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1 Introduction

Bond percolation on Zd (d � 2)

Each bond

“open” with prob. p

“closed” with prob. 1-p

“Open”, “closed” is 

 indep for each bond

9pc 2 (0, 1) s.t. 911-cluster for p > pc, no 1-cluster for p < pc.
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‘Anomalous’ behavior of the random walk at critical probability.

Let p!
n(x, y) := Px

! (Yn = y)/µy and

ds = �2 limn!1 log p!
2n(x, x)/ log n: Spectral dimension.

Alexander-Orbach conjecture (J. Phys. Lett., ’82)

d � 2 ) ds = 4/3 (NOT d).

(It is now believed that this is false for small d.)



Motivations and Historical Remark

Analyze “anomalous” random walks or di↵usions on disordered media

Math. Physicists’ work since late 60’s

Survey: Ben-Avraham and S. Havlin (’00)

Detailed study of heat conduction and wave transmission on

• Complicated network ) Random walk on fractals Rammal-Toulose (’83) etc.

• Random models at critical probability (Percolation cluster etc.)

De Gennes (’76) “the ant in the labyrinth”
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Survey: Ben-Avraham and S. Havlin (’00)

Detailed study of heat conduction and wave transmission on

• Complicated network ) Random walk on fractals Rammal-Toulose (’83) etc.

• Random models at critical probability (Percolation cluster etc.)

De Gennes (’76) “the ant in the labyrinth”

) Late 80’s⇠: Kesten (’86) anomalous behavior of RW on the critical perco. cluster

) Di↵usions / analysis on fractals (Fractals are “ideal” disordered media)

) Stability theory, global analysis ) Applications to random media

Percolation clusters , Erdős-Rényi random graphs , Uniform spanning trees
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2 Anomalous heat transfer on fractals

G: pre-Sierpinski gasket (left figure), M : Sierpinski gasket (right figure)

{Y (n) : n = 0, 1, 2, · · ·}: simple random walk (SRW) on G
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2 Anomalous heat transfer on fractals

G: pre-Sierpinski gasket (left figure), M : Sierpinski gasket (right figure)

{Y (n) : n = 0, 1, 2, · · ·}: simple random walk (SRW) on G

2�nY ([5nt])
n!1�! Bt : Brownian motion on M [Goldstein ’87, Kusuoka ’87]

�f (x) := lim
n!1

5n(
1

4

X
xi

n⇠x

f (xi)� f (x)) : Laplacian on M [Kigami ’89]



Cf.

E•[��] = 5 E•[��] = 4

2�nY ([5nt])
n!1�! Bt : Brownian motion on M

Cf. Invariance principle on R+ {Ỹ (i)}: SRW on Z+

2�nỸ ([4nt])
n!1�! Bt : Brownian motion on R+



Cf.

E•[��] = 5 E•[��] = 4

2�nY ([5nt]) = 2�nY ([2dwnt])
n!1�! Bt : Brownian motion on M

dw = log 5/ log 2 > 2 is called a walk dimension.

Cf. Invariance principle on R+ {Ỹ (i)}: SRW on Z+

2�nỸ ([4nt]) = 2�nỸ ([22nt])
n!1�! Bt : Brownian motion on R+



Theorem 2.1 [Barlow-Perkins ’88] Heat kernel estimates (HK(dw))

9pt(x, y): jointly continuous heat kernel (HK) w.r.t. µ (Hausdor↵ meas.)

(Ptf (x) := Ex[f (B(t))] =
R

M pt(x, y)f (y)µ(dy) 8x 2 M , @
@tpt(x0, x) = �pt(x0, x) ) s.t.

c1t
�ds/2 exp(�c2(

d(x, y)dw

t
)

1
dw�1)  pt(x, y)  c3t

�ds/2 exp(�c4(
d(x, y)dw

t
)

1
dw�1).

df := log 3/ log 2: Hausdor↵ dim., ds = 2 log 3/ log 5 < 2: spectral dim.

Note ds/2 = df/dw: called the Einstein relation. (Cf. BM on Rd: ds = df = d, dw = 2.)
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t
)

1
dw�1).

df := log 3/ log 2: Hausdor↵ dim., ds = 2 log 3/ log 5 < 2: spectral dim.

