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Heat Kernel Estimates and Law of the Iterated Logarithm
for Symmetric Random Walks on Fractal Graphs

Ben M. Hambly and Takashi Kumagai

ABSTRACT. We study two-sided heat kernel estimates on a class of fractal
graphs which arise from a subclass of finitely ramified fractals. These fractal
graphs do not have spatial symmetry in general, and we find that there is a
dependence on direction in the estimates. We will give a new form of expression
for the heat kernel estimates using a family of functions which can be thought
of as a “distance for each direction”. As an application, we give a law of
the iterated logarithm which shows that the directional dependence leads to
non-uniform behaviour in the typical paths of the random walk.

1. Introduction

There is a long history of work on Gaussian bounds for the heat kernel on spaces
with smooth structure. The development of analysis on fractals showed that there
are sets where heat kernels naturally have sub-Gaussian bounds. Graphs provide a
setting in which to further investigate the generality of these results. One area of
recent research activity is in determining analytic conditions which are equivalent
to heat kernel estimates of sub-Gaussian type ([BB1, BCG, GT1, GT2]). Our
interest here will be in exploring the range of behaviour that can be exhibited by
the heat kernel in a class of self-similar graphs (cf. [BB2, HK2, Jo)).

The class of graphs we consider consists of infinite graphs generated using a set
of contraction maps all with the same scale parameter. Instead of iterating forward
the set of maps to obtain a fractal set, we take one of the contractions and invert
it, then apply it to a finite set (the natural boundary of the fractal) and iterate
to obtain an infinite self-similar set of vertices. These can then be connected in a
way compatible with the fractal structure to form a fractal graph. The graphs we
consider will be finitely ramified in the sense that any subset can be disconnected by
removing a finite number of points and hence we will call them uniformly finitely
ramified graphs. Some examples are shown in Figure 1 in Section 3. Note that
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these graphs are based on triangles but they do not have the full symmetry of the
triangle and this leads to a variety of interesting behaviour.

In a previous paper [HK2] we considered the class of uniform finitely ramified
fractal graphs and obtained an expression for the heat kernel. It was shown that
in the case of nested fractal graphs, in which the underlying fractal set is invariant
under the full symmetry group of the basic cell, this expression is equivalent to the
usual formulation of sub-Gaussian estimates. That is there are constants ds, d,,
and ¢1.1,¢1.2 (which differ in the upper and lower bounds), such that

d(z, y)d» B
pk(may) = cl.lk_ds/2 eXp(_cl.Q(%)l/(dw 1))5 Vw,y,d(w,y) S ka

where d(z,y) is the usual graph distance (see (2.8) for the meaning of < here). The
exponent d, = 2dy/d,, is called the spectral dimension, d,, is the walk dimension,
which describes the scaling in the time for the random walk to exit balls and dy is
the Hausdorff dimension of the underlying fractal. We also showed that, without
symmetry, the estimates cannot in general be expressed so simply in terms of the
graph metric. Indeed, for fractals of this type, where the random walk on the
graph is strongly recurrent, the natural metric is the resistance metric, in the sense
that the parabolic Harnack inequality holds with respect to this metric. When we
write the estimates in terms of the usual graph distance there is a dependence on
direction. In this paper we will give a more complete description of this dependence
and show how the estimates can be expressed in a form involving functions, one for
each direction in the graph, which are like distance functions.

In particular, for the case where there are two directions (each corresponds
to a certain type of edge in the graph, for instance diagonal and horizontal for
our Sierpinski gasket based examples in Figure 1 in Section 3), we typically have
constants ¢;.3,¢1.4 (differing in the upper and lower bounds) such that

2 dfﬂ ;
pi(®,y) < c1.3k™%/? exp(—c1.4 Z(%)l/(d”_l)) Vz,y,di(z,y) <k,
i=1
where the di, is the walk dimension in the direction i and d; is a function which
is similar to a metric. Though this is typical, it may also be the case that there is
a logarithmic correction as well. The full result for the two type case is given in
Theorem 3.5.

Finally, once we have such estimates for the heat kernel, we can determine what
information they give concerning the random walk itself. Here we will show that
the directional dependence leads to two laws of the iterated logarithm, one for each
direction. This means that extreme fluctuations of the path in one direction are
larger than those in the other.

