y i) = R < oo,

¥,2€Vip(y,2)<R

thank to (2.25) again, in the second inequality we used (2.1) and the fact that ) i fi(2)p. <1
for all ¢ > 0, and in the last inequality we have used (2.26).
Noting that

(s —1)°
s+t

< (s—t)(logs—logt), s,t >0,

we have

3 (ft(y) = ful2))? by

d—l—a/“j’yuz
¥,2€V:ip(y,2)<R ft(y) + ft(Z) p(ya Z)

<X ()= ) (om i) ~lor fi()) oy = 200,

y,2€V:p(y,2)<R
Hence, combining all the estimates above, we arrive at that for all Ry < R < r¢,
(2.28) M'(t) < V2e3R'7™2Q' (1)V?, V> 0.
Step (2): (2.27) yields that for all Ry < R < r¢ and 2R% < t < R,
Q) = — [ Y. fuly) | log(eat ™) = Llogt — e,
yeV @

where ¢4 > 0 and the conservativeness of X was used in the equality above. Define
d
K(t)=d* (Q(t) +cy4— flogt), t>0.
a

Obviously, K (t) > 0 for all t € [2R%*, R*], and

(2.29) Q'(t) =dK'(t) + %, t>0.
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Set To(R) := 0Vsup{t < 2R%% : K (t) < 0}. It is easy to see that K(t) > 0 for all t € [Ty(R), R?]
and Tp(R) < 2R%“. By (2.28) and (2.29), we have for all ¢ € [To(R), R%],

M(t) = M(Ty(R)) + t M'(s)ds < M(Ty(R)) + v2cs R /2 t Q'(s)"?ds
' t d\1/2
_ 1—a/2 / ©
= M(Ty(R)) + V23R /TO(R) (dK (s) + as) ds.

Note that, by the mean-value theorem, for every a € R and b > 0 with a +b > 0,
(2.31) (a+b)Y2 <b/? 4+ a/(201/?).

Then applying (2.31) in the second term of the right hand side of (2.30) with a = K'(s) and
b= =, we obtain that for all ¢t € [TH(R), R%],

ocs’

M(©) < M(T(R) + ot [ t

t
s7Y2ds 4 s R/ / sY2K'(s) ds
To(R)

To(R)

(2.32) [(sl/zK(s))’ B 31/2K(s)] i

t
< M(TO(R)) + CﬁRl_a/2t1/2 + C5R1—a/2/
To(R)

< M(To(R)) + cgRV7211/2 4 ex R1/%HV2K (1),

2

where the last inequality we used the fact that K(¢) > 0 for all t € [To(R), R%].
Furthermore, suppose that To(R) > 0. Since Q'(t) > 0, by (2.28) and the Cauchy-Schwarz
inequality, we have

RO layz (P
M(Ty(R)) :/0 M'(s)ds < V2¢3R /0 Q'(s)/*ds

To(R) 1/2
< V23R TH(R)V? ( / Q'(s) ds>
0

< erR0=0)2(Q(Ty(R)) — (Q(0) A 0))'/2,

where in the last inequality we have used the fact that To(R) < 2R%“. By the definition of

To(R), it holds that K(Tp(R)) = 0, and so Q(Tp(R)) = (d/a)logTo(R) — ca < cs(1 + log R),

where we have used again Tp(R) < 2R%®. On the other hand, Q(0) = lim;_,o Q(t) = log 1, >
—logcpr. Thus, we can find Ry > 1 large enough such that for all R > Ry and ¢ € [RQ/ , R“],

M(Tp(R)) < cgR'1=00)/2(1 4 log R)'/? = ¢gRI=/2R%0%/2(1 4 1og R)/?

<

where in the second inequality we used the fact that 6y € (0,6’), and the last inequality is due
to t > R Note that M(0) = 0, so the above estimate still holds when Ty(R) = 0.
Therefore, combining this with (2.32), we arrive at that for all ¢ € [R?®, R?],

(2.33) M(t) < e1oR“™22(1 4 K (1)),

Step (3): Note that s(logs+t) > —e =t forall s > 0 and ¢t € R. Then, for every 0 < a < 2,
beRand t >0,

—Q(t) +aM(t)+b=">_ fe(y)(log fi(y) + ap(z,y) + b) my

yeVv

Z exp (— 1 —ap(z,y) — b)uy > —crie —bg
yeVv

(2.34)
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where the equality above follows from the conservativeness of X% and in the last inequality
we used the fact that

00 00

_ _,9k—1 _,9k—1 _
§ :e ap(a:,y)luy<cM_|_§ : 2 : e a2 Ny<0M+CG§ :2dk€ a2 QC(I d
yev k=1 ye B(xz,2%)\ B(z,2k—1) k=1

for all 0 < a < 2 (see [6, line 6-7 in p. 3056]).

According to (2.27), we could find R; > Ry large enough such that for all Ry < R < rg and

t e [RV*, RY],
M(t) = Z p(fvay)ft(y)/ﬁy > Z ft(y),uy =1- ]Poc(XtRR = x)
yev yeVip(x,y)>0
>1-— Cgtfd/a >1-—- CQRigld > 1/2.

Then, choosing a = 1/M (t) and e® = M (t)? = a=% in (2.34), we have —Q(t) + 1+ dlog M (t) >
—c11, which implies that for all Ry < R < rg and t € [R?®, R*], M(t) > c19 exp(Q(t)/d). This
along with the definition of K (t) yields that
(2.35) M(t) > c1pexp(Q(t)/d) > i3t/ *e®).
Combining (2.33) with (2.35), we obtain that for all ¢t € [R?® R?], eK(t) < c1aRY2(1 +
K (t))tY/271/ which is equivalent to

K(t) < 15 [1 +log (Rt> +log(1 + K(t))} .

This implies that for all Ry < R <rg and t € [Relo‘, R,

K(t) < e16 [1 +log (T)] |

The inequality above along with (2.33) further gives us that for all Ry < R < rg and t €
[Re’a’ Ra]’

R~ t 1/2 R
M(t) < e RV /212 [1 + log (t)] < casR <Ra> [1 + log (t>] .

The proof is complete. O

3. STABLE-LIKE PROCESSES ON GRAPHS

Let (D,.#) be a regular symmetric Dirichlet form on L?(V;p) given in the beginning of
Section 2. In particular, we assume that (2.3) holds. Let X := ((Xt)i>0, (Pz)zev) be the
associated symmetric Hunt process associated with (D,.7).

3.1. Estimates of exit time. In order to get estimates of exit time for the process X, we will
make full use of results in the previous section. We still adopt notations as before. Fix zg € V
and R > 1. According to the definition of (D%, %#%0.R) we have

(3.1) Poy (TBo,r) < 1) = Pay (+§(m B < 1),
where 74 := inf{t > 0: X; ¢ A} and 7§ := inf{t > 0: XF ¢ A} for any subset A C V.

In the following, we denote by (PtR’B(mO’R))t>O and (ptR’R’B(mO’R))@g Dirichlet semigroups of

the processes X and X R exiting B(xg, R), respectively. Let %f’R =inf{t > 0: X'tR’R ¢ A}
for any A C V.

Lemma 3.1. For any f € L>(V;u), t >0 and = € B(xo, R),

(3.2) |Pf’R’B<I°’R’f<x>—PtR’B“D’R)f(x)r<clt( sup J(y,m)( sup If(2)|>,
)

yEB(zo,R z€B(zo,R)



14 XIN CHEN TAKASHI KUMAGAI JIAN WANG

where C1 is a positive constant independent of R and xg, and
w
(33) Jy,R)= Sy aats € Bl R).
2€Vip(y,2)>R PY, =

In particular, it holds that for any t > 0 and x € B(xg, R),
(3-4) P, (%g(f B <t) Py (TBwory St <Cit sup  J(y,R).

yEB(mo,R)
Proof. Let TH = inf{t > 0: p(XF,X[) > R}. By (2.20), SUPycy D 2eVip(e)> R p(;};%uz <

0. Then, by Meyer’s construction of X' (see [10, Section 3.1]), X/ = )A(tR’R if t < TE. Hence,
for any f € L?(V; ),

PRRB zo,R ( ) t $07R)f(x)|
= [BalF(XF) 1t < 1y ) — Bl F(XPM) st <R L))
< sup |f(2)] [Px(T}? St TG m) TP (T <1< %g(’fom)}

z€B(zo,R)
<2 sup | f(2)] IPx(Tg <t, XBE € B(xg, R) for all s € [O,Tg]).
z€B(zo,R)
According to [10, Lemma 3.1(a)],
N o t
P, (Tg € dt\ﬁxR’R) = J(X*™, R) exp (— / J(XFE R) ds> dt,
0

where ZX™" denotes the o-algebra generated by XBE and

~ w z
J(y,R) = Z Wﬂm y € B(wo, R).
2€Vip(y,2)>R ’

In particular, by the definition of 1w, ,, J(y, R) = j(y, R) for all y € B(zo, R). Therefore,

P, (Tg <t,XPE ¢ B(xg,R) for all s € [o,Tg])

t r
SRR SRR
< E;p [/0 J(Xr 7R) exp <_ /0 J(Xs 7R) ds) ]I{XSR’RGB(Q:O,R) for all s€[0,r]} dr

<at sup J(y,R).
yEB(CC[),R)

Combining all the estimates above, we can obtain (3.2). (3.4) is a direct consequence of (3.2)
by taking f =1 on B(zg, R). O

Proposition 3.2. Assume that for some 0 € (0,1), there exists Ry > 1 such that for every
Ry < R<rg and R <r < R, (2.21), (2.22) and (2.23) as well as

W,y -
(35) sup Z W < ClR @
2€B(z0.R) ey p(zy)y>r TV

hold, where C1 > 0 is a constant independent of xg, Ry, R, r and rg. Then

(i) for any 0" € (0,1), there is a constant Ry > 1 (which only depends on 0, 0', Ry and r¢)
such that for every R1 < R < rq,

t 1/2 ROé 9/
(36) IPzO (TB(:BO,R) ) Cy <Ra> |:1 V log (t>:| , t>2R 0‘7

where Cy is a positive constant independent of xg, R1, R, t and r¢g.
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(ii) for any e > 0, there is a constant Ry > 1 (depending on 0, Ry, rg and €) such that for
all Ry < R < rg,
Cg(é‘)t
R 7
where C3(e) is a positive constant independent of xo, R1, R, t and rg. In particular,
the process X 1is conservative.

(3.7) ]P:ro (TB(xo,R) < t) Le+ t >0,

Proof. Step (1): It immediately follows from (3.5) that

(3.8) sup J(y,R) <R %,
yEB(zo,R)

where J(y, R) is defined by (3.3).
_ Since (2.21), (2.22) and (2.23) are true, by (2.24), for any ¢' € (6,1), there is a constant
R1 > 1 such that for all Ry < R<rgand z € V,

- R R t 1/2 Ra i 9la a
E[p(X*"2)] <5z )  [14+1og ()|, ¥R <t< R
Hence, by the Markov inequality, for all z € V and RV <t < R™ /2,

sup PP, <p(X'va7x) > g) < c3 <];)1/2 :1 + log (R:>] )

s€[t,2t]

Therefore, for all R”* <t < R%/2,

R,R \R.R ~R.R R ~R.R R
Poy (7 ) < 1) < Pug (70 < tip(X3p " 20) < ) + Pag (p(X50 " 20) > 5)
<E, |1,.rr Porr (p(XR’RRR XR’R)>E>
| nlg.m <t X kR 2Tyl 2

"B(zq,R)

raa(p) e ()]

SRR E L 1/2 E
<sup um Poo 0 > 5) o) oo ()

< 2¢3 (%) 2 [1 + log (T)] .