Note ds/2 = df/dw: called the Einstein relation. (Cf. BM on Rd: ds = df = d, dw = 2.)

From (HK(dw)) , many properties can be deduced!

• c1t1/dw  E0[d(0, Bt)]  c2t1/dw (dw > 2, sub-di↵usive)

• Hölder continuity of harmonic and caloric functions.

• Estimates of Green functions • Laws of iterated laws etc.

TKumagai
スタンプ



Construction of BM and estimates such as (HK (dw)): Done on various fractals.

(df, dw and ds depend on fractals.)

Open Prob. Existing construction of BM on the carpet (e.g. [Barlow-Bass ’99])

requires detailed uniform control of harmonic functions on the approximating proc.

Construct BM on the carpet without such detailed information.



3 Stability of parabolic Harnack inequalities and sub-Gaussian heat kernel estimates

Sierpinski gasket is “Too ideal”

(Q) Is the heat kernel estimate “stable” under some perturbation?



Back to the classical case

[Aronson ’67] L =
P

i.j
@

@xi
(aij(x) @

@xj
) on Rd: sym. and uniform elliptic

(i.e. c1I  A(x) = (aij(x))i,j  c2I), then (HK(2)) holds.

c1t
�d/2 exp(�c2

|x� y|2
t

)  pt(x, y)  c3t
�d/2 exp(�c4

|x� y|2
t

). (HK(2))

[Li-Yau ’86] M : Non-cpt R-mfd, Ricci � 0, �: Laplace-Beltrami ) (HK(2)) holds.

(Q): Stability of (HK(2))?

Assume that the HK for a Dirichlet form E , E(f, f) = �
R

M f (x)Lf (x)dx, satisfies

(HK(2)) and E 0(f, f) ⇣ E(f, f) for all f . Does the HK of E 0 satisfy (HK(2))?

) YES! By the following characterization of (HK(2)).



(M,d, µ): metric measure space, E : ‘nice’ Dirichlet form on L2(M,µ)

[Grigor’yan ’92, Salo↵-Coste ’92, Sturm ’96, Delmotte ’99]

(V D) + (PI(2)) , (PHI(2)) , (HK(2)).

• (VD): volume doubling condition

µ(B(x, 2R))  c1µ(B(x,R)) 8 x 2 M,R > 0.

• (PI(2)): scaled Poincaré inequality 8BR = B(x0, R), R > 0Z
BR

(f (x)� f̄BR)2µ(dx)  c1R
2 EBR(f, f), 8f

where f̄B = µ(B)�1

Z
B

f (x)µ(dx).

• (PHI(2)): parabolic Harnack inequality of order 2. ‘Regularity’ of caloric functions



Theorem 3.4 [Barlow-Bass ’03, Barlow-Bass-K ’06, Andres-Barlow ’13]

(V D) + (PI(�)) + (CS(�)) , (PHI(�)) , (HK(�)).

(CS (�)): cut-o↵ Sobolev inequality Remark. (CS(2)) always holds.

c1

µ(B(x, t1/�))
exp (� c2(

d(x, y)�

t
)

1
��1)  pt(x, y)  c3

µ(B(x, t1/�))
exp (� c4(

d(x, y)�

t
)

1
��1). (HK(�))

Remark. Gasket case: � = dw = log 5/ log 2, µ(B(x, t1/�)) = tdf/dw = tds/2.

[The theorem still holds if s� is replaced by 1{s1}s
�1 + 1{s>1}s

�2.]

) Stability of (HK(�)) is established.



Fractal-like manifold
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Remark. Gasket case: � = dw = log 5/ log 2, µ(B(x, t1/�)) = tdf/dw = tds/2.

[The theorem still holds if s� is replaced by 1{s1}s
�1 + 1{s>1}s

�2.]

) Stability of (HK(�)) is established.

BUT (CS (�)) is hard to verify! Open Prob. Provide a simpler cond.

Strongly recurrent case: simpler equiv. condition [Barlow-Coulhon-K ’05]

) Applicable for random media.



