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Abstract

We construct critical percolation clusters on the diamond hierarchical lattice and show

that the scaling limit is a graph directed random recursive fractal. A Dirichlet form can

be constructed on the limit set and we consider the properties of the associated Laplace

operator and diffusion process. In particular we contrast and compare the behaviour of the

high frequency asymptotics of the spectrum and the short time behaviour of the on-diagonal

heat kernel for the percolation clusters and for the underlying lattice. In this setting a number

of features of the lattice are inherited by the critical cluster.

1 Introduction

There has been extensive recent work on gaining a mathematical understanding of random walk

on the clusters of Bernoulli bond percolation in Z
d for d ≥ 2. In the percolation model each edge

of Z
d is open independently with probability p. The system exhibits a phase transition in that

at a critical probability pc ∈ (0, 1) there exists an (unique) infinite connected component C∞ of

the set of open edges. In the supercritical case, where p > pc, there are now annealed [16] and

quenched [10, 39, 43] invariance principles, full Gaussian heat kernel bounds [4] and a local limit

theorem [5] for the random walk on C∞ for any p > pc in any dimension.

The transport properties of the percolation cluster ‘at criticality’ have been studied in the

physics literature in great detail through heuristics and numerical work, [25] however they are

much less well understood mathematically. Let Y = (Yt, t ≥ 0) be the (continuous time) simple

random walk on the critical cluster C, and pt(x, y) be its heat kernel. Define the spectral dimension

of C by

ds(C) = −2 lim
t→∞

log pt(x, x)

log t
,

if this limit exists. Alexander and Orbach [1] conjectured that, for any d ≥ 2, ds(CZd) = 4/3.

While it is now thought that this is unlikely to be true for small d, it has been proved for the

mean field regime [33], that is for sufficiently high dimension, or in d > 6 when the lattice is

sufficiently spread out. The first issue is to construct a critical cluster as the probability of the

existence of such an infinite cluster is 0 (this is proved for d = 2, d ≥ 19). In the two dimensional
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case the incipient infinite cluster (IIC), the critical cluster, was first constructed in [27] and the

first result on the random walk on this cluster [28], showed that it was subdiffusive. The only

recent work on the random walk on the two dimensional IIC is an estimate for the resistance of

the IIC, which leads to bounds on the random walk exponent3. Although the scaling limit will

have a description in terms of SLE, there is no conjecture regarding the dynamic exponents in two

dimensions. In high dimensions more detailed results such as subdiffusive heat kernel estimates

are now available for the random walk on the incipient infinite cluster on d-ary trees [8], oriented

and unoriented spread out percolation clusters in dimension greater than 6 [6, 33]. In all cases, it

is proved that the Alexander-Orbach conjecture is true. Spectral properties [15] and heat kernel

estimates [14] are also known for the continuum random tree, a set closely related to the scaling

limit of the IIC on the tree.

Our aim is to investigate a simpler lattice than Z
d and consider the analogue of the infinite

cluster from critical bond percolation on this lattice and study its transport properties. The recent

progress on the high dimensional critical cluster makes use of the fact that in the mean field the

percolation clusters are close to trees, in that there are very few loops, which makes resistance

calculations easier. The lattice we consider here has features not seen in the mean field regime in

that there are loops at all scales but, due to exact self-similarity, it is easier to handle than Z
d

for low dimensions.

The diamond hierarchical lattice was initially investigated in the physics literature, for instance

in [11], [44] and [17] and more recently for random polymers in [12, 19, 36], and random conductors

[45]. It is constructed in a self-similar manner and the first few stages in the construction are

shown in Figure 1. The self-similarity allows for the straightforward computation of a number

of exponents for the lattice, for example the dimension is 2. Thus we may hope that the lattice

has some similarities to the two-dimensional integer lattice. However detailed properties are more

difficult to obtain as it is not a finitely ramified fractal lattice and can be viewed as having a

multifractal structure.

DD D D2 310

Figure 1: The first 3 stages of the construction of the diamond hierarchical lattice

At each stage of construction the lattice is a finite graph Dn and Bernoulli bond percolation

can be performed. We define percolation as the existence of an open cluster in Dn joining the

two vertices of D0 in the limit as n → ∞. The exact construction and definition will be given

3A. Jarai, personal communication
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in Section 2. A picture of the level 3 lattice after percolation (which contains two non-trivial

open clusters and 10 single point clusters) is shown in Figure 2. In this setting there is no need

Figure 2: The first 3 stages of the diamond hierarchical lattice after percolation where a thick

line indicates an open edge and a dot indicates an isolated vertex

to construct an IIC as, for our model on this lattice, an infinite cluster will exist with positive

probability at the critical probability. Once we have shown that there is such a cluster we will

give an alternative probabilistic description of the infinite cluster via the tree associated with a

multitype branching random walk. This structure is the key to our analysis as we can apply

techniques that have been developed for handling random recursive fractals. We will write (Ω,P)

for the probability space of clusters and C(ω) for the critical cluster.

We will proceed to construct a Dirichlet form on the critical percolation cluster and then to

show that it can be renormalized to produce a Dirichlet form (Eω,Fω) on L2(C(ω), µω) (where

µω is a natural measure defined later) for the scaling limit. This scaling limit is a graph directed

random recursive fractal set viewed as a self-sufficient metric space. The approach is to choose

weights associated with each edge in the lattice in such a way that the effective resistance across

the whole lattice remains at one. This mimics the construction of Dirichlet forms on random

recursive Sierpinski gaskets as in [20].

The first results we obtain are to indicate the properties of the scaling limit of the diamond

hierarchical lattice (which we denote by K) itself. We focus on two aspects. Firstly the behaviour

of the heat kernel, where we can obtain only weak bounds. As there is no volume doubling for

the natural measure it is difficult to get sharp uniform estimates for the heat kernel and we only

give an upper bound and a diagonal lower bound. The other property that we consider is the

high frequency asymptotics of the spectrum of the Laplacian. As the scaling limit of the lattice

is similar to a finitely ramified fractal we can show that there are strictly localized eigenfunctions

and that these dominate the spectrum.

For the scaling limit of the critical percolation cluster C, we can obtain results for the on-

diagonal heat kernel and also for the spectral asymptotics.

Theorem 1.1 Let NK(λ) and NC(λ) be the number of eigenvalues less than λ for the Laplacian

(Dirichlet or Neumann) on K and C respectively. Then, there exist periodic functions p and p1,

a mean one random variable W > 0 and a constant θ = 5.2654.. such that the following hold as

λ→ ∞,

NK(λ) = λp(logλ) + o(λ), (1.1)
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NC(λ) = Wλθ/(θ+1)p1(logλ) + o(λθ/(θ+1)), P − a.s.. (1.2)

Further, p is not a constant function.

Note that θ is the dimension of the cluster with respect to the effective resistance metric.

Theorem 1.2 (i) There exist jointly continuous heat kernels pt(x, y) for the Laplacian on K and

qωt (x, y) for the Laplacian on C = C(ω) such that the following on-diagonal estimates hold: For

ǫ > 0, for a.e. x ∈ K, there exists T (x) > 0, constants c1, c2 and random constants c3, c4 such

that

c1t
−1| log t|−2−ǫ ≤ pt(x, x) ≤ c2t

−1, a.e. x ∈ K, ∀t < T (x),

c3t
−θ/(θ+1)| log t|−2(2θ+3)(θ+2)−ǫ ≤ qωt (x, x) ≤ c4t

−θ/(θ+1)| log | log t||(θ−1)/(θ+1),

µω − a.e. x ∈ C(ω), P − a.s., ∀t < 1.

(ii) For the vertex 0 (which is in both K and C), there are constants c5, c6 > 0, random constants

c7, c8 > 0, and θ′ = 3.927.. such that the following hold:

c5t
−1/2 ≤ pt(0, 0) ≤ c6t

−1/2, ∀t < 1,

c7t
−θ′/(θ′+1) ≤ qωt (0, 0) ≤ c8t

−θ′/(θ′+1), P − a.e. ω, ∀t < 1.

This theorem shows that while the diamond hierarchical lattice itself behaves, at the level of expo-

nents, like Z
2, a version of the Alexander-Orbach conjecture does not hold for this critical cluster.

We have no reason to believe that the spectral dimension of the critical cluster in the diamond

lattice should be the same as that for the IIC in Z
2. We would expect that this exponent would

depend upon the local geometry which is quite different between the two lattices. The spectral

exponent we have computed here is also determined by the particular Laplace operator we have

chosen on our limit cluster which enables us to perform the renormalization in a straightforward

fashion.

We also remark here that the diamond hierarchical lattice is just one hierarchical lattice with

two boundary points which could be constructed. Our approach can be applied to other families

of hierarchical substitution rules but we note that in order to apply some of the techniques used

here it is important that the spectral dimension is less than 2.

The structure of the paper is as follows. In Section 2 we describe the diamond hierarchical

lattice and introduce percolation on it. The percolation problem leads to an exact renormalization

map and we give explicit results on the percolation probability and show that the infinite cluster

at criticality will exist with positive probability and can be described by a branching process.

This leads to a description of the scaling limit of both the diamond hierarchical lattice and the

infinite critical percolation cluster in Section 3. In Section 4 we consider the properties of the

diamond hierarchical lattice itself. Then we consider the same properties for the scaling limit of

the infinite cluster in Section 5. We complete the paper by discussing some open problems in

Section 6.

Note that throughout the paper we will write, c, c′, C, C ′ for constants whose value may vary

from line to line. Constants marked ci are fixed within a given argument.
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2 Percolation on the diamond hierarchical lattice and its

scaling limit

The diamond hierarchical lattice is a recursively constructed graph. We begin with D0 = (V0, E0),

where V0 consists of two vertices and E0 an edge between them. The graph Dn+1 = (Vn+1, En+1)

is constructed by replacing each edge in En of Dn by a diamond, that is two sets of edges, each

set consisting of two edges in series with a vertex between them, in parallel as shown in Figure 1.

We may also think of this as taking 4 copies of the graph Dn and attaching them in a diamond

configuration to form Dn+1.

We note that En has 4n edges and that the local geometry varies radically from point to point.

The original two vertices, which we label 0 and 1, have 2n edges leaving them in Dn, while each

of the new vertices in Vn\Vn−1 (those added at the n-th level) have only two edges leaving them.

2.1 Percolation on D
n

Now we perform percolation on the n-th graph Dn. Let Ωn = {0, 1}En , p ∈ [0, 1], and Pn,p be

the probability measure on Ωn which makes ω(e), for each e ∈ En, an i.i.d. Bernoulli r.v. with

Pn,p(ω(e) = 1) = p. The edges e with ω(e) = 1 are called open and the open cluster Cn(x)
containing x is the set of y ∈ Dn such that x↔ y, that is x and y are connected by an open path

in Dn. Let Dp
n be the graph whose components are the open clusters of Dn.

From Dp
n we can construct Dp

k,n for k = n−1, . . . , 0 by considering each copy of D1, a subgraph

of 4 edges in Dk between a connected pair of vertices, say x, y in Dk−1, and setting ω(e) = 1

for each edge e in Dp
k−1,n if the edges of that subgraph of Dp

k,n form an open path between the

vertices x, y of Dk−1. If the subgraph does not form an open path between these vertices, then

we set ω(e) = 0 for that edge in Dp
k−1,n. As the edges of Dn are subject to independent Bernoulli

bond percolation and the procedure of determining if the subgraphs are connected only depends

on the four bonds in each subgraph, the edges of Dk will be subjected to independent Bernoulli

bond percolation for each k = n− 1, . . . , 0. However the probability of an edge being present will

be modified. We can compute the effect in that at level 1 we have 7 combinations of edges which

give a connection between 0 and 1 and hence the overall connection probability is p0 = f(p) where

f(p) = 2p2(1 − p)2 + 4p3(1 − p) + p4,

= 2p2 − p4.

Thus we have a map on the percolation probability as the graph is decimated. We see that Pn,p

induces a probability measure Pk,fn−k(p) on Ωk, where fm(p) is the m-fold composition of f with

itself, which makes ω(e) independent Bernoulli random variables for each e ∈ Ek and hence we

have that Dp
k,n = D

fn−k(p)
k in distribution. It is easy to see that the map f has 3 fixed points in

the interval [0, 1]. Those at 0 and 1 are attracting and the one at pc = (
√

5− 1)/2 is repulsive. It

is therefore simple to deduce the following.

Lemma 2.1 If the graph Dn is subject to Bernoulli bond percolation with p = pc, then there is

percolation in the sense that the vertices 0 and 1 are connected by an open path with probability
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pc.

If p > pc, then P (0 and 1 are connected in Dn) → 1 as n→ ∞.

If p < pc, then P (0 and 1 are connected in Dn) → 0 as n→ ∞.