Combining this with (3.1), (3.4) and (3.8) yields that for all R < R < rg and R"® <t <
R%/2,

£ \1/2 R . 12 Ro
Poo (TB(ao.r) < 1) < 263(@) [1 +log <t>} + %a < c5(@) {1 Vlog (t)] .

Thus, (3.6) has been verified for all R”® <t < R*/2. When t > R®/2, it holds that

2t \1/2 R«
Pz, (TB(xo,R) < t) <1< (ﬁ) [1 V log (tﬂ )

Hence we prove (3.6).

Step (2): Fix ¢ € (0,1). By (3.6) and Young’s inequality, there is a constant R; > 1 such
that for every Ri<R<rg t> R?® and ¢ > 0, P, (TB(xO7R) < t) < 27le + cp(e)tR™. If
0 < ¢t < R, then, taking Ro(e) > Ry large enough, we obtain that for all Ro(e) < R < rg,
P, (TB(me) < t) < Py, (TB(zovR) < Rela) < 27 le 4 06(5)R_(1_9/)°‘ < e. Combining both
estimates above together, we know that for all Rg(a) <R<rgandt>0, Py, (TB(me) < t) <
€ + ¢7(e)tR™®, which implies that (3.7) holds. O
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We are now in a position to present the main result in this subsection. For this, we need the
following assumption on {wy y : z,y € V'}, which is regarded as the summary of all assumptions
in the statements before. For any x,z € V and r > 0, denote BY (z,r) := {u € B(x,r) : Wy . >
0}. In particular, B¥(x,r) = B¥(x,r).

Assumption (Exi.) Suppose that for some fized 0 € (0,1) and 0 € V, there exists a constant
Ry > 1 such that the following hold.

(i) For every Ry < R < rg and R9/2 <r <2R,

w
(3.9) sup —Y L Chr?—e,
+€B(0,6R) yev:%y)gr p(x, y)dta=?
(3.10) w(BY (xz,r)) = cop(B(z,7)), x,2z¢€ B(0,6R)
and
(3.11) sup Z w;; < O,

z€B(0,6R) yEBY (z,c.7)

where ¢y > 1/2 is independent of Ry, R,r,x and z, and ¢, := 862G/d.

(ii) For every Ry < R < rg and r > RY/2,
wxvy —Q
3.12 sup Y. o ama <O
( ) z€B(0,6R) YEVip(z,y)>r p($, y)
Here Cy is a positive constant independent of Ry, R and rq.

Lemma 3.3. Let ¢, be the constant in Assumption (Exi.)(i). Under (3.10) and (3.11), for
every Ry < R < rg/(2¢.) and R’/2 < r < 2R,

3 wff,y -«
(313) inf E 7(1_’_0( 2 CQ?” s
=€B(06R) yeVip(x,y)>3r p((l?, y>

where Cy > 0 is independent of Ry, R and rg.

Proof. Noting that ¢, > 4, for every x € V and 1 < r < rg/cs, we have
3 y > 1(BY (2, 1)) — u(B(w, 4r)) > cocg! (er) — ca(4r)® > exr,
yeV:3r<p(z,y)<car,we,y >0

where we have used (2.2) and (3.10).
On the other hand, for every Ry < R < rg/(2¢.), x € B(0,6R) and R?/2 <r < 2R,

> (X wm) (Y )

yeV:3r<p(z,y)<csr,We,y >0 yEBY (z,c*r) yeV:3r<p(z,y)<cxr

< czrd/2< Z w%y) 1/2’

yeV:3r<p(x,y)<csr

where in the first inequality we have applied the Cauchy-Schwarz inequality, and we used (3.11)
in the last inequality.
Combining both estimates above together yields that for every Ry < R < rg/(2¢4), © €

B(0,6R) and R%/2 < r < 2R, D oyeVsr<ploy)<cor Way = c3r?, and so

wz7y w%y —d—« —
Z p(l‘ y)d+a> Z p(ﬂj’ y)d+a > (C*T') Z wx,y 2 C4T .
yeV:p(x,y)>3r ’ yeV:3r<p(x,y)<csr ’ yeV:3r<p(z,y)<csr
Thus, (3.13) is proved. O

Theorem 3.4. If Assumption (Exi.) holds with some constant 6 € (0,1), then, for every
0’ € (0,1), there exist constants 6 € (0,1) and Ry > 1 such that for all Ry < R < rg/(2¢4) and
R <r<R,
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(1)
1
(314) sup IPx (TB(m,r) < COTa) < 17
z€B(0,2R)
where Cy > 0 is a constant independent of Ry, R1, R and r.
(2)
t 1/2 Ta /
P, <t)<Ci(— ) [1Vieg(—)|, t=r"
(3.15) Iy, (TB(a) <t) Cl(ra) { og( : )] r
and
Cor* < inf I, 2| < E; | < O,
(3.16) oS Belrmen] < _sup Balrnen] < Cir

where C1,Co are positive constants independent of Ry, R1, R, v, t and rq.

Proof. Suppose that Assumption (Exi.) holds with some 6 € (0,1) and Ry > 1. Then, for any
<6 <0 <1, Ry < R<rgand R < s <R with § = /0, we know that (2.21), (2.23)
and (3.5) hold uniformly (that is, they hold with uniform constants) for every s < r < s and
xo € B(0,2R). Hence, according to (3.6) and (3.7), we obtain that for every ¢’ € (6,1), there
exists a constant R; > Rp such that for each R; < R < r¢ and R® <r < R, (3.15) and
1 t
(3.17) sup Py (Tpam <1) <+ o, ViE>0
2€B(0,2R) 8 r
hold true. In particular, taking t = (8¢;)~1r® in (3.17), we get (3.14) immediately.
Let Cp be the constant in (3.14). For any R > Ry, « € B(0,2R) and R® < r < R, we have

0o Cor®
E[TB(zm] = /0 P (752, > 8)ds = ; P (B2, > 5)ds
3Cyre
2 Cor®Pu(7p(zm) > Cor®) = Zr :

This gives us the first inequality in (3.16). On the other hand, let ¢, be the constant in
Assumption (Exi.)(i). By the Lévy system (see [24, Appendix A]), for any Ry < R < rg/(2¢x),
x € B(0,2R) and RO <r <R,

TB(z,r) wXS,
U3 P € Bl 2) =Be | [0S e
0 yeVip(z,y)>2r ®

T xr,T
> R e E _ WXy ds
= by e 0 P(Xs y)d+a
yeVip(y,Xs)>3r ’

w
P C]T/[l inf Z % Ey [TB(x,r)] > cor” I, [TB(x,T)]a
vEB(0,2R+7) Vi) >5r p(v,y)
where in the last inequality we have used (3.13), also thanks to the fact that 6 = 6/6; > 6.
Thus, we also prove the third inequality in (3.16). ([

When « € (0,1), we can obtain a probability estimate such like (3.7) for the exit time in a
more direct way under the following assumption.
Assumption (Exi.”) Suppose that for some fixred 0 € (0,1) and 0 € V, there exists a constant
Ry > 1 such that

(i) for every Ry < R < rg and R’/2 < r < 2R,

(3.18) sup %1 <Oyl
z€B(0,6RR)

and (3.11) hold.

yeVip(z,y)<r
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(ii) (ii) in Assumption (Exi.) is satisfied.
Here C1 is a positive constant independent of Ry, R and rg.

Proposition 3.5. Under (3.18) and (ii) in Assumption (Exi.), there exists a constant Ry > Ry
such that for all Ry < R <rg, * € B(0,2R), R <r < R andt >0,

(3.19) Po(7B(z,r) <) < !

o’
where Cy > 0 is a constant independent of Ry, R, r, x, t and rq.

Proof. Fix x € B(0,2R). Given f € C}([0,00)) with f(0) = 0 and f(u) =1 for all u > 1, we
set for(2)=f (M) for any z € V and r > 0. For any r > 0,

t
{fx,r(Xt) — fer(Xo) — /0 Lfyr(Xs)ds, t > O}

is a local martingale. Then, for any t > 0 and x € V,

IATB (z,r)
]Px(TB(:c,r) < t) gExfa:,r(Xt/\TB(LT)):E:): |:/ fo,r(Xs) d5:| <t sup fo,T(Z)a
0 2€B(z,r)
where we used the fact that f;,(z) = 0 in the equality above.
Furthermore, for any x € V' and z € B(x,r),

Lfrr(2) = Z (fac,r(y) - fw,r(z)) Tuz

d+a Hy
= p(zy)

= Z (fm,r(y) — f;t,r(Z)) Wy,z

d+a Hy
yeVip(y,z)<r Py, )

+ Z (fac,r(y> - f$,r(z)) Lz

d+a Hy
yeV:p(y,2)>r Py, )

<er | Z Wy Z _ Wy =:c1(I1(z, 1) + I2(z,7)),

d+a—1 d+a
YeV:p(z,y)<r ) yEV:p(2,y)>r Py, )

where in the first inequality above we have used |fs,(y) — fz.r(2)| < cir™1p(y, 2). According to

(3.18) and (3.12), we can find a constant R; > 1 such that for all Ry < R < rg, € B(0,2R)
and R’ <r <R, SUP.€B(z,r) (Ii(z,7) + Ia(z,7)) < cor™.
Combining with all estimates above, we prove the desired assertion. [l

3.2. Holder regularity. Let Ry := (0,00) and Z = (Z)t=0 = (Ui, Xt)t=0 be the time-
space process such that Uy = Uy + ¢ for any ¢t > 0. Denote by IP(, ;) the probability of the
process Z starting from (s,z) € Ry x V. For any subset A C R4 x V), define 74 = inf{s >
0:Zs € A} and 04 = inf{s > 0: Zs € A}. Foranyt > 0, x € V and R > 1, let
Q(t,z,R) = (t,t + CoR*) x B(x, R) and dv = ds x du, where Cj is the constant in (3.14). In
the following, let ¢, be the constant in Assumption (Exi.)(i).

Proposition 3.6. If Assumption (Exi.) holds with some 6 € (0,1), then there exist constants
§ € (0,1) and Ry > 1 such that for any Ry < R < rg/(2¢+), 2R® <7 < R, x € B(0,2R), t > 0
and A C Q(t,x,r/2) with % >1/2,

(3.20) P 2)(0a < TQem) = C1,

where C1 € (0,1) is a constant independent of Ry, R, 7, t, x and r¢.