4 Random walk on percolation clusters

4.1 Supercritical case

(⌦,F , P): prob. space for the random media, G = G(!): unique 1-cluster

{Y !
n }n�0: SRW on G(!) p!

n(x, y) := Px
! (Yn = y)/µy. (µy: ] of bonds con. to y.)

Although the media is not ‘uniform elliptic’, long time behavior is NOT anomalous.



4 Random walk on percolation clusters

4.1 Supercritical case

(⌦,F , P): prob. space for the random media, G = G(!): unique 1-cluster

{Y !
n }n�0: SRW on G(!) p!

n(x, y) := Px
! (Yn = y)/µy. (µy: ] of bonds con. to y.)

Although the media is not ‘uniform elliptic’, long time behavior is NOT anomalous.

Theorem 4.1 [Barlow ’04] (Gaussian heat kernel estimates)

(HK(2)) holds P-a.s. ! for t � d(x, y) _ 9Ux, x, y 2 G(!).

Theorem 4.2 [Sidoravicius-Sznitman ’04, Berger-Biskup ’07, Mathieu-Piatnitski. ’07]

(Quenched invariance principle) n�1Y !
n2t
! B�t P-a.s. ! for some � > 0

– Cf. ”Annealed” invariance principle: known since 80’s

[Kipnis-Varadhan ’86, De Masi-Ferrari-Goldstein-Wick ’89 (� > 0)]

) Extensions to random conductance models. (Skip.)



4.2 Critical case

Percolation on Zd with d > 6 (rigorously proved for d � 15)

Let C(0) be the set of vertices connected to 0 by open bonds (random media!)

At p = pc, C(0) is a finite cluster with prob. 1!

(But, in any box of side n, 9 open clusters of diam. ⇣ n w.h.p.)



4.2 Critical case

Percolation on Zd with d > 6 (rigorously proved for d � 15)

Let C(0) be the set of vertices connected to 0 by open bonds (random media!)

At p = pc, C(0) is a finite cluster with prob. 1!

(But, in any box of side n, 9 open clusters of diam. ⇣ n w.h.p.)

) Consider incipient infinite cluster (IIC). PIIC(·) := limn!1 Ppc(·|0 $ @B(0, n))

(I.e. at the critical prob., conditioned on |C(0)| = 1.)

Belief: Local prop. of the large finite clusters can be captured

by regarding them as subsets the IIC.

Existence of the IIC known for this model. [van der Hofstad-Járai ’04]



(G(!), ! 2 ⌦): IIC, d � 15, {Y !
n }n�0: SRW on G(!)

Theorem 4.4 [Kozma-Nachmias ’09] 9a1, a2 � 0 s.t. the following hold.

(i) (log n)�a1n�2/3  p!
2n(x, x)  (log n)a1n�2/3, for large n , P� a.s.

Especially, ds(G(!)) = 4
3, P–a.s. ! (solves the Alexander-Orbach conjecture ).

(ii) (log R)�↵2R3  Ex
!⌧B(0,R)  (log R)↵2R3 , for large R, P� a.s.,

where ⌧A := inf{n � 0 : Y !
n /2 A}.

Why 2/3?



General result: Volume + Resistance ) HK estimates

(G(!), ! 2 ⌦): random graph on (⌦,F , P), 90 2 ⌦ and D � 1.

For R, � � 1, we say B(0, R) is �-good if

RD

�
 |B(0, R)|  �RD,

R

�
 Re↵(0, B(0, R)c)  R.
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(G(!), ! 2 ⌦): random graph on (⌦,F , P), 90 2 ⌦ and D � 1.

For R, � � 1, we say B(0, R) is �-good if

RD

�
 |B(0, R)|  �RD,

R

�
 Re↵(0, B(0, R)c)  R.

Theorem 4.5 [Barlow-Járai-K-Slade ’08, K-Misumi ’08]

If 9q0 s.t. P({! : B(0, R) is �-good}) � 1� ��q0, for large R,� — (*).

) 9↵1, ↵2 > 0 s.t. for P-a.s. ! and x 2 G(!), 9Nx(!), Rx(!) 2 N the following hold

(i) (log n)�↵1n�
D

D+1  p!
2n(x, x)  (log n)↵1n�

D
D+1 for n � Nx(!),

(ii) (log R)�↵2RD+1  Ex
!⌧B(0,R)  (log R)↵2RD+1 for n � Rx(!).