2.2 A tree description of the critical percolation cluster

We can now build a branching tree model of (Dpc
n )∞n=0. We first give an informal description by

labelling the sequence of graphs Dn. For any graph Dn we label each edge as one of two types

- a c, for connected and a d for disconnected. Now to produce the labelling on Dn+1 we use

the following reproduction rule for the two types of edges. We first observe that applying bond

percolation to D1 gives 16 possible configurations of labelled edges.

1. If we have a c, then to ensure that the graph remains connected, the replacement graph for

that edge comes from one of the 7 possible connected graph structures, shown on the left of

Figure 3, with the original probabilities normalized by dividing by pc.

2. If we have a d, then the replacement graph for that non-edge is chosen from the 9 possible

disconnected configurations, shown on the right of Figure 3, with the original probabilities

normalized by dividing by 1 − pc.

c d

Figure 3: The 7 connected and 9 disconnected configurations

Thus we view our sequence of percolation configurations (Gn) as starting from the initial edge

G0, that is D0 labelled with a c, and then each graph Gn is the subgraph of the labelled graph

Dn where we only keep the edges with labels c.
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We now set this up more formally. Let I = {1, 2, 3, 4} and assign each number to an edge of

the four which form D1. let I0 = ∅, and Tn = ∪ni=0I
i denote the quaternary tree to level n and

the full quaternary tree as T = ∪nTn. We write i = (i1, . . . , in) where ij ∈ I for a vertex i ∈ Tn.

We will write ∂T for the boundary of the tree, that is the infinite sequences of elements of I. For

any i = (i1, i2, . . .) ∈ ∪m≥nTm ∪ ∂T we will write i|n for (i1, . . . , in). Let U = {c, d} denote the

possible types for each vertex in the tree. If the tree has a c at vertex i ∈ Tn this corresponds

to the edge in Dn with label i being present after percolation and a d at the vertex to the edge

labelled i being absent.

We can construct a probability space (Ω,P) by setting Ω = UT , and taking as a probability

measure P, that for a multitype branching process where an element of U represents the type of an

individual. The offspring distribution is always four and the type distribution is straightforward to

compute. If we have a type c individual then we have one of the 7 possible connected configurations

with probability given by the following. For each i = 1, 2, 3, 4 we choose independently a c with

probability pc or a d with probability 1−pc and then renormalize. Similarly for a type d individual.

The distribution will be given explicitly in (2.1) for a slightly extended type space.

Lemma 2.2 The probabilistic structure of the sequence of graphs (Gn)0≤n≤N generated above

is the same as that of the decimated sequence of Bernoulli bond percolated graphs (Dpc

n,N )0≤n≤N

derived from Dpc

N . If the branching process starts from an individual of type c, then the vertices 0

and 1 in Gn are connected and (Gn)n≥0 corresponds to a sequence of graphs (Dpc
n )n≥0 in which

we have percolation.

Proof: The probability measure for the percolation on DN is Pn,p, the Bernoulli product

measure on the edges of DN . The labels on level N induce a labelling on the sequence of decimated

graphs Dpc

n,N . At the critical probability we know that the measure induced on the tree has the

property that it is invariant under decimation so Dpc

n,N = Dpc
n in distribution. Indeed, (ΩN ,PN,pc

),

the probability space for DN with critical Bernoulli product measure projects onto (Ωn,Pn,pc
) for

all 0 ≤ n < N . Thus we have the same measure on the labels as given by the multitype branching

process. Thus if we start the branching process with a c corresponding to a connected edge for

G0, then this leads to each Gn having the same distribution as Dpc
n given that under decimation

Dpc

0 is connected.

Thus, by Kolmogorov’s extension theorem, there is a Dpc
∞ which has the property that if it is

subject to Bernoulli bond percolation it produces a finite lattice Dpc
n with the property that the

vertices 0 and 1 are connected with probability pc. This infinite object is then described by the

limiting behaviour of the multitype branching process. We will use the notation Dpc
n for the bond

percolation graph arising at the critical probability on Dn however it is constructed.

2.3 The critical cluster

The critical cluster is now obtained by considering only the connected component of Dpc
∞ between

0 and 1. As the existence of the critical cluster has positive probability we can condition on its

existence and thus we will work on a subset Ωc ⊂ Ω of our probability space which starts with
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the label c at the root of the tree corresponding to a connected structure. The critical cluster

is described by a sub-branching structure contained within the full description of the diamond

hierarchical lattice subject to Bernoulli bond percolation.

We now reconsider our construction of (Dpc
n )0≤n≤N and extend it to produce a description of

the infinite cluster at criticality. Start with the sequence of graphs (Dpc

n,N )0≤n≤N which leads to

a connected D0. Now we consider Cn(0), which we just write as Cn, by removing all the edges of

the graph Dpc

N that are not connected by an open path to the vertices 0 and 1. From this form the

sequence of graphs (Cn)0≤n≤N in the same way as we formed (Dpc

n,N )0≤n≤N . This is a sequence

of graphs, each of which is the connected component of Dpc
n containing 0 and 1. Thus as n→ ∞,

this leads to the infinite cluster at criticality.

This graph can also be described by a branching tree. We now choose a different labelling of

the edges to ensure that the branching tree only retains and produces edges that are connected

to the two outermost vertices. We label connected edges by a c as before but now split the

disconnected case up into two types. Firstly d(1) for those disconnected edges which have one

end connected to the infinite cluster and d(2) for those disconnected edges which have two ends

connected to the infinite cluster. We now have the following replacement rules:

1. If we have a c, then the replacement graph for that edge comes from one of the 7 possible

connected graph structures.

2. If we have a d(1), then the replacement graph for that non-edge is chosen from the 4 possible

disconnected configurations which only have one vertex in the infinite cluster.

3. If we have a d(2), then the replacement graph for the non-edge is one of the 9 possible

replacement disconnected graphs available.

4. Edges in DN which are not connected to the infinite cluster do not reproduce.

The configurations for c and d(2) are the same as for the original model shown in Figure 3.

The new configurations for d(1) are shown in Figure 4 in the case when the image of vertex 0 is

part of the cluster. We also have the reflections of these configurations when the image of vertex

1 is part of the cluster.

d (1)

Figure 4: The 4 extra disconnected configurations
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The probability distribution for the evolution of the types is given by

c→















(2c, 2d(1), 0d(2)) 2 configs p(1 − p)2

(3c, 0d(1), 1d(2)) 4 configs p2(1 − p)

(4c, 0d(1), 0d(2)) 1 config p3

,

d(1) →















(1c, 2d(1), 0d(2)) 2 configs p(1 − p)

(2c, 2d(1), 0d(2)) 1 config p2(1 − p)

(0c, 2d(1), 0d(2)) 1 config 1 − p

,

d(2) →















(1c, 2d(1), 1d(2)) 4 configs p(1 − p)2

(2c, 0d(1), 2d(2)) 4 configs p2(1 − p)

(0c, 4d(1), 0d(2)) 1 config (1 − p)3.

(2.1)

For example, the transition distribution for c→ (2c, 2d(1), 0d(2)) can be computed as p2(1−p)2/p =

p(1 − p)2, since the initial state is conditioned on c. Noting that 2p2 − p4 = p (because p = pc),

when we fix the initial state, the sum of the probabilities for each possible evolution is equal to 1.

Using these replacement rules and starting from an initial graph G0 = D0 we produce a

sequence of connected subgraphs (Gn)0≤n≤N of the diamond hierarchical lattice by retaining only

those edges of Dn for n = 0, .., N which are labelled c at the large scale.

Lemma 2.3 The sequence of graphs (Gn)0≤n≤N has the same distribution as (Cn)0≤n≤N , the

sequence of graphs which grow to be the infinite cluster in the Bernoulli bond percolation model

for the diamond hierarchical lattice conditional upon connecting the vertices 0 and 1.

Proof: As in the case of the Bernoulli bond percolation graph constructed on the graph Dn in

Lemma 2.2, this follows from the construction.

From now on we will write Cn for the subgraph of Dn which is the level n percolation cluster

connected to the origin. (Note that Gn = ∪xCn(x) is a collection of connected components, so

Cn = Cn(0) ⊂ Gn. We will not need to use Gn any more.)

3 Scaling Limits

3.1 The scaling limit of the diamond hierarchical lattice

We begin by discussing the diamond hierarchical lattice. The sequence of graphs (Dn) can be

rescaled to give each edge length 2−n and the resulting limit can be regarded as a fractal in that

it is a self-sufficient metric space built from 4 contraction maps. This is not a finitely ramified

fractal as in the limit there will be a countable infinity of connections at any vertex in Vn for a

given n. It is a simple fractal in the sense of [40] and thus there exists a diffusion on the scaling

limit via the methods of [40]. We will take a different approach here.

Let (K, d) be a compact metric space containing two points labelled 0,1 and {ψi : i = 1, 2, 3, 4}
be a set of contractions ψi : K → K, with contraction factor 1/2 with respect to the metric d, and

the following properties: ψ1(0) = ψ2(0) = 0, ψ3(1) = ψ4(1) = 1 and ψ1(1) = ψ3(0), ψ2(1) = ψ4(0)
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and ψi(int(K)) ∩ ψj(int(K)) = ∅ for all i 6= j, where intK = K\{0, 1}. This defines the scaling

limit of the diamond hierarchical lattice as a self-similar set in that

K =
4
⋃

i=1

ψi(K).

We recall that the limit set can be regarded as the image space of the boundary of the tree ∂T

via π : ∂T → K, where {π(i)} = ∩n≥0ψi1 ◦ . . . ◦ ψin(K).

We can observe that in the framework of [30] the post critical set is countably infinite (it

consists of all possible addresses of the points 0 and 1) but we can still regard the fractal as

having a boundary consisting of two points, as the countable collection of addresses only point to

the two vertices 0 and 1. We recall that V0 is the set of vertices of D0 and that we can embed Vn,

the vertices of Dn, in K by setting Vn = ∪4
i=1ψi(Vn−1) for n = 1, 2, . . ..

We note that the diamond hierarchical lattice has similar dimension properties to R
2. If we

compute the Hausdorff dimension of the set it is 2, the resistance does not scale in the sense that

unit resistances on each edge lead to a unit resistance across the whole set and hence the walk

dimension and the spectral dimension are also 2.

Definition 3.1 We define the natural metric on K. For x, y ∈ Vn, let πn(x, y) denote the set of

paths from x to y in the graph Dn. Let dn(x, y) = min{|ξ| : ξ ∈ πn(x, y)} be the number of edges

in the shortest path on Vn between x and y. Then, the following limit exists;

d(x, y) := lim
n→∞

2−ndn(xn, yn), ∀x, y ∈ K

where xn, yn ∈ Vn converge to x, y respectively as n→ ∞. The limit is independent of the choice

of the approximating sequence. It is easy to see that d is a geodesic metric.

Definition 3.2 Let µ be the Hausdorff measure on K. It satisfies the following for all i ∈ In;

µ(Ki) = 4−|i|.

Note that µ does NOT satisfy the volume doubling property with respect to the natural

distance on K. Denote the volume of a ball by V (x, r) = µ(B(x, r)). Note also that the following

does NOT hold; c1r
2 ≤ V (x, r) ≤ c2r

2 for all x ∈ K, 0 ≤ r ≤ 1, because otherwise µ would satisfy

the volume doubling property.

We will discuss the properties of this set in Section 4

3.2 The scaling limit of the critical percolation cluster

The scaling limit for the critical percolation cluster itself will be a random recursive graph directed

fractal. As for the diamond hierarchical lattice we define the limit as a self sufficient metric space

and we take the same contraction maps as for the diamond hierarchical lattice. Now however we

will only use the composition of all the maps leading to the individuals labelled c in the multitype

branching process.

We recall the labelling of the infinite cluster branching process as given in Section 2.3. Each

vertex i ∈ T has four edges out labelled 1, . . . , 4 and we associate the map ψi with the label i. The
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probability space (Ω,P) introduced in Section 2.2 can now be viewed as a probability space for

the random recursive graph directed fractal C(ω). This random recursive graph directed fractal is

determined by a construction graph with three vertices, each corresponding to a type (labelled as

before c, d(1), d(2)). The edges of the construction graph determine how a given type of fractal is

composed of subtypes. The random recursive set is viewed as a vector of sets, one for each type,

each of which is a random set composed of copies of the random sets of the possible types, see for

example [41].

We write ω ∈ Ω as ω = {ui : i ∈ T} for the tree with its labels. Then for a given ω ∈ Ω the

fractal C(ω), which we will often denote C(u∅) to indicate the type u∅ of the set, will satisfy

C(u∅) =

4
⋃

i=1

ψi(C(ui)) =

4
⋃

i=1

ψi(C(σiω)),

where C(τ) is the random recursive fractal corresponding to type τ and σi is the shift along the

tree down the branch labelled i in that if ω = {(j, ω̃j), j = 1, .., 4, ω̃j ∈ Ω}, then σiω = ω̃i.