Proof. The proof is based on that of |23, Lemma 4.11| with some slight modifications. We
write @, = Q(t,x,r) for simplicity. Without loss of generality, we may and can assume that
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P ay(0a < 7q,) < 1/4; otherwise the conclusion holds trivially. Let T = o4 A 7q, and
As={yeV:(s,y) € A} for all s > 0. According to the Lévy system,
WX, ,u
Pay(oa <71q.) = Ega Z Lix,2x,_ x.ea | = Eue / o X&u)dmﬂu dS]
s<T u€As

Co(r/2)>
0

> ¢3 B

d+a
uEAs p(XS,U,)
J Co(r/2)>
>cr ¢ inf / Wy uds | Py r/2)%),
1 o) u; ) (T = Co(r/2)")

where in the last inequality we have used fact that p(u, z) < 2r for every u, z € B(x,r).
Furthermore, according to Theorem 3.4(1), there exist constants Ry > 1 and ¢ € (6, 1) such
that for any R; < R < rg/(2¢4), R® <r/2 < Rand x € B(0,2R),

P(t,ax) (T ) 00(7"/2)a) = IP(t,x) (O’A VAN TQr > 00(1"/2)a)
>1-Pga(0a<7q,) = Pu(TB@m < Co(r/2)%) 21—~
where in the first inequality we have used the fact that

P(i.0) (1, < Co(r/2)*) = Pa(Tpn A (Cor®) < Co(r/2)*) = Pa(7p(,) < Co(r/2)%),

and the second inequality follows from (3.14).
On the other hand, let Q¥ (¢, z,r) := (t + Cor®) x B¥(x,r). Then, for every Ry < R < r¢,
2R’ <r < R,z € B(0,2R) and z € B(z,r),

Co(r/2)>
V(ANQY(t,z,1/2)) :/O > Lo ds

u€AsNBY (z,r/2)

< ( /Oco(r/ma 5 — d8>1/2 < /Oco(r/z)a S e ds) 1/2

u€ANBY (z,r/2) u€As

< 637‘0‘/2( Z w;i) 1/2(/00(7’/2)"‘ Z w0 ds) 1/2
0

1 1
7277
47 2

=

u€eBY (z,r) u€As
1/2 , [Co(r/2)® 1/2
< 037’0‘/2( sup Z w;i) (/ Z wzuds)
2€B(0,3R) u€BW(z,2r) u€As
Co(r/2)* 1/2
< C47“(d+0‘)/2</ Z Wy ds) / ,
0 ucAg

where in the first inequality we have used the Cauchy-Schwarz inequality, the third inequality
is due to the fact that B¥(x,r) C B*(z,2r) for all z € B(z,r), and the last inequality follows

from (3.11). Note that, by (3.10) and the assumption that ﬁ > 1/2, we have v(AN
Q¥(t,x,r/2)) = (1/2+co—1) v(Q(t,z,7/2)) = c5r?t®. Combing all estimates above yields that
for all R < R < rg, 2R <r < R, x € B(0,2R) and z € B(z,r), [0S 4w, ds >

d4+a

cer®™®. According to all the estimates above, we prove the required assertion. O

We also need the following hitting probability estimate.

Lemma 3.7. Suppose that Assumption (Exi.) holds with some 6 € (0,1). Then there are
constants § € (0,1) and Ry > 1 such that for every Ry < R < r¢/(2¢c.), R < r < R,
x € B(0,2R), K >4r, t >0 and z € B(z,1/2),

r (6%
(3.21) Pr(Xrgu.m # B2, K)) < C1 (?) ’
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where C1 > 0 is a positive constant independent of Ry, Ri, r, t, x, z and rg.

Proof. According to the Lévy system, we know that for every z € B(z,1/2),

TB(z,r) st,
ol € Bl ) =Be | [T 5 S, d
0 y¢B(Z7K) > -
Wa,y
<ep sup Z W EI[TB(CL';T)]
u€B(z,r) yeVip(u,y)>K—2r ’
W,y
<ecp  osup —— e | Bl )
weB(02R) Z plu, y)d+e z|TB(z,r)

yEV:p(u,y)>K/2

Note that K/2 > 2r > R® and R’ < r < R. Then, by (3.12) and (3.16), we can find a constant
R; > 1 such that for all Ry < R < rg/(2¢.) and x € B(0,2R),

Wa,y @
;uopm Z plu, y)+e el
u€B(0,2R) yeVip(u,y)>K/2 ’

and E;[7p(y,] < c3r®. Combining with all the estimates above immediately yields (3.21). [0

We say that a measurable function ¢(t,z) on [0,00) x V is parabolic in an open subset A of
[0,00) x V, if for every relatively compact open subset Ay of A, ¢(t,x) = E(t’z)q(ZTAl) for every
(t, :E) € Ay

Let Cy > 0 be the constant in (3.14), and 6 be the constant in Assumption (Exi.). Set
Q(to, o, r) = (to,to + Cor®) x B(xg, R).

Theorem 3.8. Suppose that Assumption (Exi.) holds with some 6 € (0,1), and let ¢, be the
constant in Assumption (Exi.)(i). Then, there are constants R1 > 1 and 6 € (0,1) such that
for all Ry < R < rg/(2¢), 20 € B(0O,R), R® < r < R, ty = 0 and parabolic function q on
Q(to, zo, 2r),

B
¢ — ]!/ +p<x,y>)

r

(3.22) lq(s,2) — q(t,y)| < C1llqlloo,r (

holds for all (s, x), (t,y) € Q(to, zo, ) such that (C’O_1|s—t])1/a+p($,y) > 2r% where lqlloo,r =
SUD (5,2 efto,to+Co(2r)e] x v 4(8, @), and C1 > 0 and B € (0,1) are constants independent of Ry, R1,
xg, to, R, 7, s, t, x, y and rg.

Remark 3.9. Note that unlike the case of random walk on the supercritical percolation cluster
([11, Proposition 3.2|), in which the Holder regularity holds for all points in the parabolic
cylinder when r is large enough, in the preset setting we can only obtain the Hélder regularity
in the region (Cy'|s — )/ + p(x,y) > 2r0 inside the cylinder.

Proof of Theorem 3.8. We mainly follow the argument of [23, Theorem 4.14| with some modi-
fication. For simplicity, we assume that ||¢|lsc» = 1 and ¢ > 0. Now, we first show that there
are constants n € (0,1), § € (v/dp,1) with dy € (0,1) being the constants § in Theorem 3.4,
Proposition 3.6 and Lemma 3.7, Ry > Ry and ¢ € (0,(1/4) A n*/®) (which are determined
later) such that for any Ry < R < rg/(2¢,), R® < r < R, k > 1 with ¢*r > 2r°, and any
(t, %) € Q(to, zo,r) with zg € B(0, R) and ty > 0,
(3.23) sup q— inf q<n"
Q(£,7,kr) Q(t,z,&kr)

Let Q; = Q(t,%,£r) and B; = B(Z,£r). Define a; = infg, ¢ and b; = supg, ¢ Clearly,

b; —a; < 77i for all # < 0. Suppose that b; — a; < ni for all ¢ < k with some &£ > 0. Choose
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21,22 € QK11 such Ehat q(z1) = b1 and q(z2) = ags1. Letting 21 = (t1,21), we define
Qr = Q(t1,21,8%r), Qpi1 = Q(t1, 21, r) and

AkZ{ZEQkH ZQ(2)<M}-

2

Without of loss of generality, we may and do assume that v(Ay)/v(Qps1) > 1/2; otherwise, we
will choose 1 — ¢ instead of g. We have

b1 — a1 =q(21) — q(22) = Bz [9(Zo sy, nrg )] — a(22)
:Ezl |:q(ZO'Ak/\TQk) - Q(ZQ) cO0AL < TQk]
€ Bk—l}
k

+ ]Ez1 [q(ZUAkATQk) - Q(ZZ) 104, > T~k’ X‘r@

[o.¢]
+ ZEzl [q(ZUAk/\TQk) - Q(ZQ) 104, > TQk’ X‘r@k € By_;—1 \ Bk—z}
i=1
=:0+ 1+ Is.
It is easy to see that

(ak + by, br — ak 7" k41, —1Pk

< —pp =
9 Pk 2Pk nmon 9

I

N

9 - a’k) ]le (O-Ak < TQk) <

and Io < (by—1—ag—1)(1—px) <7 '(1=px) = "9 2(1—py), where py := P, (04, < 75,) =
P4 20) (04, < TQ(t1,21,¢r)). On the other hand, since EFr > 270 > 2R% 7 € B(xy, &) C
B(xy,&Fr/2) and €' > 4&Fr for i > 1, we can apply (3.21) and obtain that

by

(e
P, (XTQk € B \ Bkii) S Py, (XTQ(tlaml,Ek?“) < Bgiz) S e (Wf’) .
Thus,
(o9}
I3 < (bp—ic1 — ap—i—1)Py, (Xrg, € Br—i1\ B—i)
i=1
0o k o k+1,,—2¢a
< (h=i-1) (&7 < e &
2 & n—¢°

Note that, since z1 € B(0,2R) and &7 > 2r° > 2R% by (3.20) we have pp > c3 > 0.
Combining with all the conclusions above, we arrive at that

-1 —2¢a

Pk, _ con €

bk+1 — Q41 S nkJrl L +1n 2(1 _pk) +t
2 n— &
—1 —2¢a

_ k1| -2 (-2 T ) can "€

n [17 (n B LR

-1 —2¢a

< (21— n_es e TET
n <77 (1 —ec3)+ 5 + P

Choosing 7 close to 1 and then & € (0, (1/4) A5'/®) close to 0 such that

-1 —2¢a
-2 n_ez | can g
1—c < 17
(1 —es) + —5—+ e
we get bgi1 — ak+1 < Mg41. This proves (3.23).
For any (s, ), (t,y) € Q(to, o, r) with s < t and (Cy |t — s|)/* + p(x,y) = 2r°, let k be the
smallest integer such that (Cy ! [s—t|)V/*+p(z,y) = €. Then, (Cyts—t|)/*+p(x,y) < EFr,
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and so £Fr > 29 and (t,y) € Q(s,x, £Fr). According to (3.23), we know that

lo:
<051|s—t|>1/a+p<m,y>> s

lq(s,z) — q(t,y)| <nF <t ( .

The proof is finished. O

Remark 3.10. According to Proposition 3.5, the proof of Theorem 3.4 and the arguments in
this subsection, we can obtain that, when « € (0,1), Theorems 3.4 and 3.8 still hold under
assumption (Exi.”).

4. CONVERGENCE OF STABLE-LIKE PROCESSES ON METRIC MEASURE SPACES

In this section, we give convergence criteria for stable-like processes on metric measure spaces.

Let (F,p,m) be a metric measure space, where (F,p) is a locally compact separable and
connected metric space, and m is a Radon measure on F. For every z € F and r > 0, let
Brp(xz,r) ={z € F: p(z,x) < r}. We always assume the following assumptions on (F, p,m).
Assumption (MMS).

(i) For every x € F and r > 0, the closure of Bp(x,r) is compact, and it holds that
m(9(Br(z,r))) =0, where O(Bp(x,r)) = Bp(z,r)\Br(z,r).

(ii) p : F x F — Ry is geodesic, i.e., for any x,y € F, there exists a continuous map
v 1[0, p(z,y)] = F such that 4(0) = z, v(p(z,y)) =y and p(y(s),7(t)) =t — s for all
0<s<t<plx,y).

(iii) There exist constants cp > 1 and d > 0 such that

(4.1) cp'r? <m(Bp(z,r)) <cpr?, Ya€F, 0<r<rp:= sup p(y,2).
y,z€F

The metric measure space (F, p,m) will serve as the state space of the stable-like process Y
which will be defined later.

According to [22, Theorem 2.1|, such a metric measure space is endowed with the following
graph approximations.

Lemma 4.1. Under assumption (MMS), F' admits a sequence of approximating graphs {G,, :=
(Va, Ev,),n = 1} such that the following properties hold.

(1) For everyn >1,V,, CF, and (V,, Ey,) is connected and has uniformly bounded degree.
Moreover, U2 | V;, is dense in F'.
(2) There exist positive constants Cy and Cy such that for everyn > 1 and x,y € V,,,

Cl 02
where py, is the graph distance of (V,, Ev;,).

(3) For each n > 1, there exist a class of subsets {Up(x) : = € V,,} of F such that
UIEVn Un<1‘) - F7 m(Un(iL') N Un(y)) =0 fOT x 7é Y,

C
(4.3) Voo N IntUp(z) = {x}, sup{p(y,z) :y,z € Up(x)} < ;3, VeV,
and
Cy Cs
(4.4) v < m(Un(m)) < prl Vn>l1, zeV,,

where IntUy,(x) denotes the set of the interior points of Up(x).
Moreover, for all™ >0 and y € F,

(4.5) nan;()m(BF(y,r)ﬂ (F\ U Un(az))) = 0.
z€Vn

For eachn > 1 and y € F\U,cy Un(x), there exists z € V,, such that p(y, z) < Cen™".
Here C; (i =3,---,6) are positive constants independent of n.