We believe that similar expressions for the heat kernel estimates are possible
for all the p.c.f. graphs and p.c.f. fractals which have a non-degenerate harmonic
structure by extending the arguments in this paper. We discuss the diffusion case
in Section 5 and partially answer in the affirmative two conjectures made in [HK3].

2. Uniform finitely ramified graphs and their quadratic forms

2.1. Uniform finitely ramified graphs. For « > 1 and I = {1,2,--- , N},
let {¥;}icr be a family of a-similitudes on R”. An a-similitude is a map ¥;x =
a 1Ux + v;, x € RP where U; is a unitary map and v; € RP?. We will impose
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several assumptions on this family. First, we assume
(H-0) {@;};cs satisfies the open set condition,

that is there is a non-empty, bounded open set W such that {¥;(W)};er are disjoint
and U;erP,(W) C W. As {7, }zeI is a famﬂy of contraction maps, there exists a
unique non-void compact set K such that K = Uier 9 (K ) We assume

(H-1) K is connected.

Let Fiz be the set of fixed points of the ¥;’s, ¢ € I. A point x € Fiz is called an
essential fized point if there exist 4,5 € I, i # j and y € Fiz such that ¥;(z) =
U;(y). Let Ir be the set of 4 € I for which the fixed point of ¥; is an essential
fixed point. We write Vj for the set of essential fixed points. We also let Wit oin =
P, o---0W,; . We make one further important assumption, that the family of
contraction maps has a finite ramification property;

(H-2) If {i1,...,in}, {jl, ..., Jn} are distinct sequences, then

11, azn ﬂqulv v]n A = lI,ily---yin (%)ﬂ@jls---sjn (‘A/O)'

DEFINITION 2.1. ([HK2]) A (compact) uniform finitely ramified fractal (u.f.r.
fractal for short) K is a set determined by a-similitudes {¥,};cr satisfying the as-
sumptions (H-0), (H-1), (H-2) and with §V > 2.

If we also assume the following symmetry condition, then K is called a (com-
pact) nested fractal, as introduced and discussed in [Lind, Kus].

(SYM) If 2,y € Vp, then the reflection in the hyperplane H,, = {z € R” : |z —z| =
|z — y|} maps V,, to itself, where V;, = Uy, ... i e1i,.....i. (Vo).

Thus u.f.r. fractals form a class of fractals which is wider than nested fractals, and
is included in the class of p.c.f. self-similar sets ([Kig]).

Next we define unbounded u.f.r. fractals. We assume without loss of generality
that ¥;(x) = o~ x and that 0 belongs to Vy. Let K = U, a"K. Then, clearly
¥, (K) = K. We call K an unbounded uniform ﬁnltely ramified fractal. Let
V=VW=Ux OanV and V,, = o™V for n € Z. (Note that this labelling is the
opposite to the one given in [HK3]. As n gets bigger, the graph distance between
each vertex of V,, gets bigger and V,, C V;,_1.) Then, K = Cl(U, .7 V»). For each
I,n>0and iy, - ,i €I, we call a set of the form o™ ®,, ... ;,(Vo) an n-cell and

o, . (K) an n-complex.

We now introduce uniform finitely ramified graphs. These will be graphs with
vertices V and a collection of edges B. In order to define the edges, we first define
esy for an edge between z and y in V and then set By := {eyy, : z # y € Vo).
Then inside each 0-cell we place a copy of By and we denote by B the set of all the
edges determined in this way. We call the graph (V, B) a uniform finitely ramified
(u.f.r.) graph. If we construct the graph starting from a nested fractal, then it will
be called a nested fractal graph.

2.2. Quadratic forms. An electrical network (V,C) on an arbitrary infinite
connected graph with vertices V' is an assignment to each edge e;, of a positive
number Cy, = Cy;, the conductance between z and y. For our fractal graphs a
basic electrical network (V,C) on (V, B) is defined as follows. Firstly we assign a
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conductance to each edge e,y € Bo. The conductance matrix C' is constructed on
the whole graph by putting on each edge in each 0-cell the same conductance as
that of the corresponding edge in By and setting Cyy = 0 if €5, ¢ B. Note that,
for our fractal electrical networks, there exists ¢;.1,¢2.2 > 0 such that

(2.1) 2.1 < Cpy < 222 for all ey € B.