The Hausdorff measure on the limit will also satisfy a recursive formula in that for ω ∈ Ω,

µω(.) = µu∅
ω (.) =

4
∑

i=1

µui
ω (ψi(.)) =

4
∑

i=1

µσiω(ψi(.)).

Now µτω is a measure on a set of type τ , the type corresponding to the root of the tree ω.

3.3 The dimension of the critical cluster

The branching structure underlying the construction means that it is possible to use branching

processes to describe the volume growth of the infinite cluster. If we consider the scaling limit,

in which we scale the length of each edge in Cn, the critical cluster on Dn, by 2−n, we obtain

a sequence of graphs which can be embedded in a fractal. Indeed this is a random recursive

graph directed simple fractal space. The computation of the Hausdorff dimension (in fact the

multifractal spectrum) of such fractals is described in [41]. Here we use the connection with

multitype branching processes. We note that as the length scaling is always 1/2, we just need to

compute the number of edges in Cn. These can be described by a multitype branching process with

three types, corresponding to c, d(1), d(2). The number of edges in the graph Cn is the number of

type c individuals in our branching process. It is straightforward to write down the mean matrix

of the process and thus to compute the growth of type c individuals.

In order to compute the dimension of the set we do not need the labels for the individuals,

we just record the number of each type as this is the offspring distribution for the multitype

branching process which describes the growth. Let X be the random vector of the number of

offspring of each type. We write P τ (Xc = nc, Xd(1) = nd(1) , Xd(2) = nd(2)) for the probability that

an individual of type τ has nc, nd(1) , nd(2) offspring of types c, d(1), d(2). From (2.1), we have the

following,

P c(Xc = 2, Xd(1) = 2, Xd(2) = 0) = 2p(1 − p)2

P c(Xc = 3, Xd(1) = 0, Xd(2) = 1) = 4p2(1 − p)

P c(Xc = 4, Xd(1) = 0, Xd(2) = 0) = p3

11



P d(1)(Xc = 1, Xd(1) = 2, Xd(2) = 0) = 2p(1 − p)

P d(1)(Xc = 2, Xd(1) = 2, Xd(2) = 0) = p2(1 − p)

P d(1)(Xc = 0, Xd(1) = 2, Xd(2) = 0) = 1 − p

P d(2)(Xc = 1, Xd(1) = 2, Xd(2) = 1) = 4p(1 − p)2

P d(2)(Xc = 2, Xd(1) = 0, Xd(2) = 2) = 4p2(1 − p)

P d(2)(Xc = 0, Xd(1) = 4, Xd(2) = 0) = (1 − p)3

From this we can compute the mean matrix, which simplifies by using the fact that at p = pc

we have 2p− p3 = p+ p2 = 1, and writing q = 1 − p = p2,

EX =









8q 4pq2 4q2

2q 2 0

4q 4pq 4q









=









8p2 4p5 4p4

2p2 2 0

4p2 4p3 4p2









.

For example, the (1, 1)-component of the matrix can be computed as follows,

2 × 2p(1 − p)2 + 3 × 4p2(1 − p) + 4 × p3 = 4pq(q + 3p+ 1) = 8pq(1 + p) = 8q = 8p2.

The rate of growth of the number of individuals is the maximum eigenvalue of this matrix

which is the largest root of

x3 + (6
√

5 − 20)x2 + (36
√

5 − 68)x+ 64 − 32
√

5 = 0.

This can be computed numerically as xmax = 3.8425....

Theorem 3.3 The fractal which is the scaling limit of the infinite Bernoulli bond percolation clus-

ter on the diamond hierarchical lattice has Hausdorff dimension df = log xmax/ log 2 = 1.8993....

Remark 3.4 Thus the dimension of the critical cluster in the diamond lattice is different from

that of the IIC in Z
2 which is known to be 91/48 = 1.8959....

The natural geometric measure on the fractal can be described by the branching process in

that the limit measure will be random with the total mass given by the limit random variable

in the multitype branching process. When we consider the analytic properties of the percolation

cluster we will need to work in the effective resistance metric and in this setting we will use a

similar construction but based on a multitype branching random walk. We discuss this further in

Section 5.

4 The diamond hierarchical lattice and its properties

In this section, we will discuss the construction of the Dirichlet form on the diamond hierarchical

lattice as well as the spectral asymptotics and heat kernel estimates associated with this form.
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4.1 Construction of the Dirichlet form

The construction of a Dirichlet form on this limit is straightforward, even though we do not have

finite ramification, as the approach of [29, 35] is still applicable.

Let

E0(f, g) =
1

2
(f(0) − f(1))(g(0)− g(1)). (4.1)

We then define

E1(f, g) =
4
∑

i=1

E0(f ◦ ψi, g ◦ ψi),

and note that inf{E1(g, g) : g|V0
= f} = E0(f, f) for any f : V0 → R. Thus we can extend this to

write

En(f, g) =

4
∑

i=1

En−1(f ◦ ψi, g ◦ ψi),

and put

E(f, f) = lim
n→∞

En(f, f), ∀f ∈ F∗ := {f : ∪m≥0Vm → R | sup
n

En(f, f) <∞}.

We denote F∗
D = {f ∈ F : f |V0

= 0}.
We recall that the diamond hierarchical lattice is not a p.c.f. self-similar set in the sense of

[30], and note that the harmonic structure is not regular. Nevertheless, we can construct a regular

local Dirichlet form on L2(K,µ) in the same way as the non-regular harmonic structure case (see

[35] section 3 or [30] section 3.4). Below, we will state the key proposition for the construction

without proof.

Proposition 4.1 (i) For each m ∈ N and h : Vm → R, there exists a unique function Pmh ∈
C(K) such that the following holds,

Pmh|Vm
= h, and E((Pmh)|∪m≥0Vm

, (Pmh)|∪m≥0Vm
) = Em(h, h).

(ii) For any f ∈ F∗, {Pmf}m converges in L2(K,µ) as m→ ∞.

The proof of (i) is the same as that of Corollary 3.2.15 in [30] and the proof of (ii) is the same as

that of Lemma 3.4.3 in [30]. (Note that in this case ri = 1 for i = 1, · · · , 4 and µ(Ki) = µi := 4−|i|.)

For f ∈ F∗, let ιµ(u) be the limit of {Pmf}m in L2(K,µ) as m→ ∞.

Lemma 4.2 ιµ : F∗ → L2(K,µ) is injective and it is a compact operator. Here the norm on F∗

is given by E(·, ·) + ‖ · ‖2
L2 .

The proof is the same as those of Lemma 3.4.4 and Lemma 3.4.5 in [30].

Let F := ιµ(F∗) ⊂ L2(K,µ) and FD := ιµ(F∗
D) ⊂ L2(K,µ). Then, the following can be

proved in a similar way to Theorem 3.4.6 and Corollary 3.4.7 in [30].

Theorem 4.3 The pair (E ,F) is a local regular Dirichlet form on L2(K,µ) with the following

self-similarity,

E(f, g) =

4
∑

i=1

E(f ◦ ψi, g ◦ ψi), ∀f, g ∈ F .

13



The corresponding non-negative self-adjoint operator HN on L2(K,µ) has compact resolvent.

Similarly (E ,FD) is a local regular Dirichlet form and the corresponding non-negative self-adjoint

operator HD on L2(K,µ) has compact resolvent.

From the construction, it is easy to check that E(f, f) = 0 if and only if f is a constant function,

in particular 1 ∈ F and E(1, 1) = 0. So (E ,F) is conservative. We note that the Dirichlet form is

not a resistance form.

4.2 Spectral properties

By Theorem 4.3, the self-adjoint operators HN and HD have compact resolvents. Therefore the

Neumann eigenvalues (and also the Dirichlet eigenvalues) are non-negative, of finite multiplicity

and their only accumulation point is ∞. Let NN (x) and ND(x) be the Neumann and Dirichlet

eigenvalue counting functions respectively. That is, for b = N and D,

Nb(x) = max{k : λbk ≤ x},

where {λbi}i≥1 is the non-decreasing sequence of eigenvalues (including the multiplicity) for Hb.

Definition 4.4 u ∈ F is called a pre-localized eigenfunction of E belonging to the eigenvalue λ if

u ∈ FD, u 6≡ 0 and

E(u, v) = λ(u, v)L2 , ∀v ∈ F .

We then have the following asymptotics for Nb(x) as x→ ∞.

Theorem 4.5 The following holds for b = N and D,

0 < lim inf
x→∞

Nb(x)

x
< lim sup

x→∞

Nb(x)

x
<∞. (4.2)

Further, (1.1) in Theorem 1.1 holds where p in (1.1) is a non-constant periodic function.

Proof: Again we can apply the proof for p.c.f. self-similar sets in [30]. The proof of 0 <

lim infx→∞Nb(x)/x ≤ lim supx→∞Nb(x)/x < ∞ and (1.1) without the knowledge of p being a

non-constant, are the same as that of Theorem 4.1.5 (2) in [30]. To prove the strict inequality

in the middle (and thus prove that p is non-constant), we use the existence of pre-localized

eigenfunctions.

By Theorem 4.1.5 (2) and Theorem 4.3.4 in [30], the strict inequality in the middle of (4.2) is

equivalent to the existence of a pre-localized eigenfunction. Let h : K → K be a homeomorphism

such that h(π(i)) = π(̄i), where ī ∈ I∞ is determined by i ∈ I∞ by exchanging letters 1 to 2,

and 3 to 4 in each element. (So, h is a “reflection” of K with respect to the “hypersurface”

that contains V0.) By Proposition 4.4.3 in [30], this h guarantees the existence of a pre-localized

eigenfunction.

Remark 4.6 In [30], pre-localized eigenfunctions are defined for the Laplace operators instead

of the Dirichlet form. Using Definition 4.4, the above arguments still work in a similar way to

those in [30].

We note that a complete description of the spectrum for the diamond lattice is given in [2].
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4.3 Heat kernel estimates

In this subsection, we obtain detailed heat kernel estimates for the diffusion process {Xt} corre-

sponding to the Dirichlet form (E ,F) given in Theorem 4.3. Our main theorem is the following.

Theorem 4.7 There exists a jointly continuous function pt(x, y), t ∈ (0, 1), x, y ∈ K such that

Ptf(x) =

∫

K

pt(x, y)f(y)µ(dy), ∀t ∈ (0, 1), x ∈ K, and f ∈ L2(K,µ). (4.3)

Further pt(x, y) enjoys the following estimates: There are strictly positive constants c1, c2, c3, c4

such that for all x, y ∈ K, t ∈ (0, 1),

0 < pt(x, y) ≤ c1
t

exp
(

− c2
d(x, r)2

t

)

(4.4)

pt(x, x) ≥ c3

V (x, c4
√
t)
. (4.5)

In order to prove this theorem, we will discuss various properties of {Xt}.
(I) Poincaré inequality

Since the self-adjoint operator HN has a compact resolvent (Theorem 4.3), there is a spectral gap.

Thus, 0 < λmin := inff∈F\{const} E(f, f)/‖f‖2
2. Since 1 ∈ F and E(1, h) = 0 for all h ∈ F , we

have the following.

Proposition 4.8 There exists c1 > 0 such that
∫

K

|f − f̄ |2dµ ≤ c1E(f, f), ∀f ∈ F , (PI)

where f̄ =
∫

K
fdµ.

(II) Ultracontractivity

We will use (PI) and the self-similarity of the form to establish the following ultracontractivity.

Proposition 4.9 There exists c1 > 0 such that for each t ∈ (0, 1),

‖Pt‖1→∞ ≤ c1
t
.

Remark 4.10 Note that we cannot expect to obtain the following sharp upper bound:

pt(x, x) ≤
c1

V (x, c3
√
t)

∀x ∈ K, t ∈ (0, 1]. (4.6)

Indeed, Lemma 3.5.4 and Theorem C.3 in [31], (4.6), and the self-similarity of the Dirichlet form

imply volume doubling, which is a contradiction.

Proof of Proposition 4.9: The following argument is a modification of the proof of Proposition 5.1

in [7]. For i ∈ Im write fi = f ◦ ψi and define

f̄i =

∫

K

fi(x)µ(dx) = µ−1
i

∫

ψi(K)

f(x)µ(dx).
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Note that for v ∈ F and l ≥ 0, v̄ =
∫

vdµ =
∑

i∈Il v̄iµi. Let u0 ∈ D(L) with u0 ≥ 0 and ‖u0‖1 = 1.