We will consider stable-like processes on the graphs {Gy, }n>1.
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4.1. Stable-like processes on graphs and the metric measure spaces. We first introduce
a class of Dirichlet forms (Dy, , #y, ) on the graph (V,,, By, ). For any n > 1, define
1 2 wﬂ(cng
Dv,(f, 1) =5 Y. (f@) = fW)———Grmmn(x)ma(y), [ € Fy,,

d+a '
2 p(x,y)

3?‘/” = {f S L2(Vn7mn) : DVn(fvf) < OO},

where a € (0,2), p(z,y) is the distance function on F', m,, is the measure on V,, defined by

mn(A) = m(Un(z)), YACV,
TEA

(for simplicity, we write my(z) = my,({z}) for all x € V},), and {wﬁ,”g :x,y € V,,} is a sequence

satisfying that wé"ﬁ > 0 and w;(,;nﬁ = wzsngz for all x # y, and

(n)

W,y
yeV, T

We note that, in the definition of the Dirichlet form (D, , .#y;, ) we use the metric p(z, y) instead
of the graph metric p,(z,y) on V,,. According to |22, Theorem 2.1|, for any n > 1, (Dy,, #v,)
is a regular Dirichlet form on L2(Vj,;my,). Let X(™ := {(Xt(n))t>o, (P2)zev, } be the associated
symmetric Markov process.

To obtain the weak convergence for X (™, we also introduce a kind of scaling processes
associated with {X(},>,. For any n > 1, let P, be the projection map from (V,,p) to
(Vi, pn) such that P, (z) := x for x € V,,. Define a measure m,, on (V,,, p,) as follows

mn(A) = n%m, (P, (4)) = n* Z mp(z), ACV,.
xGPle(A)

For simplicity, my,(x) = mn({x}) for any = € V,,. For any n > 1, we consider the following
Dirichlet form: (Dy,, %y, ) on L*(Vp; 1)
1 2 04

Dvn(faf):* (f(z) = f(y) W

Py, = {f € L*(Vu;my) : Dy, (f, f) < oo},

i (2)mn(y), f € Py,

~—

where
d+a
Wy = wy'y (np(x,y) , xy eV,
Note that Dy, (f, f) = n%=®Dy. (f, f) and .Zy, = Fy,. Let X be the symmetric Markov pro-
cess associated with (Dvn, fvn). According to the expressions of (Dvn, ,97\/”) and (Dvn, ﬂvn),
we know that (Pn(Xt(n)))t>0 has the same distribution as (Xg‘)t)po'

As a candidate of the scaling limit of the discrete forms (Dy, , %y, ), we now define a sym-
metric Dirichlet form (Dy,.%y) on L?(F;m) as follows

! o )
(4.6) Dolf. ) = 2 /{FXF\diag} (e ) plx,y)d+e
g() - {f € Lz(va) : DO(f?f) < 00}7

where a € (0,2), diag := {(z,y) € Fx F:x =y} and ¢: F x F — (0,00) is a symmetric
continuous function such that 0 < ¢; < ¢(z,y) < ¢ < oo for all (z,y) € F x F'\ diag and some
constants ¢y, ca. According to (4.1) and the fact that a € (0,2), we have

m(dx) m(dy), [ € P,

sup

/ m(dy)
veF J P\ {yeFiy#a}

2 C($7 y)
(L7 ei(zy) p(x,y)dte
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N c(x,y)
S sup / ————— m(dy
‘”EFkZo (yeF2-0+0 <p(y zy<a—+) p(T,y)THo—2 (dy)
N c(x,y)
e / e m(dy)
xeFkZ:O {yeF:2k<p(y,z)<21+k} p(z,y)dte
< ¢y sup (Z m(Br(z, Q—k))z(d+a—2)(l+k) + Z m(Bp(z, 21+k))2(d+a)k>
zeF =0 —
o0 0o
<cs (Z 9—(2-a)k Z 2—ak> < oo.
k=0 k=0

This implies Lip,.(F) C %y, where Lip.(F') denotes the space of Lipschitz continuous functions
on F with compact support. We also need the following assumption on (Dy, Z).
Assumption (Dir.) Lip.(F) is dense in %o under the norm ||-|| p,,1 :=(Do (-, -)+||-H%2(F,m))1/2
Therefore, (Dy,.%o) is a regular Dirichlet form on L?(F;m), and there exists a strong Markov
process Y := (Y})¢>0 associated with (Dy,.%)). Moreover, by [23, Theorem 1.1] or [24, Theorem
1.2], the process Y has a heat kernel p¥ : (0,00) x F' x F' — (0, 00), which is jointly continuous.
In particular, the process Y := ((¥3)i>0, (P} )zer) can start from all z € F. The process Y is
called a a-stable-like process in the literature, see [23, 24|. Two-sided estimates for heat kernel
pY (t,,y) of the process Y have been obtained in [23].

4.2. Generalized Mosco convergence. To study the convergence property of process X (™
we will use some results from [22], which are concerned with the generalized Mosco convergence
of XM

For any n > 1, we define an extension operator E,, : L? (Vn; mn) — L2(F;m) as follows

(4.7)

z), z € IntU,(x) for some = € V,,,
Bu(9)(2) = {g( ) ) g€ I2(Vai ).

0, z € F'\ Uzey, Un(2),

Note that because m(0U, (z)) = 0 for any « € V,, by Assumption (MMS)(i), there is no need
to worry about E,(g) on J,cy, OUn(z), and the function Ej(g) is a.s. well defined on F. Note
also that the definition of the extension operator E,, above is a little different from that in [22],
see [22, (2.14)]. Furthermore, we define a projection (restriction) operator m, : L*(F;m) —
L? (Vn; mn) as follows

w0 =@ [ G md), we Vi g e 1 (Fm)
Upn(x

Remark 4.2. As shown in Lemma 4.1, under assumption (MMS), the space F' admits a

sequence of approximating graphs {(V,,, Ey;,) : n > 1} enjoying all the properties mentioned in

Lemma 4.1. Though these properties are weaker than (AG.1)-(AG.3) in |22, Theorem 2.1,

one can verify that [22, Lemma 4.1] and so |22, Theorem 4.7] still hold with notations above.

For simplicity, we assume that there exists a point 0 € (2, Vp,; otherwise, we can take a
sequence {0y, }n>1 such that o, € V,, for all n > 1 and lim,,_,~ 0, exists, and then the arguments
below still hold true with this limit point 0 := lim,_s; 05.

Fix 0 € N9, V;,. We assume that the following conditions hold for {wg(gng cx,y € Vi b
Assumption (Mos.)

(i) For every R >0,
2d Z wa(c”ﬁ
(4.8) lim lim sup [n_ ———az| =0
€70 n—oo z,y€BF (0,R)NV,,:0<p(z,y)<e p(.CL‘, y)
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and
(n)
4.9 lim 1 —2d _ Wy |
(19 fim s o D

z,y€Br(0,R)NVn:p(2,y) >l

(ii) For any sufficiently small € > 0, large R > 0 and any f € Lip.(F),

w(n)—cw 2
(410) lim [n7? Y > (f(a:)f(y))(”’(’gmmn(y)> =0.

d+a
e 2€Bp(0,R)NV;, ~ yE€BF(0,R)NVa:p(z,y)>e pl@:y)
(iii) For any sufficiently small e > 0, large R > 0 and any f € Cy(Br(0, R)),

(n)
' Wey — c(z,y)
(4.11) nlglgo Z (f(z) - f(y))2 ( p(x,y)d"‘o‘y )mn(x)mn(y) = 0.

2,y€Br(0,R)NVy:p(z,y)>e

Denote by (PY);>o the Markov semigroup of the process Y, and denote by (Pt(n))t>0 the

Markov semigroup of the process X (™. We set ﬁt(”)f(g;) = En(Pt(”)(wn(f)))(m) for any f €
L3(F;m).

Proposition 4.3. Suppose that Assumptions (MMS), (Dir.) and (Mos.) hold. Then
lim |2 f — PY flli2(mamy =0, [ € LA(F;m), t > 0.
n—o0

Proof. 1t is easy to see that the Dirichlet form (Dy,.%)) satisfies (A2) in [22, Section 2|. By
assumption (Dir.) and the continuity of ¢(z,y), we know that (A3)* in [22, Section 2| holds
true.

Clearly, condition (A4)* (i) in [22, Section 2| is a direct consequence of (4.8) and (4.9). For
any R,e > 0 and f € Lip,(F), define

B B c(z, 2)
Lnef@ = [ U I@) ), e e E

(n)

Wy, %

Wmn(z), T € Vn,

Iy f(x) = > (f(2) = f(z))

2€Br(0,R)NVy:p(x,2)>e
7Il%,af('%') = En(L?%,Ef)(l')’ zr el

Then,
[ R @) - Lt @) mide) <3 Lo
Br(0,R) P
where
2
(wly — clz,y))
L,=2 Z Z (f(x) - f(y)) r d+7a mn(y) | mn(x),
z€BR(0,R)NV,, \ v€Bp(0,R)NVn: p(x,y)
p(z,y)>e
2
c(z,y
Dy =Sosea()? 3 3 p(x(y)dlamn(y) ma(),

z€BF(0,R)NV, \yeBr(0,R)NVy:p(z,y)>e

2
1
Iy = 81|12 05¢n(c)? / / Ly mda),
Br(0,R) \JBr(0,R)N{ycFp(ay)>e} P(T,y) 0T
2
1
Lin = 4] 12l / / L) | mde),
B (0,R)N(F\Uzev;, Un(2)) BF(OAI{‘;QQ(Uxﬁg)V;g"@))p(w,y)d“‘

oscn(f) = sup )\f(m) — f(22)],

2€Bp(0,R)NVy,x1,22€Un (x
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oscy(c) = sup le(z1,y1) — c(z2,y2)|.
z,y€Br (0,R)NVn,@1,32€Un (),y1,52€Un (y)
It follows from (4.4) and (4.10) that lim,_,o I, = 0. Since f € Lip,(F'), oscp(f) — 0 as
n — 00. Then, we arrive at

limsup I, < cre2ld+e) [ lim sup oscn(f)Q]
n—00 n—oo

xsup{n3d > 3 c(x,y))Q}

>
n>1 2€Bp(0,R)\Vir  yEBp(0,R)Vpip(a,y)>e

< ¢z(e)[limsup oscn(f)Q] =0.

By the continuity of ¢(z,y), it is also easy to see that lim,,_,o I3, = 0. Obviously, (4.5) implies
that lim, o I4,, = 0. Therefore, we have

lim |Lpf(z) — LR7€f(£L')’2 m(dx) =0,
which implies that condition (A4)* (ii) in [22, Section 2| is satisfied.
Similarly, with aid of (4.11), we can claim that condition (A4)* (iii) in |22, Section 2] is also
fulfilled. Therefore, we can verify that all the conditions of (A4)* in |22, Section 2| hold under

assumptions (MMS), (Dir.) and (Mos.). Hence, the required assertion follows from [22,
Theorem 4.7 and Theorem 8.3|. O

4.3. Weak convergence. The main purpose of this subsection is to establish the weak conver-
gence theorem of the law for X (™). For any T € (0, 0], denote by 2([0,T]; F) the collection of
cadlag F-valued functions on [0, T] equipped with the Skorohod topology. Let IPS«”) be the law
of X(™ with starting point = € V,. Note that P{") can be seen as a distribution on 2([0,T]; F).