Especially, ds(G(!)) = 2D
D+1 < 2, P–a.s. ! , and the RW is recurrent.

IIC for high dim. percolation satisfies (*) with D = 2.

Open Prob. Provide a simpler su�cient condition for ds � 2.
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IIC (for Galton-Watson branching tree): D = 2

Other examples. (i) Infinite incipient cluster (IIC) for Galton-Watson branching tree

[Barlow-K ’06] D = 2 and ds = 4/3 — Quenched versions of Kesten’s (’86) results.

(ii) IIC for spread out oriented percolation for d � 6

[Barlow-Jarai-K-Slade ’08] (d  5 No! for Branching RW [Jarai-Nachmias ’13])

(iii) Invasion percolation on a regular tree. [Angel-Goodman-den Hollander-Slade ’08]
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IIC (for Galton-Watson branching tree): D = 2

Other examples. (i) Infinite incipient cluster (IIC) for Galton-Watson branching tree

[Barlow-K ’06] D = 2 and ds = 4/3 — Quenched versions of Kesten’s (’86) results.

(ii) IIC for spread out oriented percolation for d � 6

[Barlow-Jarai-K-Slade ’08] (d  5 No! for Branching RW [Jarai-Nachmias ’13])

(iii) Invasion percolation on a regular tree. [Angel-Goodman-den Hollander-Slade ’08]

(iv) IIC for ↵-stable GW trees [Croydon-K ’08] D = ↵/(↵� 1), ds = 2↵/(2↵� 1)

(v) 2-dim. uniform spanning trees [Barlow-Masson ’11] D = 8/5 = 2/(5/4), ds = 13/5



Below critical dimensions

• RW on the IIC for 2-dimensional critical percolation [Kesten ’86]

(a) 9 of IIC for 2-dimensional crit. perco. cluster is proved.

(b) Subdi↵usive behavior of SRW on IIC is proved in the following sense.

9✏ > 0 s.t. the P-distribution of n�
1
2+✏d(0, Yn) is tight.

[Damron-Hanson-Sosoe ’13] ⌧B(0,n) � n2+" for large n, P-a.s. and a.e. RW path



Below critical dimensions

• RW on the IIC for 2-dimensional critical percolation [Kesten ’86]

(a) 9 of IIC for 2-dimensional crit. perco. cluster is proved.

(b) Subdi↵usive behavior of SRW on IIC is proved in the following sense.

9✏ > 0 s.t. the P-distribution of n�
1
2+✏d(0, Yn) is tight.

[Damron-Hanson-Sosoe ’13] ⌧B(0,n) � n2+" for large n, P-a.s. and a.e. RW path

Remark. A-O conjecture is believed to holds for d > 6 (Critical dimension is d = 6)

Numerical simulations suggest that A-O conjecture is false for d  5.

d = 5 ) ds = 1.34± 0.02, · · · , d = 2 ) ds = 1.318± 0.001

Open Prob. Disprove the Alexander-Orbach conjecture in low dimensions.



Other examples in low dimensional random media

• RW on the uniform infinite planar triangulation (D = 4)

[Benjamini-Curien ’13, Gurel-Gurevich and Nachmias ’13]

• Liouville BM [Garban-Rhodes-Vargas ’13, Berestycki ’13,

Maillard-Rhodes-Vargas-Zeitouni ’14, Andres-Kajino ’14]

• BM on the critical percolation cluster for the diamond lattice [Hambly-K ’10]

• RW on the non-intersecting two-sided random walk trace on Z2 and Z3

[Shiraishi ’14]

Open Prob. 1) Lower dimensional models: prove the existence of ds, dw.

2) Compute resistance for random media when it is not linear order.



5 Scaling limits of random walks on random media

Ex. 0 TN : rooted critical Galton-Watson tree (finite var.), cond. to have N vertices.

• Scaling limit of TN is the cont. random tree T (Aldous ’91). Y N : SRW on TN .