Set ut(x) = (Ptu0)(x) and g(t) = ‖ut‖2
2. We remark that g is continuous and decreasing. As the

semigroup is symmetric and Markov,

‖ut‖1 =

∫

Ptu0dµ =

∫

u0Pt1dµ ≤ ‖u0‖1 = 1.

For each l ≥ 0,

d

dt
g(t) = 2(Lut, ut) = −2E(ut, ut)

= −2
∑

i∈Il

E(ut ◦ ψi, ut ◦ ψi)

≤ −2c2
∑

i

∫

(ut,i − ūt,i)
2dµ (by (PI))

= −2c2
∑

i

µ−1
i

∫

ψi(K)

(ut)
2dµ+ 2c2

∑

i

(µ−1
i

∫

ψi(K)

utdµ)2

= −2c24
l‖ut‖2

2 + 2c42l
∑

i

(

∫

ψi(K)

utdµ)2

≤ −2c24
lg(t) + 2c24

2l(
∑

i

∫

ψi(K)

utdµ)2

≤ −2c24
l(g(t) − 4l).

Therefore

− d

dt
log (g(t) − 4l) ≥ c34

l, if g(t) > 4l. (4.7)

Let sl = inf{t ≥ 0 : g(t) ≤ 4l} for l ∈ N. Thus (4.7) holds for 0 < t < sl. Note that sl → 0 as

l → ∞. Integrating (4.7) from sl+2 to sl+1 we obtain

c34
l(sl+1 − sl+2) ≤ − log (g(sl+1) − 4l) + log (g(sl+2) − 4l)

= log (4l+2 − 4l)/(4l+1 − 4l) ≤ c4.

Thus sl+1 − sl+2 ≤ c54
−l, and iterating this we have

sl ≤ c5

∞
∑

k=l−1

4−k ≤ c64
−l.

This implies that g(c64
−l) ≤ g(sl) = 4l. Let n be such that 4−n ≤ t/c6 ≤ 4−n+1. Taking l = n,

it follows that

g(t) ≤ 4n ≤ c7t
−1.

Using the fact that ‖Pt‖1→∞ ≤ ‖Pt‖2
1→2, we deduce the result.

(III) Exit times

For A ⊂ K, let

τA = τA(X) = inf{t ≥ 0 : Xt /∈ A}.

We then have the following.
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Lemma 4.11 There exist c1, c2 > 0 such that for all x ∈ K and 0 < r < 1,

c1r
2 ≤ ExτB(x,r) ≤ c2r

2. (E2)

Proof: Let Pr be the projection from K onto [0, 1] defined as follows; Pr(π(i)) = π̂(̂i), where

î ∈ {1, 3}∞ is determined from i ∈ I∞ by swapping the letters 2 to 1, and 4 to 3 in each element

and π̂ : {1, 3}∞ → [0, 1] is the natural projection from the word space to [0, 1]. It is easy to see

that Pr(Xt) =: X̂t is a reflected Brownian motion on [0, 1] and

Pr(B(x, r)) ⊂ B̂(Pr(x), r),

A(x, r/4) := (Connected component of Pr−1(B̂(Pr(x), r/4)) containing x) ⊂ B(x, r),

where B̂(Pr(x), r) is a ball in [0, 1] centred at Pr(x) and radius r. Further, it is well known that

c3r
2 ≤ EPr(x)[τB̂(Pr(x),r)(X̂)] ≤ c4r

2.

Combining these, we have

ExτB(x,r) ≤ EPr(x)[τB̂(Pr(x),r)(X̂)] ≤ c4r
2,

c3r
2/16 ≤ EPr(x)[τB̂(Pr(x),r/4)(X̂)] = Ex[τA(x,r/4)(X)] ≤ ExτB(x,r).

Thus we obtain (E2).

From (E2) a standard argument gives the following. See, for example, Lemma 3.16 and (3.21)

in [3].

Proposition 4.12 There exist c1, c2 > 0 such that for all x ∈ K and 0 < r, t < 1,

P x(τB(x,r) ≤ t) ≤ c1 exp(−c2r
2

t
). (ELD)

(IV) Existence and continuity of the heat kernel

As in Proposition 4.9, the semigroup is ultracontractive. This fact together with (E2) and the

structure of K allow us to deduce that there is a jointly continuous heat kernel for {Xt}. Let

{λNk }k≥1 be the increasing sequence of eigenvalues for HN and {ϕk} be a complete orthonormal

system for L2(K,µ) such that HNϕk = λNk ϕk.

Proposition 4.13 There exists pt(x, y), t ∈ (0, 1), x, y ∈ K that satisfies (4.3). Further φk ∈
C(K) for all k ≥ 1 and

pt(x, y) =

∞
∑

k=1

e−λ
N
k tφk(x)φk(y) > 0, (4.8)

where the sum is absolutely and uniformly convergent on [T0, 1] ×K ×K for any T0 ∈ (0, 1). In

particular pt(x, y) is jointly continuous.

Proof: First, since µ(K) < ∞ and {Pt}t is ultracontractive, by general theory we know that

φk ∈ L∞ and (4.8) holds where the sum is absolutely and uniformly convergent on [T0, 1]×K×K
for any T0 ∈ (0, 1) (see for example, [31, Theorem A.3]).
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We next show that φk is continuous (then the joint continuity of pt(x, y) can be deduced). Note

that harmonic functions are continuous in this case. (This can be proved similarly to [30, Theorem

3.2.4].) For each λ > 0, let Uλ be the λ-order Green operator, i.e. Uλf(x) = Ex[
∫∞

0
e−λtf(Xt)dt].

Then, by the continuity of harmonic functions and (E2), U
λf is continuous for any bounded

function f . We will show this following [9, Proposition 3.3]. Fix x0, let r < 1/2, and suppose

x, y ∈ B(x0, r/2). By the strong Markov property,

Uλf(x) = Ex[

∫ τr

0

e−λtf(Xt) dt] + Ex(e−λτr − 1)Uλf(Xτr
) + ExUλf(Xτr

) =: I1 + I2 + I3,

where τr = τB(x,r). By (E2), we have

|I1 + I2| ≤ ‖f‖∞Exτr + λExτr‖Uλf‖∞ ≤ cr2‖f‖∞,

where ‖Uλf‖∞ ≤ 1
λ‖f‖∞ is used in the last inequality. So

|Uλf(x) − Uλf(y)| ≤ cr2‖f‖∞ + |ExUλf(Xτr
) − EyUλf(Xτr

)|. (4.9)

But z → EzUλf(Xτr
) is bounded in K and harmonic in B(x0, r), so it is continuous. Set

r = d(x, y)1/2, then we see that the right hand side of (4.9) is small when d(x, y) is small and the

continuity of Uλf is deduced. Now, since Ptφk = e−λ
N
k tφk a.e., we have Uλφk = (λ + λNk )−1φk

a.e., in other words φk = (λ + λNk )Uλφk a.e.. Since φk ∈ L∞, the right hand side is continuous,

so we have a continuous version of φk.

Given the above results, the positivity of pt(x, y) can be deduced by a standard argument; see

for example, [31, Theorem A.4].

(V) Full upper bound

By Proposition 4.9 and (ELD), a standard argument gives the full upper bound in (4.4). See, for

example, the first half of the proof of Theorem 3.11 in [3].

(VI) On-diagonal lower bound

Since {Xt} is conservative, (ELD) gives the on-diagonal lower bound of the heat kernel (4.5).

Lemma 4.14 There exist c1, c2 > 0 such that for all x ∈ K and 0 < r, t < 1,

pt(x, x) ≥
c1

V (x, c2
√
t)
. (DLHK)

Proof: The proof is standard. Using (ELD) we have that

P x(Yt /∈ B(x, r)) ≤ P (τB(x,r) ≤ t) ≤ c1 exp(−c2r
2

t
).

Hence by choosing r such that c3r
2 < t < c4r

2 for some c3, c4 > 0, we have

P x(Yt /∈ B(x, r)) ≤ c5 < 1.

Since {Xt} is conservative, this gives P x(Yt ∈ B(x, r)) ≥ 1 − c5 > 0. By Cauchy-Schwarz,

(1 − c5)
2 ≤ P x(Yt ∈ B(x, r))2 = (

∫

B(x,r)

pt(x, z)dµ(z))2 ≤ V (x, r)p2t(x, x).

Now, using the lower bound of our choice of t, we obtain the result.
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Remark 4.15 Note that the elliptic Harnack inequality (EHI for short) does not hold in this

case. Recall that (E ,F) satisfies EHI if there exists c > 0 such that for any non-negative harmonic

function h on B(x, 2r) and any 0 < r ≤ 1,

sup
y∈B(x,r)

h(y) ≤ c inf
y∈B(x,r)

h(y). (EHI)

Let x = 0, 2r = 2−n and let N = 2n. Then B(0, 2r) consists of N copies of small diamonds with

length 2r, which we label C0, C1, · · · , CN−1. Consider a harmonic function whose boundary value

at each x ∈ ∂B(0, 2r)∩Ci is 2i when i ≥ 1 and the value at ∂B(0, 2r)∩C0 is 0. Then, its value at

0 is
∑N−1
i=1 2i/N which is of order 2N/N . So, the value of the harmonic function at ∂B(0, r)∩C0

is of order 2N/N whereas the value at ∂B(0, r) ∩ CN−1 is of order 2N . These two values are not

comparable when n (so N) varies, thus (EHI) does not hold.

(VII) Proof of Theorem 1.2 for pt(·, ·)
(i) First, a sequence {x1, x2, · · · , xl} ⊂ Vm is called an m-walk if {xi, xi+1} ∈ Em for all i =

1, 2, · · · , l − 1. For x = ψi(0) ∈ K \ ∪l≥0Vl where i ∈ I∞, define ∂Dn(x) := ψi|n(V0). (Here

i|n = i1i2 · · · in if i = i1i2 · · ·.) Now, for x ∈ K \ ∪l≥0Vl and n,m ≥ 0, let nn,m(x) be the smallest

number of steps by an (n+m)-walk from x to ∂Dn(x), where we take x1 to be the nearest point

to x in Dn+m (with an arbitrary choice for ties). Then, we can prove the following in the same

way as Proposition 3.3 of [7]: there exists g : K → [0,∞) such that for a.e. x ∈ K,

c(nm)−22m ≤ nn,m(x), ∀n ≥ 0,m ≥ g(x). (4.10)

(Note that in [7] we needed to define a Λn-complex since the self-similar maps did not necessarily

have the same contraction rates, but we do not need this notion in our setting. Further, it is easy

to see that α in Proposition 3.3 of [7] is 2 in this case.) Now take m = c′ log n where c′ > 0.

Then, the distance between x and Vn is no less than 2−n−m × c(nm)−22m = C2−n(n logn)−2.

So, taking r = C2−n(n logn)−2, we have

V (x, r) ≤ 4−n = r2(n logn)2/C ≤ C ′r2| log r|2| log log r|2.

Using this together with (4.4) and (4.5), we obtain the desired estimate.

(ii) Since pt(x, y) is jointly continuous, we have for each t < 1,

pt(0, 0) = lim
r→0

1

V (0, r)
P 0(Xt ∈ B(0, r)).

It is easy to see V (0, r) = r. Furthermore, if we consider the projection of Xt onto [0, 1] as in

Lemma 4.11, then we see that

P 0(Xt ∈ B(0, r)) = P 0(X̂t ∈ B(0, r)).

So the desired estimate can be obtained from that of the heat kernel of reflected Brownian motion

in [0, 1].
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5 The critical percolation cluster

We give a multitype branching random walk description of the set and use this to construct a

natural measure on the scaling limit of the critical percolation cluster. The branching random

walk allows us to describe the sizes of all sets of a particular size in our cluster.

We begin with some notation. For i ∈ In we write Ki for the set ψi1 ◦ . . . ◦ ψin(C(σiω)) of

type ui with address i and call this an n-cell. We write Nn(i) = {j ∈ In : Kj ∩ Ki 6= ∅} for the

addresses of the n-neighbours of i. For an n-cell we write

K̄i =
⋃

j∈N n(i)

Kj,

and call this the n-neighbourhood of the n-cell Ki.

We now set up a multitype branching random walk which describes the fractal’s properties

in the resistance metric (which we define later). The basic types of the individuals are given by

c if the connection is present, d(1) where the connection is absent but a vertex is in the infinite

cluster, d(2) where the connection is absent but both vertices are in the infinite cluster.

We need to extend the labelling from that in Section 2.2. We now split the type c individuals

into types c(1) and c(2) in order to keep track of the property that the resistance of a connected

edge depends on the offspring. For each edge previously labelled c we let its label be c(2) with

probability p̃ = p3
c (this corresponds to the configuration with all four edges present), otherwise

it is labelled c(1). Note that i in c(i) stands for the number of connections between the two end

points of the edge. Now the offspring distribution of type c(2) has all four offspring of type c and

then the labels are determined independently according to p̃. For type c(1) the offspring are of the

other 6 types of connected configuration, with all c labels determined independently according to

p̃.