We will make use of scaling processes {X(™},~; constructed in Subsection 4.1. First, we
consider some properties of the space (Vj,, pn,my). For any z € V,, and r > 0, let By, (z,r) =
{z €V :pn(z,z) <7}

Lemma 4.4. Under assumption (MMS), there are constants Cy > 0 and cy > 1 such that for
alln > 1,

(4.12) et <) <ecy, TEV,
and
(4.13) et < (By, (2,7) < eyr?,  x €V, 1< r < Conrp,

where rp is the constant in (4.1).

Proof. By the definition of m,, and (4.4), (4.12) holds trivially.

Note that, for any x € V,,, y € Bp(z,r) NV, and z € U,(y), by (4.3), we have p(z,z) <
p(z,y) + p(y,x) < Cs3n~! + 7, and so UyeBp@mnnv, Un(y) € Br(z,r + Csn~1). Hence, for any
x€Vypand 1 <r < (nrp— C3)/Cy (where Cy and Cs are constants in (4.2) and (4.3)),

mn (B, (z,7)) = nmy, (B, (z,7)NV,) < nmy, (Bp(z, Con™tr)n Vi)

—nd Z m( n(y)) < ndm(BF(x, Con™'r + anil)) < cor?,
yEBp(z,Con~1r)NV,

where in the first inequality we used (4.2), the second inequality is due to the facts that
m(Un(x) NUn(y)) = 0 for all z # y and Uyep,.(z.con-1r)nv, Un(y) € Br(x,Con~lr + C3n™1)
as explained above, and the last inequality follows from (4.1).

On the other hand, for any z € Bp(x,r), by (3) in Lemma 4.1, there exists y € V,, such

that p(y,z) < con™! for some constant cg > 0, and so p(y,r) < p(z,7) + p(z,y) <7+ con™ L.
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This implies that Br(2,7) C Uyepp (o rteon-1)vi Br(y,con™1). Hence, for (2(C;lep)) V1 <
r < (nrp +co)/C1 (where C; is the constant in (4.2)) and z € V,,,

in (B, (z,7)) = nmy, (By, (z,7)) = nm,(Br(z,Cin"'r) N V;,)

=nd Z m(Un(y)) = cin? Z m(Br(y,con” "))

y€Bp(z,Cin—1r)NV, y€Bp(z,Cin~1r)NV,
> clndm(BF(x, Cin~tr— confl)) > cor?,

where in the first inequality we used (4.2) again, the second inequality follows from (4.1) and
(4.4), the third inequality is due to Uye g, (2.c1n-1)v, BF Y con™t) 2 Bp(z,Cin~tr —con™t)
as claimed before, and in the last one we have used (4.1).

Therefore, combining both estimates above and changing the corresponding constants prop-
erly, we prove (4.13). O

By (4.2), foralln > 1, sup, ey, pn(z,y) < Oy 'nrp, where rp is the constant in (4.1). Below,

we let C) = C'. For any z,2 € V,, and r > 0, let B%inz) (x,r) ={y € By, (z,7) : wgfz) > 0}, and

B%f") (x,r) = B%Ti (z,7). We need the following further assumptions on {wa(cny) cx,y € Vit
Assumption (Wea.) Suppose that for some fized 0 € (0,1), there exists a constant Ry > 1
such that

(i) For anyn > 1, Ry < R < Clyrp and R%/2 < r < 2R,

(4.14) sup . Car?™,

IEBVn (0,6R) yGVnPn(y,$)<T

(4.15) ma(BE" (7)) = comn(By, (2,7)), =,z € By, (0,6R),
and

-1 d

(4.16) sup E (wzng,) < CO3rf,
xGBVn(O,ﬁR)ﬁVn (n)
yEVniﬂn(y7$)<C*7’7wz,y>0

where ¢ > 1/2 is independent of n, Ry, R,r,x,z and rp, ¢ = 80%//51 and cy is the

constant in (4.13).
When o € (0,1), (4.14) can be replaced by

(4.17) sup Z %1 < C3T1_a.

z€By,, (0,6R) YEVi:pn (y,2)<r

(i) For everyn > 1, Ry < R < Cyrp and r > R?/2,

e
(4.18) sup Z < Csr @
z€By,, (0,6R) (:E7 y)dJra

YEVn:ipn(z,y)>T
Here Cs is a positive constant independent of n, Ry and rp.

The main result of this section is as follows. It is in some sense a generalization of |20,
Proposition 2.8]. Indeed, in our case we have the Holder regularity of parabolic functions only
in the region (Cgt[s — )Y/ + p(z,y) > 2r® (see Theorem 3.8), hence more careful arguments
are required.

Theorem 4.5. Suppose that Assumptions (MMS), (Dir.), (Mos.) and (Wea.) hold. Then,
for any {z, € V;, : n > 1} such that lim,_,oc , = x for some xz € F, it holds that for every

T >0, IP;(EZ) converges weakly to PY on the space of all probability measures on 2([0,T]; F),
where P and PY denote the laws of xX™ and Y. on 2([0,T); F), respectively.

n
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Proof. Throughout the proof, we denote the law of (Xt(n))t>0 on Z([0,00); F) and that of
(Xt(n))t>0 on 7([0,00); V,,) by P™ and ]f’.(n), respectively. Let X™ and X™ be their associated
canonical paths.

Suppose that {z,, € V}, : n > 1} is a sequence with lim,,_,o, z,, = x for some x € F.

Step (1): We show that for each fixed T' > 0, {IP;(EZ)}n% is tight on 2([0,T]; F'). To prove
the tightness of {IPS;Z)}n>1, it suffices to verify that
(4.19) lim limsup IP&’Q( sup p(0, X)) > R) =0,

R—00 n—oo s€[0,T]

and for any sequence of stopping time {7,},>1 such that 7, < T and any sequence {&,}n>1
with lim,, o0 €, = 0,
(4.20) limsup P (p(X7  XU) > ) =0, 5> 0.
n—oo
See, e.g., [1, Theorem 1].
When rp < oo, (4.19) holds trivially. Now, we are going to prove (4.19) for the case that

rp = 00. As we mentioned above, (Pn(Xt(n))) has the same distribution as (X,(LZ)t) 0> Where

>0
(Xt(n))t>0 is a strong Markov process generated by the Dirichlet form (Dvn,ﬁvn). Therefore,

P ( s p(X.0)> 1) = B ( s p(Pu(X(),0) > )

s€[0,T] S€[0.T]
(4.21) =P ( s p(X,0) > R)
s€[0,nT]

<If’§c")( sup  pu(X{M,0) >C’{nR>,
"\ se[o,neT)

where the last inequality follows the fact that p,(z,y) > ¢inp(z,y) for all z,y € V,,, thanks to
(4.2).

On the other hand, under assumption (Wea.), it is easy to verify that assumption (Exi.) (or
assumption (Exi.”) when « € (0,1)) holds on the space (V;,, pn, My, ) with associated constants
independent of n. Combining this fact with (4.12) and (4.13), we can apply Theorem 3.4 (or
Remark 3.10) to derive that for any fixed 6’ € (6, 1), there exist constants § € (6,1) and Ry > 1,
such that for all n > 1, Ry < R < Cjrpn and R® < r < R,

t

p(n) (1) < < v 1/3 > 0o
(4.22) xEBVRS(ggRWn P (75, (0 (X)) <t) < Cl<ra) , Vizre

where By, (z,7) = {2z € Vi, : pu(2,2) <1}, 7By, (04) (X.(n))

is the first exit time from By, (0,7)
of the process X.(n), and ¢; > 0 is independent of Ry, n, r, R and 7.

Suppose that p(x,,0) < K for all n > 1 and some constant K > 0. Note that, also thanks
to (4.2), pn(zn,0) < cinp(zp,0) < cnk. For every fixed R > 2¢5K/cj and T' > 0, we have
Ry < ¢inR < Clnrp (since rp = 0o0) and n®T > (C’{nR/2)9a for n large enough. Thus, by
(4.21) and (4.22),

IPa(c?( sup p(X{™,0) > R) < ngfL)( sup  pn (XM, 0) > ¢inR)

s€[0,T] s€[0,nT]
< sup IMPgn) (TBVn (0,¢fnR) (X(n)) < naT)
z2€By,, (0,c3nK)NV,
< sup P (TBVn(z,c’{nR/z)(X(n)) < n°T)

z€By,, (0,cinR/2)NV;,

noT 1/3 7\ /3
< S = —
sa <<c:nR/2>a) “ (R) !
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which implies

1/3
lim limsup P )( sup p(X{™,0) > R) < hm c2 ( T ) =0.
R—00 n—soco s€[0,T] R~
This proves (4.19).
Next, let {7, }n>1 be a sequence of stopping time such that 7, < T', and {e,, }n>1 be a sequence
such that lim,,_,., £, = 0. By the strong Markov property, for every n > 0 small enough and
R > 1 large enough,

P (p(X7,, X)) > ) = B [P, p(x(, XV) > )]

Tn+en? Tn En

< sup PO (p(XI, XEY) > ) + P sup p(X[V,0) > R)

2€BF(0,R)NV, s€[0,T7]

< sup P (pn(X S0, X§Y) > einn) + PO ( sup p(X(V,0) > R)
2€By,, (0,(c3nR)A(Cinrp))NV, s€[0,T]

< sup 13 (TBVn(z,c{nn)(X(n)) <n sn)—i-IngL)( sup p(X{™,0) > R),
2€By,, (0,(cinR)N(Clinrp))NV, s€[0,T7

where in the second inequality we have used the fact that cinp(z,y) < pp(x,y) < cnp(z,y)
for x,y € Vn, due to (4 2). Taking n large enough and 7 small enough such that ¢inR > R
and (cinR)® < ¢inn < (c3nR) A (Cinrg). Then, it follows from (4.22) that

sup fP,(zn) (TBVn (z,c5nm) (X(n)) < nagn)
2€By,, (0,(c3nR)A(Cinrp))NV,

< sup P (7, (oot (X)) < (n%e) v (2¢inm) @)
2€By,, (0,(c3nR)N(Clnrp))NVy,

LN 1/3
ac )V (2¢inn)? @ _a e\ /3
1 <(n ) ( 017’”7) ) <3 <(5n77 )\/ (nn) (1-6") > )

N

(cinn)>

Combining both estimates above with (4.19), we obtain (4.20).
(n)

Step (2): Now it suffices to show that any finite dimensional distribution of Py,’ converges
to that of PY. We first claim that for any fixed ¢t > 0, f € Coso(F) N L2(F;m) and a sequence
{zn 1 2n € V5,300, with limy, oo 2, =2 € F,

(4.23) lim E,(P™ f)(z0) = BY £(2),

n—oo

where Coo(F') denotes the set of continuous functions on F' vanishing at infinity.
Indeed, according to assumption (Mos.), Proposition 4.3 and (4.5), there are a subsequence

of {]%(n) f :n > 1} (we still denote it by {15 Mgy > 1} for simplicity) and a sequence
{yk € Unz1 Ugev,, Int(Uy(z)) : k > 1} such that () yr # 2z and limg_, yr = z; (i) for every
k>1,