Theorem. [Croydon ’08] {N�1/2Y N
[N3/2t]

}t�0
d! {BT

t }t�0.
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Ex. 0 TN : rooted critical Galton-Watson tree (finite var.), cond. to have N vertices.

• Scaling limit of TN is the cont. random tree T (Aldous ’91). Y N : SRW on TN .

Theorem. [Croydon ’08] {N�1/2Y N
[N3/2t]

}t�0
d! {BT

t }t�0.

Ex. 1 Erdős-Rényi random graph in critical window

G(N, p): Erdős-Rényi random graph I.e. VN := {1, 2, · · · , N} vertices

Percolation on the complete graph: each bond open w.p. p ⇠ c/N .

CN : largest con. comp. E.g. N = 200, c = 0.8 N = 200, c = 1.2 Pictures by C. Goldschmidt.



Critical window: p = 1/N + �N�4/3 for fixed � 2 R ) |CN | ⇣ N 2/3. (Aldous ’97)

• [Addario-Berry, Broutin, Goldschmidt ’12]: 9M = M� (random compact set) s.t.

N�1/3CN d�! 9M = M� (Gromov-Hausdor↵ sense).

Theorem 5.1 [Croydon ’12] {N�1/3Y CN

[Nt]}t�0
d�! {BM

t }t�0: BM on M
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• [Addario-Berry, Broutin, Goldschmidt ’12]: 9M = M� (random compact set) s.t.

N�1/3CN d�! 9M = M� (Gromov-Hausdor↵ sense).

Theorem 5.1 [Croydon ’12] {N�1/3Y CN

[Nt]}t�0
d�! {BM

t }t�0: BM on M

Ex. 2 2-dimensional uniform spanning tree (UST)

⇤n := [�n, n]2 \ Z2, let U (n) be a spanning tree on ⇤n (no cycle)

– choose uniformly at random among all spanning trees



U : UST on Z2 is a local limit of U (n) (spanning tree of Z2 a.s.)

• UST scaling limit: [Schramm ’00] topological properties of any possible scaling lim.

[Lawler-Schramm-Werner ’04] uniqueness of the scaling limit.

Theorem 5.2 [Barlow-Croydon-K ’14] 9{�i}i�1 & 0 s.t. {�iY U
�
�13/4
i t

}t�0
d�! {BT

t }t�0.



U : UST on Z2 is a local limit of U (n) (spanning tree of Z2 a.s.)

• UST scaling limit: [Schramm ’00] topological properties of any possible scaling lim.

[Lawler-Schramm-Werner ’04] uniqueness of the scaling limit.

Theorem 5.2 [Barlow-Croydon-K ’14] 9{�i}i�1 & 0 s.t. {�iY U
�
�13/4
i t

}t�0
d�! {BT

t }t�0.

Theorem. In all 3 cases, 9pUt (·, ·): joint cont. HK of BU , 9T0 > 0 s.t. for P-a.e. ! 2 ⌦,

pUt (x, y)  c1t
�

df
dw`(t�1) exp

8<
:�c2

✓
d(x, y)dw

t

◆ 1
dw�1

`

✓
d(x, y)

t

◆�1
9=
;

pUt (x, y) � c3t
�

df
dw`(t�1)�1 exp

8<
:�c4

✓
d(x, y)dw

t

◆ 1
dw�1

`

✓
d(x, y)

t

◆9=
;

for all x, y 2 U , t  T0 with `(x) := (1 _ log x)✓, (9✓ > 0).

For Ex 0, 1, df = 2, dw = df + 1 = 3 , and for Ex 2, df = 8/5, dw = df + 1 = 13/5 .
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New insights to analysis on metric measure spaces.
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• Dynamics (jump-processes) on random media with long-range correlations.

Further developments will continue to lead to important interactions

between probability, analysis and mathematical physics.
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Di↵usions / analysis on (exactly self-similar) fractals.

) Stability theory, global analysis (generalization of the classical perturbation theory).

New insights to analysis on metric measure spaces.

) Applications to RW/di↵usions on random media

Future challenges • Dynamics on conformal invariant media.

• Dynamics (jump-processes) on random media with long-range correlations.

Further developments will continue to lead to important interactions

between probability, analysis and mathematical physics.

Thank you!
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