Let the type space for our branching process be S = {c(1), c(2), d(1), d(2)}. We consider the

probability space of labelled trees Ω = ST . (This is an abuse of notation since Ω was UT , but from

now on, we let Ω = ST .) Thus if ω ∈ Ω we have ω = {ui}i∈T where ui ∈ S for i ∈ T = ∪∞
i=1I

i∪{∅}.
The distribution for the vector of types X̃ = (X̃c(1) , X̃c(2) , X̃d(1) , X̃d(2)) can be expressed in

terms of the previous distribution as X̃ = (Xc − Y, Y,Xd(1) , Xd(2)) where Y is a Binomial(Xc, p
3)

random variable.

In order to prove our results we let our individuals evolve as a branching random walk. Let

Zkji denote the position of the i-th individual offspring who is of type j arising from a parent of

type k. We write Zkji for the position of the individual i ∈ T of type j with initial ancestor of

type k. We now define the distribution of the positions of the offspring in order that position of

an individual is the logarithm of the electrical resistance of the corresponding edge.

By considering the effective resistance across the different configurations we define the resis-

tance scale factors

ρui
=

{

1 ui = c(2)

2 otherwise
(5.1)

Note that the resistance scale factor for c(2) is 1 NOT 2. Then set the position of the i-th offspring

of a k-type individual, if the offspring is type j, to be Zkji = log ρk(which is independent of i).
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Now define

Akj(θ) = E

4
∑

i=1

e−θZ
kj
i , k, j ∈ S,

which gives the mean matrix

A(θ) =













4pq(1 + 2p)2−θ 2q2(1 + 2p)2−θ 2pq2−θ 2q2−θ

4 − 4p3 4p3 0 0

4p2q2−θ 2pq22−θ 22−θ 0

8q22−θ 4pq22−θ 4pq2−θ 4q2−θ













.

For example, the (1, 1)-component of the matrix can be computed as follows,

(4p2(1 − p)

1 − p3
× 3 +

2p(1 − p)2

1 − p3
× 2
)

× (1 − p3) × 2−θ = 2(1 + 2p)p(1 − p3)2−θ = 4pq(1 + 2p)2−θ.

We choose θ to be such that the maximum eigenvalue of the matrix A(θ) = [Akj(θ)]kj is 1.

Let ϕ be the corresponding right eigenvector. Now put

W k
n =

∑

j∈S

∑

i∈In

e−θZ
kj

i ϕj , ∀k ∈ S.

A standard result from the theory of branching processes for the multitype branching random

walk is the following.

Theorem 5.1 For each k ∈ S, the process {W k
n : n = 0, 1, 2, . . .} is a positive martingale, hence

has a limit such that

W k
n →Wφk, as n→ ∞,

where φ is the left eigenvector of A and W is a real valued random variable with mean one. The

random variable W satisfies the following decomposition

Wφk =
∑

j∈S

4
∑

i=1

e−θZ
kj
i Wiφj , (5.2)

where Wi, i = 1, .., 4 are i.i.d. copies of W .

Remark 5.2 An alternative view is that we can consider the Galton Watson branching process

for the type c(2), which generates types c(1) and c(2). As the expected number of offspring of

type c(2) generated by a parent of type c(2) is 4p3
c < 1, the process is subcritical. If we consider

the total progeny generated by a type c(2) individual, it generates a random number of type c(1)

individuals. We then let these reproduce as usual. Now we consider the whole collection of progeny

to be the offspring of the original type c(2) individual as they correspond to the stopping line in

the branching random walk of the first hitting of the point log 2 to the right from the position of

the type c(2). In this way we have a multitype branching process where each generation counts

the number of cells of size 2−n in the infinite cluster. We will use this idea later.
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5.1 The Dirichlet form

We give a short discussion of how to construct a Dirichlet form on the critical percolation cluster.

This form is built in the same way as was done in [20]. We put resistances on each cell to ensure

that the global resistance remains at 1. Thus, for ω = {ui}i∈T , we set

E(ω)
1 (f, g) =

∑

i:ui∈{c(1),c(2)}

E0(f ◦ ψi, g ◦ ψi)ρu∅
,

where E0(f, g) is the Dirichlet form corresponding to a two state Markov chain given in (4.1). The

resistance scale factor was defined in (5.1) and is chosen to ensure that the resistance across level

0 corresponding to the form on the first level vertices C1 is 1. We now repeat this construction

by setting

E(ω)
n (f, g) =

4
∑

i=1

E(σiω)
n−1 (f ◦ ψi, g ◦ ψi)ρu∅

,

where σjω = {uji}i∈Tj
(where Tj is the subtree of T descended from branch j). Thus we have a

sequence of compatible resistance networks and we can define the limit Dirichlet form

E(ω)(f, f) = lim
n→∞

E(ω)
n (f, f), ∀f ∈ F (ω) = {f : sup

n
E(ω)(f, f) <∞}.

We now define a measure on the scaling limit of the critical cluster. For any set measurable

set A ⊂ C we define

µkω(A) = lim
m→∞

∑

j

∑

j∈Im

e−θZ
kj

j ϕjI{π(j)∈A}. (5.3)

First for an n-cell with address i the measure of type k is defined to be

µkω(Ki) = lim
m→∞

∑

j

∑

j∈Im

e−θZ
kj

j ϕjI{π(j)∈Ki}
.

A simple calculation and use of Theorem 5.1 gives

µkω(Ki) = e−θZ
kui
i lim

m→∞

∑

j

∑

j∈Im(i)

e−θZ
uij

j ϕj

= ρθ−iWiφk, (5.4)

where for m ≥ n

Im(i) = {j ∈ Im : j = iin+1 . . . im},

(for m < n it is ∅), ρi = ρu∅
ρu1

. . . ρui
, and {Wi}i∈In are i.i.d. with the same distribution as

W . By standard branching process results this is a measure with total mass Wφk . Thus for our

critical cluster which is a 0-cell of type c (either c(1) or c(2)) we have our random measure µcω.

This has a self-similar decomposition as

µcω(.) =
∑

j

4
∑

i=1

e−θZ
cj
i µjσiω(ψ−1

i (.)).

If we write µω without a superscript we will mean µcω. We will usually drop the ω and simply

write µ for the measure we work with.

Our Dirichlet form will be defined on L2(C(ω), µω). In order to show that we have a resistance

form we need some preliminary lemmas.
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Lemma 5.3 There exist constants c1 = c1(ω), λ > 1 such that P-a.s.

inf{ρi : i ∈ Tn} ≥ c1λ
n, ∀n ≥ 1.

Proof: We begin by estimating ρ−1
i and consider, for x > 1, and s > 0,

P(inf{ρi : i ∈ Tn} < x) = P( inf
i∈Tn

log ρi < log x)

= P( sup
i∈Tn

exp(−s log ρi) > x−s)

≤ P(
∑

i∈Tn

exp(−s log ρi) > x−s)

≤ xsE(
∑

i∈Tn

exp(−s log ρi))

≤ xsE(
∑

i∈T1

exp(−s log ρi))
n

≤ xs(4p̃+ 4(1 − p̃)2−s)n. (5.5)

We now observe that, for large enough s and setting x = λn for λ close enough to 1, we have

λs(4p̃+ 4(1 − p̃)2−s) = c < 1. Thus we can apply Borel-Cantelli to obtain the result.

Remark 5.4 Note that we must have

λ < (4p̃+ 4(1 − p̃)2−s)−1/s,

where s is large enough such that λs(4p̃+ 4(1− p̃)2−s) = c < 1. Maximizing the bound on λ over

s we see that s = 8.6079... and hence λ < 1.005718...

We now define the effective resistance between points in the graph Cn as

Rn(x, y) = [inf{E(ω)
n (f, f) : f(x) = 0, f(y) = 1}]−1, ∀x, y ∈ Cn.

Lemma 5.5 If x, y ∈ Cn are connected by an edge and x, y ∈ Ki, then

1

2
ρ−1
i ≤ Rn(x, y) ≤ ρ−1

i , ∀i ∈ Tn, n ≥ 0.

Proof: By the definition of the resistance metric

1

Rn(x, y)
= inf{E(ω)

n (f, f) : f(x) = 0, f(y) = 1}.

Now for the upper bound on Rn(x, y) we just use the particular edge connecting x, y so that

E(ω)
n (f, f) =

∑

j∈Tn:uj∈{c(1),c(2)}

E0(f ◦ ψj, f ◦ ψj)ρj

≥ E0(f ◦ ψi, f ◦ ψi)ρi

≥ ρi

for all f : Cn → R such that f(x) = 0, f(y) = 1.
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For the lower bound we choose a particular function f . As one of either x or y must be a newly

added vertex at level n, it will have only two neighbours. We assume without loss of generality

that it is y, and that f(y) = 1. Then we set all the other vertices in Cn to have value 0. Thus for

this f we have

E(ω)
n (f, f) =

∑

j∈Tn:uj∈{c(1),c(2)}

E0(f ◦ ψj, f ◦ ψj)ρj

≤ 2ρi,

which gives the lower bound.

Lemma 5.6 If χn = supx,y∈Cn
Rn(x, y), then χ = limn→∞ χn exists and has finite moments.

Proof: We first observe that for any pair of points x, y ∈ Dn there is a sequence of points

{x = xn, . . . , xk(x,y), yk(x,y), . . . , yn = y}, where xi, yi ∈ Di, the pairs xi, xi+1 and yi, yi+1 are

either the same point or are connected by an edge in Di+1 and k(x, y) := sup{l : (x, y) ∈
Ki, for some i ∈ Il}. Thus, by the triangle inequality for the metric R, we have that

Rn(x, y) ≤
n−1
∑

i=k(x,y)

Rn(xi, xi+1) +R(xk(x,y), yk(x,y)) +

n−1
∑

i=k(x,y)

Rn(yi+1, yi).

It is straightforward to see that, by construction of the Dirichlet form and the definition of R,

Rn(xi, xi+1) = Ri+1(xi, xi+1) and hence, by Lemma 5.5,

Rn(xi, xi+1) ≤ c2 sup
i∈Ii+1

ρ−1
i ≤ Cc2λ

−i, P − a.s.

and hence for all n and x, y ∈ Dn,

Rn(x, y) ≤ Cc2

n
∑

i=k(x,y)

λ−i ≤ C ′ =
Cc2
1 − λ

, P − a.s.

Thus

χn = sup
x,y

Rn(x, y) ≤ C ′,

where C ′ is independent of n and hence we have the existence of χ almost surely.

Now we obtain moment bounds on χ. Firstly, an upper bound for χn is

χn ≤ 2

n
∑

m=0

sup
x,y∈Dm

Rn(x, y)

≤ c3

n
∑

m=0

sup
i∈Tm

ρ−1
i

≤ c4n sup
i∈Tn

ρ−1
i . (5.6)

From (5.5) we have that for large y

P(n sup
i∈Tn

ρ−1
i > y) ≤ ξ(s)n(c4n)sy−s,
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where ξ(s) = 4p̃+ 4(1 − p̃)2−s. Thus, for s sufficiently large such that ξ(s) < 1, we have

P(χ > y) ≤ P(sup
n
χn > y)

≤
∞
∑

n=1

P(χn > y)

≤
∞
∑

n=1

P(c4n sup
i∈Tn

ρ−1
i > y)

≤ c5y
−s

Thus, with this tail estimate, we see that E(χκ) < ∞ for all κ < s but as s can be chosen

arbitrarily large we have E(χκ) <∞ for all κ.

We can now show that the Dirichlet form is a resistance form as this is a question about

controlling the asymptotic growth of the products of the resistance scale factors along each branch

of the tree.

Theorem 5.7 (i) There exists a Dirichlet form (E(ω),Fω) on L2(C(ω), µω) for all ω ∈ Ω.

(ii) The form (E(ω),Fω) is a resistance form for P-almost every ω ∈ Ω.

(iii) For each ω ∈ Ω the Dirichlet form (E(ω),Fω) satisfies the self-similarity condition

E(ω)(f, g) =

4
∑

i=1

E(σiω)(f ◦ ψi, g ◦ ψi)ρu∅
, ∀f, g ∈ Fω.

Proof: (i) The fact that the limiting form is a Dirichlet form is a standard application of the

techniques of [30].

(ii) In order to show that we have a resistance form, by [30] Section 2.3, under the conditions

we have here all we need is to observe that P-a.s.

χ = lim
n→∞

sup
x,y∈Dn

Rn(x, y) <∞.

(iii) The self-similarity is obtained by decomposing the set at the first level.