(4.24) lim 2 f(y) = B f(u)-

n—o0

For every k > 1 and ¢t > 0, we have
|En(P™ F)(z0) = BY f(2)]
< B fy) — P o) + 1B Fyr) — En(PT ) ()]
(4.25) + [ Ea(P f) (i) — (P(”)f)(zn)l + PV f(z) = PY f(up)
= ’pt(n)f(yk) — P fur)| + Z Jin k-

i=1
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Recall that Pt(n)f(m) = En(Pt(n) (mn(f)))(x) for all x € F. By the definition of mp,
lim sup |7, (f)(2) = f(2)| = 0
=00 zeV,

for any f € Coo(F'). Hence,
im sup Jy g = T sup |Ba (P ((£)) (k) = Ba( P F) ()]

n—oo k>1 — 00 k>1

< lim sup |m, f(2) — f(2)] =0,
n—oo 2€Vy,
where in the last inequality we used the contractivity of (Pt(n))t>1 in L>®(Vy,; my,).
In the following, for any = € F, let [z],, € V}, be such that z € U, ([z],) and p(z, [z],) < cin =,

due to (3) in Lemma 4.1. For any n > 1 and z € V},, noticing that (Xflﬁi) has the same

>0
distribution as (Pn(Xt(n)))t>0’

En(B™ £)(z) = B f([e]a) = B (X)) = B [F(X500)] = B F([2]a),

where Pt(")f(-) = E™ [f(f(t(n))] is the Markov semigroup of X := (Xt(n))tgo. As mentioned
above, due to assumption (Wea.) and Lemma 4.4, we can apply Theorem 3.8 (also thanks
to Remark 3.10) to obtain that there are constants 6 € (0,1) and R; > 1 such that for all
Ry < R < C{nrp, (3.22) holds for every {X }n>1 and with constants independent of n. Let
Co > 0 be the constant in (3.14). For fixed T' > 0, we define Hry, f(s,z) = P1(+)naT (),
which is a parabolic function on Qy;, (O,y, (2_1C0_1n0‘T)1/a) for each y € V,,. Take K large
enough such that K > (271Cy ')/, Ry < nK < Cinrp and z, € By, (0,nK) for alln > 1
According the facts that yp — z as k — oo and yi # z for all k£ > 1, for any fixed ¢ > 0, we can
choose k > 1 large enough such that 0 < e < p(yx, 2) < (4c) (271 Cy )V A (27 Chrr)),
where ¢ is a positive constant with limg_,.oer = 0, and ¢5 > 0 is the constant such that
pn(x,y) < chn~tp(z,y) for any z,y € Vj,. Furthermore, for these fixed k and ¢, we take n large
enough such that (nK)° <7, < nkK, p(zn,2) < (4¢5)"'n~r, and nep > 4(ch) ™', where
o= (2710 )V A (2
Pn([zn)ns Wiln) = cinp([2nln, [Weln) = cin(p(z yk) — p (ks [Wkln) — (2, [2]n))

> N

~1C{nrr). Hence,

anep —2cics =

)

pr([2]ns [Wiln) < c3np([2]n, [wkln) < csnlp(z,yx) + p(2, [2n) + p(Yks [WEln))
<4 1rn+202c3 <2 Tn

and

Pn([z]na [Zn]n) CS”P([ Jns [2n]n) < Cén(p(% zn) + p(2, [2]n) + p(2n, [Zn]n))
2

<
<47y, + 2c¢5c3 <
<

where we used the fact that p(y,[y]ln) < cin~! for all y € F. Note that since z, € V,,
[20]n = #n. Then as a summary, (nK)? < r, < nK, z, € By, (0,nK), and [24]n, [ys]n €
Qv, (0, [2]n, ) With ppn([zn)n, [Ukln) = 75. Now, applying (3.22) to the parabolic function
Hy ¢ on Qv, (0, [2],,n), we can obtain that

B8 (i) — PUf ([zaln)|
= |Ht,n,f(1vn[yk]n) - Ht,n,f(17n[zn]n)| C4H atfHOO

< s floop (1Wehns [2n1)” < o)1 oo (s )7 + 7).
This yields immediately that

([yk]m [Zn]n) g

n

limsup Jo,p i = limsup | P} f([yiln) — Bt f([zaln)]

n—o0 n—oo
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< co(t) limsup [|f oo (p(yr, 20)” +177) = ex (@)1 f loop(yr, 2)°
n—oo

According to [23, Theorem 4.14], J3,, 1 < cs(t) || flloop(ys, 2)°.
Combining all estimates with (4.25) and (4.24), we arrive at that

limsup | B, (P f)(20) = B f(2)] < ca®)flloop(yn, =),
n—oo
where cg(t) > 0 is independent of k. Note that k is arbitrary, letting & — oo in the last
inequality, then we prove (4.23). In particular, according to [20, Lemma 2.7], (4.23) implies
that for every compact set K C F,

(4.26) lim sup sup |E, (P £)(z) — PY f(x) =

n—oo z€K

Next, for any f1, fo € Cx(F), 0 < s < t < T and any sequence z,, € V,, with lim, o z, =
zeF,

B [A((X) (X)) = BY (X PO fo(X ()
=EDl 1<X§")>Pﬁsfa<X§” )]+ EO [ (X) (PO F(XM) = PY fo(X ()]
= Jl,n + J2’n.

Set g(2) = f1(2)PY . f2(2). Then g € Coo(F), due to the Cuo-Feller property of the process Y,
see |23, Theorem 1.1]. Then, according to (4.23), we have

Tim Ji, = lim Pg(a) = PY g(a) = EY [1(Y:) f2(Y2)]
On the other hand, for any ¢t > 0, R > 2K and n large enough,

Jom <fille sup  |En(PTf2)(2) = PY fo(2)| + 1 £ o]l follooPS ( sup p(X(™,0) > R),
z€BFr(0,R) s€[0,t]

By (4.19) and (4.26), we let n — oo and then R — oo in the last inequality, yielding that
lim;, s J2., = 0. Combining all above estimates, we prove that

Tim B [A(X) fo(x{™)] = Y [A1(V) f200)]

Following the same arguments as above and using the induction procedure, we can obtain from
[30, Chapter 3; Proposition 4.4 and Theorem 7.8(b)| that any finite dimensional distribution of

IP&Z) converges to PY . The proof is finished. U

Remark 4.6. As shown in the proof of Theorem 4.5 above, the role of adopting the generalized
Mosco convergence is to identify the limit process in the L? sense. Actually, according to [22,
Theorem 5.1], under Assumption (Mos.) only, any finite dimensional distribution of X (™)
converges to that of Y, when the initial distribution is absolutely continuous with respect to
the reference measure m. Thus, Theorem 4.5 improves this weak convergence for any initial
distribution. We emphasize that such improvement is highly non-trivial, see 31| for discussions
on the uniformly elliptic case by using heat kernel estimates. Here, we will make use of the
Holder regularity of parabolic functions on large scale (Theorem 3.8). This is much weaker than
the approach used in [20, Proposition 2.8], where the Holder regularity of parabolic functions
is assumed to be satisfied on the whole space.

5. RANDOM CONDUCTANCE MODEL: QUENCHED INVARIANCE PRINCIPLE

We will apply results from Section 4 to study the quenched invariance principle for random
conductance models.
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5.1. Quenched invariance principle for stable-like processes on d-sets. Suppose that
(F, p,m) is a metric measure space satisfying assumption (MMS). By Lemma 4.1, we have a
sequence of graphs with measure {(V;,, pn,my) : n > 1} that approximate (F,p,m). In this
part, we further assume the following:
(i) p(-,-) is a metric with dilation; namely, there exists another distance p on F' such that
(') for all z,y € F, C1p(x,y) < p(z,y) < Cap(x,y) holds for some constants 0 < C; <
Cy < o0. _ )
(i") for each z,y € F,i € {—1,1} and n € N, there are (") y(*) € F (we write n'z :=
(™) niy = 4") for notational simplicity) such that g(n'z,n'y) = n'p(x, y).
(i) There exists 0 € V; C F such that n’0 =0 for all i € {—1,1} and n € NN,
(iii) V;, = n~'V; := {n~'2: 2 € Vi}, and F is a closure of U,>1V;. Moreover, nV; C V; and
tn(A) = p1(nA) for all A C V,, and n € IN, where p,, denotes the counting measure on
Vi
We note that, due to (4.4), for any n € IN, there exists a measurable function K, on V,, such
that m,, = n K, 1y and

(5.1) 0<03§Kn§04<00,
where pu,, denotes the counting measure on V,,, and Cs, C4 are constants independent of n.

Remark 5.1. Obviously conditions (i’) and (i”) in assumption (i) above hold true for a bounded
Lipschitz domain F' C R?. For simplicity, in the arguments below we assume that p(n'z, n'y) =
n'p(z,y) for all n € IN; otherwise, we can express Dirichlet forms (D}, , %) and (Do, %)

below with p, w(")(w) and c(z,y) replaced by p, @i (w) = )’Zgzgiz w)

(w) and ¢(z,y) =

(n)

= d+a
plzy)®r c(z,y), respectively. Hence, by applying the arguments below for p, Wy (w) and é(z, y),

play)+e
we can still obtain the quenched invariance principle for (X{):>o.

Let {wzy(w) : 2,y € V1} be a sequence of random variables defined on a probability space
(Q,.#,P) such that wyy(w) = wy,(w) and wyy(w) = 0 for all z # y € V4. For any = € V,,
my(z) = mp({z}) = n~K, (). Define
_ Ki(na)Ki(ny)
We consider the following class of Dirichlet forms

(5.2) w(™ (w)

T,y Wnz,ny (w) .

1 wi™ (w
D= Y (@)~ F@) ) @ma). f e 7.
2 p(@,y)
7y€v’n
97({) = {f € LQ(men) : Dﬁn(fa f) < OO}
Let XV be the strong Markov process on V; associated with (D"‘}l,ﬂ\{” ). Then, it is easy to
show that for a.s. w € Q, (DY, , %) generates a Markov process XMw = (Xt(n)’w)@o such that

Xt(n)’w = n_lX,‘L/é’tw for all ¢ > 0. Here and what follows, = means two processes enjoy the same
distribution.
Now, consider the Dirichlet form (Dy,.%p) given by (4.6), i.e.,

71 ) — 2 c(:x,y) m(dz) m .
Dot N =g [ (@) S e mdn ), S € Py

Fo={f € L*(F;m) : Do(f, f) < oo},

where a € (0,2), diag := {(z,y) € Fx F: 2z =y}, and ¢: F x F — (0,00) is a symmetric
continuous function such that 0 < ¢; < ¢(z,y) < 2 < 0o for all (z,y) € F x F'\ diag and some
constants ¢y, co. We suppose that assumption (Dir.) holds. Let Y := ((Y3)i>0, (PY)zer) be a
a-stable-like process on F.

We next apply Theorem 4.5 to prove the quenched invariance principle for (X§’);>¢ under
some assumptions on w, . We first assume that the following holds.
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Assumption (Den.)
(i) Blwey] = Ji(z,y) and Blw; 1y, o] = Ja2(z,y) for any z,y € Vi, where 0 < Cy <
Ji(z,y) < Cy < oo foralli=1,2 and x,y € V1.
(ii) For every compact set S C F,

(53 im [ sup [ nla)nly)) - S D o] o

n=o0 Ly yes Kn([2]n) Kn([yln)
where [z, € V,, is the element such that x € Up([x],).

Remark 5.2. Obviously when F = R, it follows from (5.3) that for any = # y € R? and
s # 0, c¢(z,y) = c(sz, sy), which, along with the fact that K,, = 1 for all n € IN as mentioned
in Remark 5.1, implies that the limit process (Y;);>0 satisfies the scaling invariant property as
follows

Pz—lx ((5Ytr“)t>0 €A) = 34 ((Yt)t>0 € A)
for any x € R% & > 0 and A C 2([0,00); RY).