We next define a quadratic form on (V, B) associated with the electrical net-
work. For z,y € V, we write z ~ y if e;, € B. For each f,g € (V) := {h :
h is a function on V'}, we define

(22) eolfi)=3 X (@)= Fw)e@) - 90)Cay.

z,yeV
egy€DB

We sometimes abbreviate Ec(f, f) as Ec(f). Now, define p, = 3° -y, Cyy for each
z €V. Set w(A) =) 4 ps for each A CV; pis then a measure on V. For each
ezy € B, define Py, = Cyy/pug, the transition probability matrix of the Markov
chain corresponding to £¢. To be precise, the process corresponding to E¢ is a
continuous time Markov chain in which jumps occur along edge ez, at rate Cry.
In this paper, we will consider instead the induced discrete time random walk, the
discrete time Markov chain which moves at unit time intervals to any vertex y
connected to & with the probabilities for these jumps given by {P,,}. We denote
this induced random walk by {Xj }x>0. The random walk is reversible with respect
to u, indeed,

Prypy = Cpy = Cyp = Pygpiy.
The discrete Laplace operator corresponding to the random walk can be defined as

Lf(z)= Zszf(y) — f(z) = 'ui Z(mef)czy;

Ty

where Vay f = f(y) — f(). )

Let Qur = Qum (Vo) be the set of all Q = {g;; : 4,5 € V, such that ¢;; = 0,¢;; =
gjs > 0 for any i,j € Vo}. We denote by Int(Qas) the subset of Qar such that
every Q has g;; = 0,¢;; =g > 0 foralli~je€ Vo. Also, let Q. be the set of
Q@ € Qur such that £¢(£,€) = 0 if and only if £ is constant. As our quadratic form
on the graph V is constructed from a basic electrical network, the conductances
are determined by placing C' € Qs within each 0-cell, and we denote the form
by £c¢(:,-). Given the graph on V; which has the same structure as (Vp, B) and
C' € Int(Qu(aVp)), we can define a form on V4 in the same way:

09 =5 ¥ (@)~ fw)o@) ~g@)Ch,  forall f,g € I(VA),

z,yeEV]
exy EaB

where {C},}z, is given by placing C' in each 1-cell. As our graph is finitely
ramified, we know that for each C € Qur(Vp), there exists ¢’ € Qpr(aVp) so that

EDw) =inf{€c(f) : f €1(Vo), fl =v}  for all v € I(VA),

see [Bar, Kig] for the proof. We can define a decimation map F from Qu =
O (Vo) to itself by setting F(C) = C'. Note that F is homogeneous, as F(0C) =
OF(C) for all 8 > 0 and C € Qys, however F is in general a non-linear map. In
order to study the asymptotic properties of the form, it is important to observe
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the dynamics of the iteration of F' (see [Kuml] and the references therein). By
Schauder’s fixed point theorem, we know that there exists Q € Qus (with g;; > 0
for some ¢ # j) and pél > 0 such that F(Q) = pg)lQ. Throughout this paper, we
assume the following.

ASSUMPTION 2.2. (1) For each Q € Qyyr, there exists | = I(Q) € N such that
F™(Q) € Int(Qu) for allm > 1.
(2) There exists Qo € Int(Qpr) and pg, > 0 such that F(Qo) = pééQo.

REMARK 2.3. (1) By Corollary 6.20 of [Bar], pg, > 0 is uniquely determined,

that is if Q1, Q2 € Qirr satisfies F(Q;) = pZ);Qj (7 = 1,2) with pg,,pg, > 0, then
PQ. = PQ, = PQ,- In the class of fractal graphs we consider, we can prove pg, > 1
(see [Kig] etc.). For the rest of the paper we denote pg, by p.
(2) For z,y € K, the set of vertices {xg,--- ,Zm,} is called an n-chain from z to
yifeg = 2,20, =y, z; € Vn for 1 < 3 <m —1 and z;,2;41 are in the same
(—n)-complex for 0 < i < m — 1. A sufficient condition for Assumption 2.2 1) is
the following.