5.2 The measure on the critical cluster

The Hausdorff dimension of the set in the resistance metric can be calculated by following the

same procedure as for random recursive graph directed fractals. Following [41] the dimension is,

P-a.s. given by

drf = inf{s : Φ(s) = 1},

where Φ(s) is the spectral radius of the matrix As defined to be

As =









4pq(1 + 2p)2−s + 4p3 4pq22−s 4q22−s

2q2−s 22−s 0

4q2−s 4pq2−s 4q2−s









.
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We note that this is effectively the same calculation required to obtain θ, the Malthusian parameter

of our branching process and hence we have that drf = θ.

Note that the only difference between this and the previous estimate of the dimension in the

natural length scale is the term in the element As(1, 1). A numerical calculation shows that in this

case the dimension has changed dramatically to 5.2654...! This then gives us the walk dimension

in the resistance metric as we must have dw = df + 1, that is dw = 6.2654.... The spectral

dimension will therefore be ds = 2drf/(d
r
f + 1) = 2θ/(θ + 1) = 1.6808....

Let B(x, r) denote a ball of radius r in the resistance metric at the point x. We now compute

the volume growth of a resistance ball in our measure µω, as defined in (5.3). It is easy to see

that we can write

µkω(B(x, r)) = lim
n→∞

∑

j∈S

∑

i∈T n

e−θZ
kj

i ϕjI{π(i)∈B(x,r)},

where

T n = {i ∈ Tm : ρi = 2n, ρi|(|i|−1) < 2n}.

We write NR,n(i) = {j ∈ T n : Kj ∩ Ki 6= ∅}.

Lemma 5.8 P-a.s. there are constants c1, c2 > 0 such that for all x ∈ C for r < 1 with 2−n ≤
r < 2−n+1,

c1r
θWi ≤ µ(B(x, r)) ≤ c2r

θ
∑

j∈NR,n(i)

Wj,

where Wi is the limit random variable associated with i ∈ T n as in (5.4), and x ⊂ Ki.

Proof: Let i ∈ ∂T be such that x = π(i). We have that i|m ∈ T n for some m ≥ n, and by

construction

Ki|m ⊂ B(x, 2−n) ⊂ K̄i|m ,

hence

ρ−θ
i|m
Wi|m ≤ µ(B(x, 2−n)) ≤

∑

j∈Nm(i|m)

ρ−θj Wj.

The fact that ρi|m = 2n and the comparison of r and n gives the result.

We now use fluctuation results on the behaviour of the sequence {Wi|n ;n ∈ N} to see the

fluctuations in the volume at generic points. We begin with a preliminary lemma.

Lemma 5.9 There exist constants c1, c2 such that

P (W > x) ≤ 1/x, (5.7)

and

P (W < x) ≤ c1 exp(−c2x−1/(θ−1)). (5.8)

Proof: An application of Markov’s inequality and that fact that EW = 1 gives (5.7).

For (5.8) we regard our process slightly differently using the idea in Remark 5.2. Let the type

c(2) individuals reproduce until they have died out (extinction is certain as E
c(2)Xc(2) < 1). At
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each stage they produce a certain number of c(1) individuals and thus at the end of this process

we have a random number of type c(1) individuals (in fact 3Y + 1, where Y is the total progeny

of the c(2) branching process). As they are all type c(1) their location is log 2 to the right of

their parent. Let ζn denote the vector of the number of each type in this branching process after

n generations. In terms of our previous branching random walk all the particles at generation

n are at n log 2 and hence we can view this as a standard multitype branching process. As the

process of running the c(2) type to extinction is just a stopping line for the branching random

walk, we know that the limit random variable W from the two processes will be the same. Let

Φk(u) = E(e−uW |ζ0 = ek), where ek is the unit vector denoting a single individual of type k. The

Laplace transform of W , satisfies the following identity,

Φk(u) = fk(Φc(1)(u2
−θ),Φc(2)(u2

−θ),Φd(1)(u2
−θ),Φd(2)(u2

−θ)),

where fk is the generating function for the offspring of an individual of type k.

In order to estimate the left tail we need to determine how slowly the process can grow. Using

ideas in [34], [26] we can see that the minimal growth rate is determined by the first terms in the

generating function fk. A simple calculation shows that the minimal growth rate is at least 2. This

can be seen from the factorization fd(1)(uc(1) , uc(2) , ud(1) , ud(2)) = u2
d(1)

gd(1)(uc(1) , uc(2) , ud(1) , ud(2)),

where gd(1) is a polynomial. This shows that, in the eigenvalue problem introduced by [34], the

maximum eigenvalue is at least 2. Thus following [34] we have constants C, c′k such that

Φk(u) ≤ C exp(−c′ku1/θ), u ≥ 0.

Once we have this Laplace transform estimate it is straightforward to deduce

P (W < x|ζ0 = ek) ≤ euxΦk(u)

≤ Ceux exp(−c′ku1/θ)

and by optimizing u (i.e. by taking u = c∗x
−θ/(θ−1) with c∗ > 0 small), we have for each k

P (W < x|ζ0 = ek) ≤ c1 exp(−c2x−1/(θ−1)),

as required.

Theorem 5.10 P-a.s. for ǫ > 0 there are positive random constants c1, c2 such that, for µ-a.e.

x ∈ C, we have for r < 1,

c1r
θ| log | log r||1−θ ≤ µ(B(x, r)) ≤ c2r

θ| log r|2+ǫ.

Proof: This is similar to the result in [22], where the fluctuations of the measure in such

random recursive constructions are studied in detail in the single type case. We are still in the

setting of a finite probability space, just that the number of types is more than one.

We begin with the lower bound. Given the tail estimate on W it is a simple application of the

Borel-Cantelli Lemma to establish that there is a positive constant c such that

Wi|n ≥ c(logn)1−θ, ∀n ≥ 0.
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Combining this estimate with the estimates on the measure of B(x, r) for 2−n ≤ r < 2−(n−1)

from Lemma 5.8, we have the lower estimate.

For the upper estimate we need to control the number of neighbouring cells in NR,n(i) for

µ-a.e. i. This is done by observing that the number of neighbouring cells of a given cell depends

on the lowest level vertex to which the cell is attached. In order for a cell at level n to be attached

to a vertex at level k < n it must be the case that the address of the cell has a string of n − k

symbols coming from either the pair (1, 2) or (3, 4). Let Sn be the length of the sequence of

address labels coming from either (1, 2) or (3, 4). For a randomly chosen cell this is a Markov

chain which evolves as S0 = 0, S1 = 1 and then

Sn+1 =

{

Sn + 1 with probability 1
2

1 with probability 1
2

It is easy to estimate the tail of Sn as P (Sn = k) ≤ 2−k (it is 0 if k > n and otherwise the event

can only occur if we start at 1 and follow this by k − 1 steps up which has probability 2−k) and

hence

P (Sn > m) ≤ 2−m.

Thus

P (Sn > (1 + ǫ)
log n

log 2
) ≤ n−1−ǫ,

and an application of Borel-Cantelli shows that

lim sup
n→∞

Sn
log n

≤ 1 + ǫ

log 2
a.s.

and hence we can conclude that P-a.s. there is an n0 such that

Sn ≤ 1 + ǫ

log 2
log n, ∀n ≥ n0.

Now returning to the neighbours of the n-cell i we have |NR,n(i)| ≤ 22Sm , where m is the level

for which the resistance metric is 2−n. From the proof of Lemma 5.3 we see that almost surely

there is a λ and an m0, such that for all m ≥ m0,

ρi ≥ λm, ∀i ∈ Tm.

Thus ρi ≥ 2n a.s. for all i ∈ Tm where m = [(n log 2/ log λ] + 1 must be larger than m0. That

is, almost surely for m ≥ m0, the level m at which all edges are of resistance at most 2−n is

m ≤ ( log 2
log λ + 1)n. Thus we deduce that for sufficiently large n

|NR,n(i)| ≤ 22(1+ǫ) logm/ log 2 = 2m1+ǫ ≤ 2(
log 2

logλ
+ 1)1+ǫn1+ǫ ≤ C(log r)1+ǫ,

for 2−n ≤ r < 2−(n−1).

Now we note that from our upper tail estimate for W that by Borel-Cantelli, we have almost

surely for large enough n that

Wi|n ≤ n1+ǫ,
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and combining these two bounds with the upper bound in Lemma 5.8 we have the required upper

estimate on the measure.

We note that, as in [22], there will be fluctuations as r → 0.

However if we consider vertices x ∈ Cn(ω) for some fixed n, then as there are lots of cells

at such points the growth of the measure will be greater and, due to averaging effects, will not

fluctuate. We begin by considering a sub-branching process of our branching process describing

the cluster. Let Z denote the multitype branching process which considers only the edges with

labels 1 and 2. The distribution for the random vector N = (Nc, Nd(1) , Nd(2)), the number of

offspring with labels 1 and 2 of types c, d(1), d(2), descended from a parent of each type is given

by the following. (Note that for d(1), we assume that the vertex that is contained in edges with

label 1 and 2 is connected to the infinite cluster.)

P c(Nc = 2, Nd(1) = 0, Nd(2) = 0) = p2(2 − p)

P c(Nc = 1, Nd(1) = 1, Nd(2) = 0) = 2p(1 − p)2

P c(Nc = 1, Nd(1) = 0, Nd(2) = 1) = 2p2(1 − p)

P d(1)(Nc = 2, Nd(1) = 0, Nd(2) = 0) = p2(1 − p)

P d(1)(Nc = 1, Nd(1) = 1, Nd(2) = 0) = 2p(1 − p)

P d(1)(Nc = 0, Nd(1) = 2, Nd(2) = 0) = 1 − p

P d(2)(Nc = 2, Nd(1) = 0, Nd(2) = 0) = p2(1 − p)

P d(2)(Nc = 1, Nd(1) = 1, Nd(2) = 0) = 2p(1 − p)2

P d(2)(Nc = 1, Nd(1) = 0, Nd(2) = 1) = 2p2(1 − p)

P d(2)(Nc = 0, Nd(1) = 2, Nd(2) = 0) = (1 − p)3

P d(2)(Nc = 0, Nd(1) = 1, Nd(2) = 1) = 2p(1 − p)2

P d(2)(Nc = 0, Nd(1) = 0, Nd(2) = 2) = p2(1 − p).

As before we extend this to split the two types of c and write our type space now as {c(1), c(2),
d(1), d(2)} and the distribution of the vector of offspring types as Ñ = (Nc − Y, Y,Nd(1) , Nd(2)),

where Y is a Binomial(Nc, p
3) random variable.

Again we can make a branching random walk which we also label Z by placing offspring of

type c(2) at the same location as their parent, while all the other types have offspring at position

log 2.

Lemma 5.11 The multitype branching random walk Z has a Malthusian parameter ν = 1.3384....

Let Ñk
n = |{i : i ∈ T n, u∅ = k}|. Then there exists a constant vector c and a mean one random

variable W̃ such that

lim
n→∞

2−nνÑn = cW̃ , P − a.s.
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Proof: In order to compute ν we find the mean matrix, Ã(ξ) = [Ãkj(ξ)]kj, where Ãij(ξ) =

E(
∑2
i=1 exp(−ξZkji )). A straightforward calculation, analogous to the discussion before Theo-

rem 5.1, which simplifies by using the fact that at p = pc we have 2p − p3 = 1, and writing

q = 1 − p, gives

Ã(ξ) =









4p− 2 + 2pq(1 + 2p)2−ξ 2pq22−ξ 2q22−ξ

2q2−ξ 2p2−ξ 0

2q2−ξ 2pq2−ξ 2q2−ξ









The Malthusian parameter of Z is then given by ν = {ξ : the maximum eigenvalue of Ã(ξ) is 1}.
A calculation shows that ν = 1.3384... as claimed. We will write ϕ̃ and φ̃ for the right and left

eigenvectors of Ã(ν).

Now recall the stopping line T n indexing the particles who lie strictly to the left of n log 2

with offspring at n log 2. The usual limit theorem for the multitype branching random walk gives

that if

W̃n =
∑

j

∑

i∈T n

e−νZ
.j
i ϕ̃j ,

then W̃n → W̃ φ̃ as n → ∞. We now note that on this stopping line all particles are at position

(n− 1) log 2, giving the claimed result.

We can now state a result about the volume of balls at the vertex 0.

Lemma 5.12 P-a.s. there are constants c1, c2 > 0 such that for r < 1,

c1r
θ−νW0 ≤ µ(B(0, r)) ≤ c2r

θ−νW0,

where ν = 1.3384... and W0 is a limit random variable for the multitype branching process Z.