Fore >0,z € Vi, R,r >0, ¢cg > 1/2, ¢j > 2 and a sequence of bounded functions {h,}n>1
on Vi x Vi, define

pi(r,R,e) =P Z (Wey — Jl(x,y))‘ > srde>,

z,yeVi:p(0,2)<R,p(x,y)<r

Z (wey — Jl(%y))‘ > €7”d),

yEVip(z,y)<r

(way — N1(2,y)) 2—
(x,r,e) =P g oz, g) a2 ‘>€r O‘)
(wa,y = J1(,y))
pi(z,re) =P g ;(Z;U’y)d-i-a : ‘ > erl™ 0‘) ae(0,1),

yeVip(z,y)<r

Z (w;’;—J z,y) ’>€07‘d)

yeVip(x,y)<chr

(
-x(
( yeVizp(ay)<r
(
¥
¥

Z hn(m,y) (wx;/(;yj)ld(fo:y)) ’2 S E(nT‘)_2a),

yEBR(0,nR)NVY:
p(z,y)=nr

pe(z, 2,7, c0) =P (ul{ye Vi ply, @) S 1wy, > 0}
T pi{y € Viip(y,z) <r}

where C3 < Cy are positive constants in (5.1).

< C'4006’3_1> )

Theorem 5.3. Suppose that assumption (Den.) holds, and that there exists a constant § €
(0,1) such that

(i) for any €9 and € small enough, any N large enough, and any sequence of bounded
function {hp}n>1 on Vi X Vi with sup,,5q ||hn e < 00,

o~ R
(5.4) Z Zpl(’l“, R,Eo) < 0

R=1r=1

(5.5) > > > pala,r,e0) < o0,

R=1z€Bpr(0,6R)NVi r=R? /2
and

(5.6) Z Z pén) (x,N,e,hp,e0) < 0.

n=1zeBr(0,nN)NV;
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(ii) any o small enough,

(5.7) oY s R e) <o

R=12€Bp(0,6R)NV;

and

) 2R
(5.8) Z Z Z pa(x,r, g, e0) < 00,

R=12€Br(0,6R)NV; r=R? /2

for any fized ¢ > 0, as well as

9 2R
(5.9) Z Z Z pe(x,z,1,c0) < 00

R=1z,2€ Bp(0,6R)NV1 r=RY /2

for some fized ¢y > 1/2.
When o € (0,1), (5.7) can be replaced by

oo
(5.10) Z Z pi(z, RY &) < oco.

R=12zeBp(0,6R)NV;
Then for P-a.s. w € Q and any {x, € V,, : n > 1} such that lim, oo x,, = © with some x € F,
it holds that for every T > 0, IPg(c"n)’w converges weakly to PY on the space of all probability

measures on P([0,T]; F), where IP;T:L)’W denotes the distribution of process Xt(n)’w = n_lXT‘L/é}/w.

Theorem 5.3 immediately holds by applying Theorem 4.5, Lemmas 5.4 and 5.5 below to

process Xt(n)’w. From now on, for simplicity we will assume that K, = 1 for all n € IN (in

particular, C3 = C4 = 1 in (5.1)), since the proof directly works for general case with some mild
changes due to the facts that. w;nﬁ (w) = %ﬁz)@@m,ny(w) and C71 < % <C
for all z,y € V,, and n € IN with some constant C' > 1 independent of x,y, n.

Lemma 5.4. Under assumption (i) in Theorem 5.3, for P-a.s. w € Q, Assumption (Mos.)
holds for the conductance {wg(ff) (w)}.

Proof. Under (5.4), for any ¢g > 0,

i IP( U {’ Z (wey — Jl(x,y))’ > EQT’de}>

R=1 r=1  2,yeVi:p(0,2)<R,p(z,y)<r

< i ER:IPQ Z (wz,y - J1(x,y))‘ > EonRd) = i zR:pl(r, R,ep) < .

R=1r=1 z,y€Vi:p(0,2) <R, p(2,y)<r R=1r=1
Since €7 < Ji(x,y) < Cq for all z,y € V7 and some positive constants C7 and Cy, by the
Borel-Cantelli lemma, we know that, for P-a.s. w € Q, there exists a constant Ry(w) > 1 such
that for every R > Ry(w),

eirR < Z Wy y(w) < R, V1< r <R,
z,y€V1:p(0,2)<R,p(z,y)<r
where c¢1,co are positive constants independent of w. Then, for any 0 < 2n < N and nN >
Ry(w), we have

—_9d wnx,ny(w)
n __neny T
> oz, y)d+a—2

x,y€BF(0,N)NV,:0<p(z,y)<n
[log(nn)/ log 2]4-1 Wy ()
< n—d-‘r()é—? €,y

k=0 z,y€V1:p(0,2)<nN and 2k<p(z,y)<2k+1
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[log(nn)/log2]+1

< n—dta=2 Z ka(d+af2) Z wx,y(w)
k=0 z,y€V1:p(0,2)<nN and 2k <p(z,y)<2k+1
[log(nn)/log2]+1
< an—d—‘roz—Q Z 2—k(d+a—2)2(kz+1)d(nN)d < C4Nd772_a.
k=0

This yields that (4.8) holds for P-a.s. w € Q.
According to (5.5), for every g9 > 0 small enough,

i IP< U G {’ Z (wey — Jl(m,y))‘ > 50rd})

R=1 z€BR(0,6R)NVI r=R9/2  yEVi:p(z,y)<r

SO SR i (D SR R B

R=12z€Br(0,6R)NV1 r=R% /2 yeViip(z,y)<r
o o
< Z E g pa(z,7,e0) < 00.
R=12€Bp(0,6R) r=R%/2

Hence, by the Borel-Cantelli lemma, we can find a constant Rj(w) > 0 such that for every
R > Ri(w), € Bp(0,6R) and r > R?/2, )Zye\/lzp(a:,y)ér(wxvy — J1($,y))‘ < gor?. Due to

the fact that 0 < C < Ji(z,y) < C2 < oo for any z,y € Vj again, we arrive at that for all
R> Ry (w),

(5.11) esr? < Z Wy < cgr?, Vae Br(0,6R), r > R9/2.
yEVLip(z,y)<r

Therefore, by (5.11), for every n,j > 1 large enough such that 2nN > Ry(w) and j > N,

—9d Z Wna,ny (w)

n
, pla,y)dte
z,y€ B (0,N)NVr:p(z,y) 2]
<ntte Y Z Wy (@)
px,y)dte
2z€Vi:p(0,2)<nN yeVi:p(z,y)=>nj
0o
—d —k(d
DD DN A D DR )
z€V1:p(0,2)<nN f_ [Lg("ﬁ')] yeVip(z,y)<2F+L
log 2
0o
< et > > arhldredgkid o N je
z€Vi:p(0,2)<nN j_ [10g(nj)}
log 2

Hence, letting n — oo first and then j — oo, we prove that (4.9) holds for P-a.s. w € Q.
Given f € Lip.(F), let

n~ly) — f(n"'2), n7lz,n"ly eV,
0, otherwise.
Applying (5.6) to hy(x,y) and using the Borel-Cantelli lemma, we know that for any ¢ and ¢
small enough, and N large enough, there exists a constant ng(w) > 0 (which may depend on
€0, €, N and f) such that for every n > ng(w) and = € Bp(0,nN),

‘ Z (f(n—ly) _ f(n_lx)) (wx,y(w) - Jl(x¢y)) 2 < Eo(ng)—Qa‘

d+a
X
yEBpr(0,nN)NVi:p(z,y)=ne :0( 7y)
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Then, for n large enough such that ne > (nN)?, we have

Y S (@) - fy) B @) = Azny)

d+o

X

2€EBFR(0,N)NV,, \ ¥€BF(0,N)NVn: ﬂ( ’y)
p(z,y)>e

_ way(w) — J1(z,y)

=-n d+2a Z Z hn(l‘,y) ( z,Y ’ )
z€Bp(0,nN)NV1 \y€Br(0,nN)NVi:p(z,y)>ne

L p 2 Z e0(ne) 72 < Nl 2%,
.Z’EBF(O,’HN)Q‘G

On the other hand, due to (5.3), we can verify that every fixed N > 0 and € > 0,

nr,n — C\T 2
lim n—? Z < Z (f(:E) *f(y)) (Jl( , 1Y) ( 73/))mn(y))

d+a

n—o00 x

z€Br(0,N)NV, YyEBR(0,N)NVnp: ’0( ’y)
plz,y)>e

2
S D D S [Ti(nz,ny) = ez, ) )
2€Br(0,N)NV,, yEBp(0,N)NVy:p(z,y)>e

< caol flZe N Jim {nm > (J1(nz,ny) — c(x,y))2} =0.
2y€Bp(0,N)Vp

Combining two estimates above, we can obtain that (4.10) holds for P-a.s. w € Q by first letting
n — oo and then taking €9 — 0.
Since (4.11) can been proved in the similar way, we omit it here. O

Lemma 5.5. Suppose that condition (5.5) and assumption (i) in Theorem 5.3 hold. Then for
P-a.s. w €, Assumption (Wea.) holds for the conductance {wgg (w)}.

Proof. First, according to (5.9), the property p,(A) = pi1(nA) and the definitions of m, and
w;@, we can easily deduce from the Borel-Cantelli lemma that there is a constant Ry(w) > 0
such that for any R > Ro(w) and RY/2 < r < R, (4.15) holds.

By (5.7),

SEONVERI S = )

R= z€Br(0,6R)NVI  yeVi:p(z,y)<R?

[e%¢} ('U);my - Jl(l', y)) 9(o—
s r ’ 22 > ggRY)
Rzl QSEBF(();R)ﬂVl ( erlip(gy)gRG p(wa y)d+a 2 ‘ 0 )
>

R=12€B5(0,6R)NV;

ps(x, Ra,ao) < 00.

(]

Hence, by the Borel-Cantelli lemma, there exists a constant Rp(w) > 0 such that for any
R > Ry (w),

(5.12) Yo T <aR®), Ve Bp(0,6R)N VA
Vi) <R p(z,y)ite

Furthermore, using (5.11) and choosing &y small enough and Ry(w) large enough, we find that
for every R > Rop(w),

(5.13) cglrd < Z Wey < cor?, Vo> R9/2, x € Bp(0,6R) N V.
yEViip(m,y)<r
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Combining this with (5.12), we see that for every R > Ry(w), z € Bp(0,6C2R/n) NV, and
RP/2 <r < 2R,
(n)
—(d+a—-2) W,y
n Z p(z, y)d+e—2
yEVnip(z,y)<Car/n
w [log(Car)/log 2]+1
. Way —k(d+a—2)
S Z p(x,y)dta—2 + Z 2 ( Z wx,y)
yeVip(z,y)<R?/2 k=[log(R?/2)/log2] yeVi:2k<p(z,y)<2k+1
[log(Car)/log2]+1
< ey (R9(2—a) + Z 2—k(a—2)) < esr2 O,
k=[log(R?/2)/log 2]
Therefore, (4.14) holds for P-a.s. w € Q.

Due to (5.13) again, we know that for every R > Ry(w), z € Bp(0,6C2R/n) NV, and
r> R9/2,

(n) s

—(d+a) W,y —k(d+a)
n Z pn(x,y)dte S Z 2 ( Z wx,y)
yEVn:p(z,y)>Cir/n k=[log(C1r)/log 2] yeVi:2k<p(z,y)<2k+1
9)
g c6 Z 27k(d+04)2d(k+1) g 077,70(7

k=[log(C1r)/log 2]

which implies that (4.18) is satisfied for P-a.s. w € Q.