(H-3) There exists [ € N such that for each z,y € Vo, there is an

I-chain {zo,---,Zn} from z to y so that for each 1 < i < m — 2,

there is a I-cell C; with z;,z,41 € C; and VonC; =0.
Indeed, if (H-3) holds, it is easy to show F"(Q) € Int(Qys) for n > 1, Q € Qi by
observing the corresponding Markov chain on Vn
(3) Every nested fractal satisfies Assumption 2.2 1) and 2). Indeed, (H-3) can be
shown using (SYM) and [Kus] Lemma 2.10 (or [Lind] Proposition IV.11), estab-
lishing 1). The existence of the fixed point 2) is proved in [Kus] Theorem 3.10 and
in [Lind] Theorem V.5.
(4) Note that any non-degenerate fixed point of pF' is not necessarily unique even for
nested fractals. In [Bar] Example 6.13, a one parameter family of non-degenerate
fixed points on the Vicsek set is given.
(5) Using [Kum1] Theorem 3.4, we see that the following, which corresponds to
Assumption 2.3 in [HK2], always holds under our Assumption 2.2.

For all Q € Int(Qu), there exist ¢1,g,ca,0 > 0 such that,
1,00 ™(Qo)ij < (F™Q))ij < c2,0p "(Qo)i;  forall n€N, i,j € Vp.

Note that for the construction of diffusion processes on finitely ramified fractals,
the standard approach is to start with quadratic forms (random walks) whose con-
ductances (transition probabilities) are invariant under the decimation map. See
[Bar, Kig] for details.

The natural metric on the graph obtained by counting the number of steps in
the shortest path between points is denoted by d(z,y) for z,y € V.

The effective resistance between x # y € V is defined by

(2.3) R(z,y) ' =inf{Ec(f, f): f € l(V),f(z) =1, f(y) = 0}.
We define R(z,z) = 0 for each € V. Note that for any z # y € V, R(z,y)
is positive and finite. Let B, = {e;y : ¢ # y € a™V;} and define edges B, by

placing a copy of B, in each of the n-cells in V,,. Under Assumption 2.2, there exist
constants ¢33, 2.4 such that

ca3p" < R(z,y) < coup™, forall neN, ey € B,,.
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Let Br(x,r) be the ball centred at z and radius 7 in the resistance metric. Note
that Bgr(z,r) is not necessarily connected (see Remark 7.19 of [Bar]). Let S =
log N/log p, the Hausdorff dimension of the fractal in the resistance metric. The
mass of balls in the resistance metric is then controlled as there exist ¢3.5,¢2.6,70 > 0
such that ([HK2] Lemma 3.2).

(2.4) Cosr” < w(Br(z,r)) < o617 forallr > ry.

2.3. Heat kernel estimates. Let P;(z,y) be the transition function after &
steps, Py(z,y) = P(X = y|Xo = z), where {X};k € N} is the random walk on V
associated with the Dirichlet form £c. The heat kernel py(z,y) we will discuss is
defined by

Note that by the reversibility of {Xy;k € N}, we have py(z,y) = pi(y, x).

In order to give our expression for the heat kernel estimates we will require
a shortest path counting function. Let N,,(x,y) denote the number of edges in
the shortest path on V,,, from z to y. By definition we have d(z,y) = No(z,y).
If 2,y ¢ V,,, we define the shortest path counting function to be Np(z,y) =
MaXy, €aD,, (),y1€0Dm (y) Nm(T1,¥y1), where Dy(x) is an I-complex containing x. De-
fine the time scale factor 7 = pN and let

(2.5) I(k,n) = inf{j : N;(z,y)7? > k} An.
We can now state our heat kernel estimates.

THEOREM 2.4 ([HK2]: Theorem 4.10). There exist constants c2.7,--- ,¢2.10 >
0 such that for all ;,y € V and k > d(x,y), if p"~ 1 < R(z,y) < p”, then

(26) pk(xay) < 02.7]6—%_'_1 exp(_c2.8Nl(k,n)(may))7

s
(2.7) Pe(2,y) + pes1(2,y) > c2.0k™ 5F exp(—c2.10Nik,n) (2, ))-
From now on we will express the pair of estimates (2.6), (2.7) as

(2.8) pr(z,y) < crk” 55 exp(—ca Ni(y,n)(2,9))-

Note that this theorem contains the diagonal estimate as 0 < Ny ) (z,7) < 1
for all n,k € Nand z € V. For z,y € V such that c1p™ < R(z,y) < cap™ for some
fixed constants, define a chemical exponent with respect to the resistance metric,
for 0 <1 < n as df(z,y) = (log, Ni(z,y))/(n — ). For I = n we can choose the
exponent arbitrarily and thus define d¢(z,y) = 1. Using the definition of I(k,n) we
can write Theorem 2.4 in terms of the resistance metric and this chemical exponent
as follows.