Proof: Consider the point in the cluster C with label 0. If we look at the addresses which

correspond to this point we see that they are any infinite sequence consisting entirely of 1 and

2. By considering the sub-branching process of the full multitype process describing the critical

cluster we can determine the rate of growth of the number of such sequences. Let Ñ j
n denote the

number of such sequences in the resistance ball of radius 2−n at 0, of type j. We will write here

NR,n(0) = {i ∈ T n : 0 ∈ Ki}. As we have for 2−n ≤ r < 2−n+1

∪
j∈NR,n(0)Kj ⊂ B(0, r) ⊂ ∪

j∈NR,n−1(0)
Kj,

then
∑

j∈N R,n(0)

ρθjWj ≤ µ(B(0, r)) ≤
∑

j∈N R,n−1(0)

ρθjWj.

Now considering the lower bound (the upper bound is exactly the same argument) we have

µ(B(0, r)) ≥ Ñc
n

1

Ñc
n

∑

j∈N R,n(0)

ρθjWj

≥ Ñc
n

1

Ñc
n

∑

j∈N R,n(0)

2−nθWj

≥ crθÑc
n

1

Ñc
n

∑

j∈NR,n(0)

Wj.
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The Wj are independent mean one random variables and independent of the process Z. Thus, by

Lemma 5.11, as Ñc
n ∼ W̃ φ̃c2

nν → ∞ as n → ∞ we can apply the strong law of large numbers

and will have the result by letting W0 = W̃ φ̃c.

5.3 Spectral properties

We begin by considering the scaling in the counting function. For this we follow the approach

originally due to [32] and extended to the random case in [21, 15]. For now we fix ω ∈ Ω and denote

(E(ω),F (ω), µω) as (E ,F , µ) and suppress the ω from our notation unless there is the possibility

of confusion.

The Neumann eigenvalues of (E ,F , µ) are defined to be the numbers λ which satisfy

E(u, v) = λ(u, v), ∀v ∈ F (5.9)

for some eigenfunction u ∈ F . We write (., .) for the inner product on L2(C, µ).

The corresponding eigenvalue counting function, N , is obtained by setting

N(λ) := #{eigenvalues of (E ,F , µ) ≤ λ}, (5.10)

To define the Dirichlet eigenvalues for (E ,F , µ), we first introduce the related Dirichlet form

(E ,FD) by setting

FD := {f ∈ F : f |V 0 = 0}.

The Dirichlet eigenvalues of the original form, (E ,F , µ), are then defined to be the eigenvalues of

(E ,FD, µ).

As we have a resistance form it is relatively straightforward, following the original arguments

in [32, 21], to deduce the spectral asymptotics.

The first observation is that the Dirichlet and Neumann spectra of (E ,F , µ) are discrete with

the only accumulation point at ∞, and so the associated eigenvalue counting functions, ND(λ)

and NN (λ), are well-defined and finite for all λ ∈ R. We will label these functions by the type of

the set with which it is associated; for example, Nc
∗(λ) with ∗ = D or N is the eigenvalue counting

function for (E(ω),F (ω), µω) with ω = {ui}i∈T , u∅ = c.

Lemma 5.13 The eigenvalue counting functions satisfy

4
∑

i=1

Nui

D (λρ−1−θ
u∅

) ≤ N
u∅

D (λ) ≤ N
u∅

N (λ) ≤
4
∑

i=1

Nui

N (λρ−1−θ
u∅

).

Also we have

N
u∅

D (λ) ≤ N
u∅

N (λ) ≤ N
u∅

D (λ) + 2.

Proof: We can prove this result using the decomposition and scaling of the form and the

measure. This is a simple extension to the random recursive graph directed case of the random

recursive set up as given in [21, 15].
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We now let Xui(t) = Nui

D (et) for t ∈ R and write

ηui(t) = Nui

D (et) −
4
∑

j=1

N
uij

D (etρ−1−θ
ui

).

Thus we have a random multitype renewal equation

Xu∅(t) = ηu∅(t) +

4
∑

j=1

Xuj (t− (1 + θ) log ρu∅
),

and, by iterating, we can write

Xu∅(t) =
∑

i∈T

ηui(t− (1 + θ) log(ρu∅
. . . ρui

)). (5.11)

We now set mu∅(t) = e−γtEXu∅(t) and hu∅(t) = e−γtEηu∅(t). Thus

mu∅(t) = hu∅(t) +

4
∑

j=1

e−γtEXuj(t− (1 + θ) log ρu∅
),

= hu∅(t) +

4
∑

j=1

Ee−γ(1+θ) log ρu∅ e−γ(t−(1+θ) log ρu∅
)EXuj (t− (1 + θ) log ρu∅

),

= hu∅(t) +
4
∑

j=1

∫ ∞

0

muj (t− s)νu∅uj
γ (ds),

where νγ is a matrix of measures with

νu∅uj
γ (ds) = Eρ−γ(1+θ)u∅

δ(1+θ) log ρu∅
(ds).

We choose γ to ensure that the maximum eigenvalue of the matrix of distribution functions is 1.

A simple computation shows that, as θ is the value that makes the original matrix have eigenvalue

1, we just need γ(1 + θ) = θ and hence γ = θ/(θ + 1).

Thus we have a matrix renewal equation which we can write as

m(t) = h(t) +m ∗ ν(t),

where we denote the operation of convolution of a function a : R → R with a measure b by

b ∗ a(t) = a ∗ b(t) =
∑

j

∫ ∞

0

a(t− s)b(ds),

and hence for two matrices A,B of measures we write the ij-th element of C(t) = A ∗ B(t) as

cij(t) =
∑

k aik ∗ bkj(t).
The next step is to apply an appropriate matrix renewal theorem, for which we need to extend

slightly those due to [37] and [24]. Let M = [mij ] be a matrix of Radon measures on R+. We

will write F for the matrix of distribution functions of M , that is Fij(t) =
∫ t

0
mij(ds) and we will

write Fij(t, t + h] = Fij(t + h) − Fij(t). The indices of the matrix will be referred to as states

and are the vertices of a graph G. The graph has a directed edge between state i and j if the
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measure mij is non-zero. Let γ(i, j) denote a directed path in the graph G from vertex i to vertex

j. We define the measure mγ(i,j) by taking the convolution of the measures associated with each

given edge in the path. We will also write mîi for the i-th column of the matrix M with the i-th

element removed, similarly, mîi for the i-th row of M with the i-th element removed. Finally we

write the matrix of measures with both the i-th row and column of M removed as Mii.

We follow [37] and define the measure

ν1 = m11 +m11̂ ∗
∞
∑

k=0

(M11)
∗k ∗m1̂1. (5.12)

It is not difficult to check that, if F (∞) has maximum eigenvalue 1 and is irreducible, this is a

probability measure with support given by ∪{supp(mγ) : γ is a simple cycle in G}. If the support

is contained in a discrete subgroup of R we will call this measure lattice. By the irreducibility we

see that if ν1 is lattice, then νi is lattice for all i.

We state the lattice case of the renewal theorem (Theorem 4.2 of [37]) for the case of irreducible

F (∞) .

Theorem 5.14 We assume that F (t) is a matrix of measures in which F (∞) is irreducible, has

maximum eigenvalue 1, Fij(0−) = 0,
∫∞

0
tdFij(t) < ∞ for all i, j and for each j there is at least

one i such that Fij(0) < Fij(∞). Let V (t) =
∑∞
k=0 F

∗k(t) denote the matrix renewal measure. If

ν1 is lattice, with period T , then

lim
t→∞

[Vij(t+ τij + T ) − Vij(t+ τij)] = AT,

for any τij ∈ supp(mγ(i,j)), where

A =
uTv

vMu
,

and u,v are the unique normalized right and left 1-eigenvectors of F (∞) and M is the matrix of

first moments of F .

We also state a result concerning the asymptotic behaviour of the solution to the renewal

equation on R.

Theorem 5.15 Let z(t) satisfy the estimate, that there exist positive finite constants C, σ such

that

|zi(t)| ≤ Ce−σ|t|, ∀t ∈ R, ∀i.

Let F be a matrix of measures satisfying the assumptions of Theorem 5.14, then the renewal

equation

r(t) = z(t) + r ∗ F (t), (5.13)

has a unique solution, bounded on finite intervals with the property that r(t) → 0 as t→ −∞. If

ν1 is lattice with period T , then

r̃(t) = lim
n→∞

[ri(t+ τ1i + nT )] =

∞
∑

l=−∞

z(t+ lT )A

exists for every t ∈ [0, T ].
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Proof: This is a simple extension of the renewal theorem of [38] to the multidimensional setting

coupled with the use of Theorem 5.14 as in [37].

Recall that for each type k ∈ S, mk(t) = e−γtEXk(t) and hk(t) = e−γtEηk(t).

Lemma 5.16 (i) The functions mk are bounded, measurable and satisfy mk(t) → 0 as t→ −∞.

(ii) There exist constants C, σ such that the function h satisfies

|hi(t)| ≤ Ce−σ|t|, ∀t ∈ R, ∀i.

Proof: (i) For all x, y ∈ C we have, by the construction of the resistance

|f(x) − f(y)| ≤ R(x, y)E(f, f), ∀x, y ∈ C.

This yields the estimate

‖f‖2
2 ≤ sup

x,y∈C
R(x, y)E(f, f), ∀f ∈ FD,

and hence we have a lower bound of 1/χ for the Dirichlet spectrum, where χ is defined in Lemma

5.6.

As ηi(t) = 0 for t < − logχ we have

Eηi(t) ≤ 8P(− logχ ≤ t). (5.14)

Thus we can estimate

mk(t) ≤
∑

i∈T

e−γt8P(− logχ ≤ t− (1 + θ) log ρi)

= 8e−γtE(#{i : t− (1 + θ) log ρi ≥ − logχ})

Thus we need to estimate this last expectation. By the rate of growth of the branching process

we have a c such that

E(#{i : t ≥ log ρi}) ≤ ceθt,

and hence

E(#{i : t− (1 + θ) log ρi ≥ − logχ}) ≤ ceγtEχγ .

Putting these together we have

mk(t) ≤ 8e−γtceγtEχγ ,

which is finite by the moment estimates on χ. Thus mk is bounded. The measurability is clear.

Finally for the behaviour as t → −∞ we observe that for a δ > 0, by Markov’s inequality and

conditional independence,

mk(t) ≤
∑

i∈T

8e−γtP(ρ
−(1+θ)
i χ ≥ e−t)

≤ 8e(δ−γ)t
∑

i∈T

E(ρ
−δ(1+θ)
i )E(χδ)

≤ Ce(δ−γ)tE(χδ)
∑

n

enθc(δ)n,
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where c(δ) = E(ρ
−δ(1+θ)
u∅

). The sum can be made finite by choice of δ > γ. Observe that if δ > γ,

then δ(1 + θ) > θ. Hence
∑

i∈Tn
ρ
−δ(1+θ)
i is a supermartingale. As it decays exponentially, the

sum over all n will converge. Hence we have mk(t) → 0 as t→ −∞ for each type k.

(ii) By construction hi(t) = e−γtEηi(t). Thus as ηi(t) ≤ 8 we see that, for t > 0, we have

|hi(t)| ≤ 8e−γt. For t < 0 we use (5.14) and the tail estimate for χ to see that

|hi(t)| ≤ e−γtceκt.

Thus as κ > γ we can take σ = min(γ, κ− γ) to obtain the result.

Theorem 5.17 For each t ∈ [0, (1 + θ) log 2), there exists m
u∅
∞ (t) such that

lim
n→∞

mu∅(t+ n(1 + θ) log 2) = mu∅
∞ (t).

Proof: We can write our measures as

νu∅ui
γ (ds) = (1 − p̃)2−γ(1+θ)δ(1+θ) log 2 + p̃δ0,

where p̃ = 0 if u∅ 6= c while p̃ = p3
c if u∅ = c. If we consider the measure ν1 as defined above it

will clearly be lattice as all points are located at multiples of (1 + θ) log 2. By Lemma 5.16 the

conditions of the matrix renewal theorem are satisfied and the result is now a direct application

of Theorem 5.15.

The next step is to consider the random process itself and we prove the following almost sure

limit theorem.

Theorem 5.18 For each λ ∈ [1, 2(1+θ)), we have

lim
n→∞

∣

∣

∣

∣

N
u∅

D (λ2(1+θ)n)

(λ2(1+θ)n)θ/(θ+1)
−mu∅

∞ (log λ)W

∣

∣

∣

∣

= 0, a.s.

Proof: This is a multidimensional version of similar results proved in [18], [21] and [15]. The

study of the limiting behaviour of ND can be viewed as the study of a multitype branching process

counted with random characteristic. We note that as we are in the lattice case here we could

extend the work of [18] to the multitype case but, as we can remove the need for a branching

random walk by evolving the type c(2) individuals, we treat the problem directly.