Following the arguments above, and using (5.8) and the Borel-Cantelli lemma, we can obtain
that (4.16) holds for P-a.s. w € Q. On the other hand, when a € (0,1), we can use (5.10) to
prove that (4.17) holds for P-a.s. w € Q2. The proof is complete. O

5.2. Examples. As an application of Theorem 5.3, we consider three examples. One is a lattice
on a half/quarter space, and other two are time-change of stable-like processes and a fractal
graph respectively.

5.2.1. Lattice on a half/quarter space. Let F' := ]Ril x R% with dy, dy € NU{0}, and p and m be
the Euclidean distance and the Lebesgue measure respectively, which clearly satisfy assumption
(MMS). Therefore the process Y associated with Dirichlet form (Do, %) is a reflected stable-
like process on F, see e.g. [23]. Obviously (Dy,.%p) satisfies assumption (Dir.). Here we will
take Vi =L := Z‘f x 7% and K, =1 for all n € IN. Note that the scaling limit of n™ 'L is F.

Let Ey, be the set of edges associated with L, {w,, : (x,y) € Er} be a sequence of non-
negative independent random variables, and (X{’);>0 be the Markov process with infinitesimal
generator Ly’ defined by (1.1). Obviously (X{)¢>0 is the symmetric Hunt process associated

with the Dirichlet form (D}, #1’) with V1 =L and wélz(w) = Wy y(w).

Proposition 5.6. Let d :=d; + dy > 4 — 2a.. Suppose that {wy, : (x,y) € EL} is a sequence
of non-negative independent random variables satisfying that

(5.14) sup P (wgzy =0) < 24
zy€l,x#y
and
(5.15) sup E[wi{”y] < o0 and sup E[w;iqll{wz’yw}] < 00
z,ycl z,yell

for p,q € Zy with p > max{(d+2)/d,(d+1)/(2(2 — @)} and ¢ > (d+2)/d. If more-
over (5.3) holds true, then the quenched invariance principle holds for X“ with the limit
process Y. Moreover, when a € (0,1), the conclusion still holds true for d > 2 — 2« if
p>max{(d+1)/(2(1 — a)),(d+2)/d} and q > (d+2)/d.
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Proof. According to Theorem 5.3, it suffices to verify (5.4) — (5.10). We first verify (5.9).
Recall that in the present setting K, = 1 for all n € IN, and so C3 = Cy = 1. Suppose that
PO = SUD, yer, aoty P (Wey = 0) < 274 Denote by L(x,7) := [{y € L : |y — x| < r}|. Then, for
every r >0 and z,z € L,

[3L(z,r))+1

IP( Z ]].{wz,y;éo} < ZL(m,r)) < < 7“) L(z,r)—k

yeL:ly—z|<r k=0

< ablenplat el [ L(x ] +1> < g2,

4

where in the second inequality we used the fact that < o > < 2@ for all 0 < k < Lz, 1),
d

and the last inequality follows from pg < 27* and L(x,r) < The estimate above yields that

> het Zx,zeBF(O,ﬁR)mvl ZT:RQ/Q pe(x,z,7,3/4) < co. This is, (5.9) holds with ¢y = 3/4.
Recall that, for any independent sequence {&, : n > 1} such that E[§,] = 0 for all n > 1 and

sup,, E[|€,]?P] < oo for some p € Z., it holds for every N > 1 that EU SN &|2p} < c1(p)NP,

where ¢1(p) is a constant independent of N. Then, for every g > 0, R, r >0, ¢ > 2, n > 1
and a subsequence of bounded measurable function A, on L x L such that sup,,>1 [|fn/lcc < 00,

—op _ 2p pd e
pi(r, R, e0) <o PR™*r M]EH > (wx,y—E[wx,yD] }éq(ew PR,
zy€l:|a|<R,|ly—z|<r

2p
pa(erco) < r B[] 3T (e~ Bluny))| 7] < caleo)r

yEL:|ly—z|<r
_9g _ _ _1ny |2 _
pa(z,r,c5,20) < &g 24). quEH Z (w“l/ - E[wxé])‘ } < es(e0, cg)r9e,
yeL:ly—z|<chr
2p
Wy.y — Elw
pgn)(va7€7hn7€0) <c (5076 Sup Hh || ) ZapE Z W
TL/

yEL:|ly—z|>ne,|y|<nN

< 05(50,N,5,su11) |1 || oo ) 20PRPn = 2PLA40) — (o (20, N &, sup ||| oc)n P2
nz

nz1

In the following, we fix x € L. Let

2p
. (wm,y - J1($, y))
Sp(i) :=E Z p
yEL:ly—z[<2? o —yl®e
; 2p ; 2p
< E | |3 2104 3 (woy — Ji(@,9))| | =B ||D_alEG)| |
j=0 yel:27—1<|y—z|<27 Jj=1

where a(j) = 21 and £(j) = yen a1 1)y sz (g~ Blue,]). Noting that E[€(j)] = 0
and E[|£(4)[?] < ¢727% for all j > 1, by the independent property of {wy ,(w)}, sup;s; S1(i) <
C6 SUP;>1 (Z; La(§)*E[E( )2]) 8D i 21(4=d=20) < o where the last step is due to the
fact d > 4 — 2a. Suppose that sup;-; Sk(i) < oo for every 0 < k < p. Then

Z
<

k+1
Sk+1 (Z) — Sk+1 (Z — 1) = Z (k le 1) a(i)zzE[S(i)Ql]SkJrlfl(i — 1)
=1

Seg(k)( sup 8(i))2 42,

0<y<k,i>1
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which implies sup;; Sk+1(7) < c10(k) D24 9i(4—d—2a)

< 00. So, by induction, we arrive at that
sup;s1 Sp(i) < oo. Hence, for every z € L, p3(z, R,€0) < co(eg) R™2(2~p,

Under assumptions of the proposition, we can choose 6 € (0,1) (close to 1) such that

d+14806 d+1 q >d+1+9

9 2002 —a) 1 a9
also thanks to the condition that d > 4 — 2« again. Then, according to all the estimates above,
we know immediately that (5.4) — (5.8) hold for this € (0,1) and every sufficiently small
€og > 0.

Suppose that o € (0,1). If d > 2 —2a, p > max{(d+1)/(2(1 — a)),(d+2)/d} and
q > (d+2)/d, then we can choose 6 € (0,1) (close to 1) such that

- d+1+60 d+1 d >d—|—1—|—9

max _

P a9 2001 —a) e df

Following the argument above, we can prove that (5.4) — (5.6), (5.8) and (5.10) are satisfied.
Then, the desired assertion follows from Theorem 5.3 again. The proof is complete. U

p>max{

Theorem 1.1 is a direct consequence of Proposition 5.6, since (5.3) holds trivially in this
setting.

5.2.2. Time-change of a-stable-like process on RY. Let us first fix the triple (F,p,m) with
F = R% p being the Euclidean distance and m(dz) = K (x) dx, where dz denotes the Lebesgue
measure on R? and K is a continuous function on R satisfying that 0 < C; < K(z) < O3 < o0
for some constants C; < C. Then, the process Y associated with the Dirichlet form (D, %)
given at the beginning of Subsection 5.1 is a time-change of symmetric a-stable process on R?
with c(z,y) = K(xz) 'K (y)~! for z,y € R% It is obvious that (Dyg,.%,) satisfies assumption
(Dir.).

Similar to the previous part, we can take V; = Z% and m, = K,u, with u, being the
counting measure on n~'Z% and

Kp(z) =n"¢ K(z)dz, zen 'z
Un(x)

where Uy, (z) = 0L [, x; + n7Y) for any 2 = (71, -+ ,24) € n71Z% Let (X#);>0 be the
symmetric Hunt process associated with Dirichlet form (D}, , #}’) with V; = 7% and wg) (w) =
wy y(w). Note that for any compact set S C RY, limy, 00 SUp,cg ’Kn(n[:z:}n) - K($)} =0.If
Ji(z,y) = Elwy,,] = Ki(z) 1K (y) ! for all z,y € Z4, then (5.3) holds true. Hence, following
the same arguments in the proof of Proposition 5.6, we can obtain that under assumption (5.15)
the quenched invariance principle holds for (X{);>0 with limiting process Y being a time-change
of symmetric a-stable process on RY.

Remark 5.7. From the example above, we know that to identity the limit process consists
of two ingredients. One is to verify locally weak convergence of m,, to m, and the other is to
justify convergence of the jumping kernel for the associated Dirichlet form. In fact, by carefully
tracking the proof above, we can see that if the measure m, is replaced by a more general
(random) measure which converges locally weakly to m, then the quenched invariance principle
still holds with the same limiting process.

5.2.3. Bounded Lipschitz domain. In fact, Proposition 5.6 holds not only for a half/quarter
space, but also for the closure of a bounded Lipschitz domain in R?, whose intrinsic distance is
equivalent to the Euclidean distance and whose volume growth is with order d. In details, let
F C R% be a closed set such that for any z,y € F and 7 > 0, c;7¢ < m(Bp(z,7)) < cor? and
clr =yl < pr(z,y) < cofw — yl, where

1
pr(,y) = inf { [ Olds 9 € 0.0 F).A0) = 2,9(1) = }
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is the intrinsic metric on F', m is the Lebesgue measure, and Bp(z,r) is the ball with respect
to pr. For x = (z1,- -+ ,24) € n~1Z%, set Uy (z) = OL [z, 2; + n~1). Note that when F is the
closure of a bounded Lipschitz domain, V;, := {n"'Z¢N F : U,(x) C F} satisfies the properties
given in Lemma 4.1. Suppose that {w, , : z,y € 7%} is a sequence of independent random
variables satisfying the conditions in Proposition 5.6. Then the conclusion of Proposition 5.6
holds on F'. Indeed, in this case, by taking V,, as above, the proofs of Theorem 5.3 and
Proposition 5.6 go through without any change (with p replaced by pp as explained in Remark

5.1). Note that neither V,, = n~1V] nor Xt(n)’w = nleXé;fw holds in general in this setting.

(However, we can verify that Xt(n)’w = nleXZ,;w, where V,, :=nV,, C nF.) Note that the proofs
do not require these properties, and the integrability condition given for all 2,y € Z% is (more
than) enough for the estimates in the proofs to hold.

5.2.4. Fractal graph. The arguments in Example 5.2.1 work for more general graphs that satisfy
(1)—(iv), and that its scaling limit (F, p, m) and Dirichlet form which satisfy (MIMS) and (Dir.)
respectively as discussed at the beginning of subsection 5.1. In particular, we can prove quenched
invariance principle for stable-like processes on various fractal graphs.

Here we introduce the most typical fractal graph; namely the Sierpinski gasket graph. Let
eo = (0,0,---,0) € RV, and for 1 < i < N, ¢; be the unit vector in R whose i-th element
is 1. Set Fi(x) = (x —ei)/2 + e for 0 < ¢ < N. Then, there exists the unique non-void
compact set such that K = Uf\;OFi(K ); K is called the N-dimensional Sierpinski gasket. Set
F := U2 2" K, which is the unbounded Sierpinski gasket. Let

00 N
V1:U2m( U Filo"'OFim({eo,"',eN})>,Vn:2_"+1vl,

m=0 i1, im=0

(Hence, n~1 in the definition of V;, in the previous subsection is now 27"*1.) The closure of

Um>1Vm is F. F satisfies assumption (MMS) with d = log(N + 1)/log2. We can naturally
construct a regular stable-like Dirichlet form satisfying assumption (Dir.). Let {w,, : z,y €
Vi} be a sequence of independent random variables. Then we have Proposition 5.6 with the
same proof in this case as well.
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