COROLLARY 2.5. There exist constants ca.11,¢c2.12 > 0 such that for z,y € V
and k > d(z,y), with n,l as above, then
Wk ,n) (5¥)
s R(z, )5+ \ T fim @
Pr(T,y) X c211k” S+ exp | —co.12 (%)
For nested fractal graphs, where the fractals have spatial symmetry, there are
constants d.,cz.13,¢2.14 > 0 (d. is called the chemical exponent) such that for
€zy € Bn;

02.13/)(n7m)dc < Np(z,y) < C2.14P(nim)d“-
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Hence, writing d,, = (S+1)/d., we can express our estimates in the following form.

d( y)dw>1/<dw—1>>

(2.9) (2, y) X o5k ™5/t exp (—02.16 ( .

We note that when there is no spatial symmetry, we do not necessarily have a single
exponent d,, (as in (2.9)) for the off-diagonal estimates. See [HK2] for details.
We conclude this section with a result about the parabolic Harnack inequal-
ity. Let 3 > 0. We say (£¢,L%(V,du)) satisfies (PHI(B)), a parabolic Harnack
inequality of order 3, if whenever u(n,z) > 0 is defined on [0,4N] x B(y, 2r) and
satisfies u(n + 1,2) — u(n,z) = Lu(n,z) for (n,z) € [0,4N] x B(y,2r), then
max u(n,z) < co17 22D, (u(n,z) + u(n + 1,2)),

N<n<2N
z€B(y,r) z€B(y,r)

where N > 2r and c2.187° < N < ca.197° (cf. [BB1, GT1, GT2, HK2]). By
Corollary 2.5 and a standard argument, we can deduce the following.

PROPOSITION 2.6.
(Ec,LA(V,dp)) satisfies (PHI(S + 1)) with respect to the resistance metric.

3. Heat kernel estimates and chemical exponents

In this section we will give a new form of expression for the heat kernel estimates
which incorporates the dependence of the estimate on the direction. Our first step
is to explain what we mean by a direction for our u.f.r. fractal graphs.

We begin by giving the elements of By a type. The classification uses the spatial
symmetry of the fractal graph, that is, if there is a reflection which maps V,, to
itself and maps e € By to ¢’ € By, then e and €’ are of the same type, otherwise
they are different. Let so be the total number of types; clearly sy < #Vo(#Vo —1)/2.
By labelling each copy of B, using the types, we can classify each element of the
set of edges B by type. Also, by self-similarity, we can classify each edge which
consists of two elements in an n-cell for any n € Z.

For 1 <i < sp and m > 1, let m,,(¢) be the set of m-chains from z to y which
do not contain multiple points, where e;, € By is of type i. Set

St = {u(r) | # € 7, (i), n is minimal},

where we define u(n) = (u(7)1,--- ,u(nm)s,) to be an sp-dimensional vector such
that u(7); is the number of type j steps (edges) in the path = (1 < j < s¢).
Here, we say m € 7, (¢) is minimal when there is no «' € m,, (i), #' # 7 such that
u(r'); <u(m); forall 1 < j < sg. Let

Mpma = {A: Ais an so X so matrix such that for each j, (j-th row of A) € Sj.},

and define Ay = mingen,,,, {maximum eigenvalue of A}. Throughout this sec-
tion, we call a matrix A € M,,4; whose maximum eigenvalue attains A, the
minimal step matrix, and define M4, = {A € M4t : A is a minimal step matrix. }.

In this paper, we will only treat the case where the number of types is 2. This
is purely for simplicity, but it does include essentially all the different forms for
the heat kernel estimates. Note that the possible structures for the minimal step
matrix are the following.