We now fix a t ∈ [0, (1+θ) log 2) and consider the lattice tn = t+n(1+θ) log 2. We work with

the multitype branching process {Z̃n = (Z̃
c(1)
n , Z̃

d(1)
n , Z̃

d(2)
n )} of three types in which the types

S̄ = {c(1), d(1), d(2)} evolve as before but if they have a type c(2) offspring, then this is evolved

forward until it has only type c(1) offspring; thus the number of type c(1) offspring is determined

by the total population size in the type c(2) process evolved to extinction along with those arising

from the other types. We note that this is the original tree looked at with the stopping lines T̃ n,

where

T̃ n = {i ∈ Tm : ρi = 2n, ui 6= c(2)}.
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We write T̃ n(i) for the n-th generation in the tree descended from individual i. We also write

T̃ = ∪nT̃ n for the whole tree and T̃ (i) for the tree started from individual i. We will be interested

in the process X
u∅
n = Xu∅(tn) which, by (5.11) in this setting, we can express as

Xu∅
n =

∑

i∈T̃
η̄u∅(n− |i|),

where η̄ui(t) =
∑

j:T 2
1
ηj(t − (1 + θ) log 2), (using the notation T 2

1 for the branches of T which

have labels c(2) until the first c(1)) is the sum of the original characteristic ηu∅(t) and all the

characteristics ηj(t) that arise from the type c(2) descendents which have been removed.

Firstly we truncate the functions η̄ui by setting

η̄ui,n0(t) := η̄ui(t)I{t<n0},

where n0 is to be chosen later. We can then construct the truncated process

Xui,n0
n =

∑

j∈T̃ (i)

η̄uij,n0(n− |j|).

Let mui,n0
n = e−γnEXui,n0

n , which converges to mui,n0
∞ as n→ ∞ using the same arguments as in

the proof of Theorem 5.17.

Using the recursive formulation and the truncation we see that

X
u∅,n0

n+n1
=
∑

i∈T̃ n

Xui,n0
n1

, (5.15)

for n1 > n0. We can take expectations through this and multiply by e−γ(n+n1) to see m
u∅,n0

n+n1
=

e−γnE
(

∑

i∈T̃ n

mui,n0
n1

)

. By letting n1 → ∞ and using the convergence result Theorem 5.17 we

have

mu∅,n0
∞ = e−γnE







∑

i∈T̃ n

mui,n0
∞






. (5.16)

Using the decomposition (5.15) we have

|e−γ(n+n1)X
u∅,n0

n+n1
−mu∅,n0

∞ W | ≤ S1 + S2, (5.17)

where

S1 =

∣

∣

∣

∣

∣

∣

∣

e−γn
∑

i∈T̃ n

(

e−γn1Xui,n0
n1

−mui,n0
n1

)

∣

∣

∣

∣

∣

∣

∣

and S2 =

∣

∣

∣

∣

∣

∣

∣

e−γn
∑

i∈T̃ n

mui,n0
n1

−mu∅,n0
∞ W

∣

∣

∣

∣

∣

∣

∣

.

We write zn = Z̃
c(1)
n + Z̃

d(1)
n + Z̃

d(2)
n for the total population size. By standard multitype

branching theory, for each k ∈ S̄,

e−γnZ̃
k

n → ckW, a.s. (5.18)
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as n→ ∞. Observing that Aui
n1

(i) = e−γn1Xui,n0
n1

−mui,n0
n1

are mean 0 random variables we have

S1 ≤ |e−γnzn
1

zn

∑

i∈T̃ n

Aui
n1

(i)|.

Applying the strong law of large numbers, as the numbers of each type Z̃
k

n, k ∈ S̄ grow exponen-

tially,

1

zn

∑

i∈T̃ n

Ai =
∑

k∈S̄

Z̃
k

n

zn

1

Z̃
k

n

Z̃
k

n
∑

j=1

Akn1
(j) → 0

as n→ ∞. Combining this with the convergence result (5.18) we have S1 → 0 a.s. as n→ ∞.

For the second term we write, using (5.16),

S2 ≤

∣

∣

∣

∣

∣

∣

∣

e−γn







∑

i∈T̃ n

(

mui,n0
n1

−mui,n0
∞

)







∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

e−γn







∑

i∈T̃ n

mui,n0
∞ − E







∑

i∈T̃ n

mui,n0
∞






W







∣

∣

∣

∣

∣

∣

∣

≤ e−γn
∑

k∈S̄

Z̃
k

n
∑

j=1

∣

∣mk,n0
n1

−mk,n0
∞

∣

∣+ e−γn
∑

k∈S̄

∣

∣

∣

∣

∣

∣

∣







Z̃
k

n
∑

j=1

mk,n0
∞ − E

Z̃
k

n
∑

j=1

mk,n0
∞ W







∣

∣

∣

∣

∣

∣

∣

≤ e−γn
∑

k∈S̄
Z̃
k

n

∣

∣mk,n0
n1

−mk,n0
∞

∣

∣+
∑

k∈S̄
mk,n0

∞

∣

∣

∣e−γnZ̃
k

n − e−γnE(Z̃
k

n)W
∣

∣

∣ .

Now, by (5.18), the boundedness of m
u∅,n0
∞ and the convergence as n1 → ∞ of mk,n0

n1
→ mk,n0

∞ for

each k ∈ S̄, for any ǫ > 0, there is a random constant C such that S2 ≤ Cǫ. Thus we have

e−γnXu∅,n0
n → mu∅,n0

∞ W, a.s.

In order to remove the truncation we write

|e−γnXu∅
n → mu∅

∞W | ≤ e−γn|Xu∅
n −Xu∅,n0

n | + |e−γnXu∅,n0
n −mu∅,n0

∞ W | +W |mu∅,n0
∞ −mu∅

∞ |.

We note that m
u∅,n0
∞ is increasing in n0 and bounded above, hence the last term converges to 0.

We have established the second term above converges to 0, so all that remains is to show that

e−γn|Xu∅
n −Xu∅,n0

n | → 0.

In order to see this

|Xu∅
n −Xu∅,n0

n | ≤
∑

i∈T̃
|η̄u∅(n− |i|)|In−|i|>n0

≤
∑

i∈T

ηu∅(n− |i|)Ilog ρi<(n−n0) log 2

≤ 8#{i ∈ T : ρi < 2(n−n0)}.

As the branching process is supercritical with exponential growth, the total population size ever

born is controlled by the number currently alive. It is straightforward to show that there is a

constant C such that

#{i ∈ T : ρi < 2(n−n0)} ≤ Czn−n0
.
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Hence we have

e−γn|Xu∅
n −Xu∅,n0

n | ≤ e−γn8Czn−n0
≤ C ′e−γn0 .

Hence by taking n0 large we can make this arbitrarily small completing the proof that

e−γnXu∅
n → mu∅

∞W, a.s.

for each t ∈ [0, (1 + θ) log 2) as n→ ∞.

Finally we have the result by rewriting in terms of λ.

5.4 heat kernel estimates

As the form is a resistance form all we need to do here is to use our volume estimates in order

to apply the results of Croydon [13] which give heat kernel estimates once volume estimates are

known in the setting of resistance forms. We remark that the existence and joint continuity of

the heat kernel are standard, see [13] Proposition 5.

We now state our estimates for the heat kernel. Let θǫ = 2(2θ + 3)(θ + 2) + ǫ

Theorem 5.19 There is a positive constant c1(ω) and for ǫ > 0 positive constants c2(ω), c3(ω)

such that for P-a.e. ω for µω − a.e.x ∈ C and for t < 1,

c2| log t|−θǫt−θ/(θ+1) ≤ qωt (x, x)

and

0 < qωt (x, y) ≤ c1t
−θ/(θ+1)| log | log t||(θ−1)/(θ+1) exp

(

−c3
(

R(x, y)θ+1

t

)1/θ ∣
∣

∣

∣

log(
t

R(x, y)
)

∣

∣

∣

∣

−θǫ/θ
)

.

Proof: We just use the volume estimate from Theorem 5.10 and [13] Theorem 1. We observe

that our volume estimates are exactly of the form considered in [13] where fl(r)V (r) ≤ V (x, r) ≤
fu(r)V (r). We take V (r) = rθ and the oscillation terms are fl(r) = log | log r|1−θ and fu(r) =

| log r|2+ǫ. The result is then that there are constants such that

c

(

fl(h
−1(t))

fu(h−1(t))

)c′
h−1(t)

t
≤ pt(x, x) ≤ C

h−1
l (t)

t

where hl(r) = rV (r)fl(r) and the constant c′ > (2θ + 3)(θ + 2). Thus, as h(r) = rθ+1, the main

term in the heat kernel is h−1(t)/t = t−θ/(θ+1). The lower correction term is

c

(

fl(h
−1(t))

fu(h−1(t))

)c′

≥ c

(

1

| log | log t||θ−1| log t|2+ǫ
)c′

≥ c| log t|−2(2θ+3)(θ+2)−ǫ.

For the upper correction we have

h−1
l (t)

t
≤ ct−θ/(θ+1)| log | log t||(θ−1)/(θ+1)
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giving the result.

We remark that the size of the exponent θǫ that appears in the correction term for the lower

bound and off diagonal upper bound is at least 196.534! It would be interesting to know what

the size of the fluctuations actually is.

Similarly at the point 0 we can use the same approach with the volume estimate of Lemma 5.12

to obtain the following.

Theorem 5.20 For P-a.e. ω and for t < 1 there are constants c1(ω), c2(ω) such that

c1t
−(θ−ν)/(θ−ν+1) ≤ qωt (0, 0) ≤ c2t

−(θ−ν)/(θ−ν+1).

Note that this result will hold for any of the vertices in the approximating sequence Vn. This

means that although the heat kernel fluctuates at µ-almost every point, there is a countable dense

set of points in the cluster (of µ measure 0) where there are no fluctuations in the heat kernel.

The statement of (i) of Theorem 1.2 for the critical cluster is just the on-diagonal version of

Theorem 5.19. While the second part (ii) of Theorem 1.2 for the critical cluster at 0, is directly

Theorem 5.20.

6 Open Problems

There are a number of questions which arise naturally.

(i) In our construction we chose the weights on the edges to ensure that the total resistance

across the cluster was 1. It would be natural to consider the problem where we use the same fixed

resistance weight for each edge in the previous construction of a Dirichlet form for the scaling

limit. We would like to think of this in the graph setting where we have a random walk moving

on the graph with unit resistors for each edge. In order to understand this problem we need to

consider a random hierarchical system [23]. We can view this as either for the conductance or the

resistance. Using the self-similarity and independence it is clear that if Rn denotes the resistance

between 0 and 1, then

Rn =







Rn−1(1) +Rn−1(2) if a single series connection,
1

1
Rn−1(1)+Rn−1(2)+

1
Rn−1(3)+Rn−1(4)

if there are two series connections in parallel.

Alternatively we can write this in terms of conductances as

Cn =







1
1

Cn−1(1)
+ 1

Cn−1(2)

if a single series connection,

1
1

Cn−1(1)
+ 1

Cn−1(2)

+ 1
1

Cn−1(3)
+ 1

Cn−1(4)

if there are two series connections in parallel.

As a first question we would like to know if there exists a λ such that (logRn)/n→ λ as n→ ∞.

If there is exponential growth, is there a limit distribution such that Rnλ
n → c as n→ ∞.

(ii) The general case of n pairs of edges in parallel for n ≥ 2, extending our discussion from

the case of n = 2, presents a challenge. It is clear that there will be different behaviour as the

dimension of the diamond lattice is log(2n)/ log(2) and we will be in the transient case for all
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n > 2. The percolation question can be answered by solving a suitable fixed point equation and

we will see that there is a unique pc in (0, 1) at which there is percolation. When considering the

infinite critical percolation cluster the techniques we applied in the case n = 2 revolve around the

fact that we have a resistance form and can use the resistance metric. We believe that there will

not be a resistance form for larger values of n and hence new techniques for establishing existence

of the Dirichlet form and heat kernel estimates in the random transient case will be needed.

A simpler alternative is to consider different probability measures on the cluster generating

configurations, for instance the random cluster measure, which may produce resistance forms for

larger values of n. We note that if n = 3 has a resistance form, then a heuristic spectral analysis

would suggest a smoother limit result for the high frequency eigenvalues in that the normalized

limit of the eigenvalue counting function would exist.

(iii) The study of random walks on the graphs would be of interest. In particular the case

where we use a random sequence of blow ups of the set in order to remove the existence of points

of infinite degree in the graphs. For the spectral properties of such random blow ups in the finitely

ramified fractal case see [42]. This will give nicer graphs but it is not clear what to do about the

percolation problem in this setting as an incipient infinite cluster construction may be required

in order to ensure that the infinite cluster contains our initial edge.

Acknowledgement. The authors thank H. Spohn for encouraging us to work on this problem.
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