@ b ta,b,c,d e NU{0},a2+ 02> 1, +d* > 1}.
c d



8 BEN M. HAMBLY AND TAKASHI KUMAGAI

FIGURE 1. Examples

We first classify the possible structures.
Case (0) @ = 0; in this case there are three distinct structures which are possible
for the minimal step matrix;

o (P a)ea (2 g)on(gn)

where b, ¢, d € N. By simple calculations, we see that the eigenvector corresponding
to the maximum eigenvalue is a constant multiple of *(1, 2) for some z > 0 where
v denotes the transpose of v. The case (0’) d = 0 can be treated similarly.

We next consider the case ad # 0. There are four (essentially three) cases as
indicated below;

() e(ty)e(s)

where a,b,c,d € N. Cases (2), (2°) and (3) can each be decomposed into 3 subcases
(x1) a > d, (*2) a = d and (x-3) a < d. Note that cases (2’) and (3-3) can be
reduced to the cases (2) and (3-1) respectively by switching the role of type 1 and
type 2.

We now describe how we choose and fix one element, denoted by Ay, from
Mpin (cf. Remark 3.6 (a)):
Case (a); there is a reducible matrix in M,,;,. (A non-negative matrix A is called
irreducible if for each i, j, there exists n = n(4,j) such that (A™);; > 0. A matrix
which is not irreducible is called reducible.) By switching the role of type 1 and
type 2 if necessary, we can write the matrix as in the case (2).
(a-1); there is a minimal step matrix with d < Apsn (thus @ = Apin). Then define
this matrix as Anin. Such a matrix in Mp,sn, if it exists, is uniquely determined.
(a-2); (a-1) does not hold (thus d = Apin and @ < Apmen). If there is a matrix
in My with a < Apin, then take the matrix with b = 0 (if it exists) as Anin,
otherwise take the matrix where (A, — a)/b attains a maximum (if the original
matrix is as in the case (2’), take the matrix where ¢/(Ap, i, —d) attains a maximum)
within such matrices in M,,;,. If there is no matrix in M,,;, with a < Ain, then
take the matrix with a = Anin as Apyn. Note that in such a case, one can prove
that My, = {( Amin b
0 /\min
Case (b); all the matrices in M,,;, are irreducible. Then, take an arbitrary element
of Mmin as Amin-

In Figure 1, we indicate several concrete examples of the different cases. These
are cases where diagonal moves correspond to type 1 paths and horizontal moves

)} and Amin = minb€S1 bl-
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correspond to type 2 paths. The left figure is the case (1), the middle figure (cf.
Figure 2 in [HK2]) is the case (2-1) and the right figure is the case (2-2). If the
contraction maps corresponding to the shaded triangles have a rotation of 60 (or
—60) degrees (so that the shaded triangles are rotations of the original one), then
the right figure is the case (3). We note that it is easy to check that Assumption
2.2 holds for these cases. The corresponding A,,;,’s are as follows.

(55 ) (6 5)(59) (% 5)

For the cases (1), (2-3) and (3-2), the eigenvector corresponding to the maximum
eigenvalue is again a constant multiple of (1, 2) for some z > 0. For the cases
(2-1) and (3-1), the maximum eigenvalue is a, the corresponding eigenvector is a
constant multiple of ?(1,0) and the Jordan cell for the eigenvalue is 1-dimensional.
For the case (2-2), the maximum eigenvalue is a, the corresponding eigenvector is a
constant multiple of ?(1,0) and the Jordan cell for the eigenvalue is 2-dimensional.
We now determine the relationship between A,,;, and the asymptotic growth
of the minimum number of edges in a path for each direction. For v > 0, define

(Gv)izlgréisr,lib-v 1=1,2,
and hence Gv = mingeny,,,, Av. Let Apin > 0, x > 0 be the maximum eigenvalue
of A.,in and its corresponding eigenvector, so that

(3.1) G x = AninX = ApinX.

When x > 0 is not strictly positive, we can prove this as follows. Without loss
of generality, we may assume that xo = 0 and hence the matrix A,,;, is as in the
case (2). Thus, A\nin = a. We can further see that ¢ = minycg1 by. Indeed, if this
does not hold for d < Apmin, by substituting the element of S' whose first element
is minimal into the first row of A,,;,, we can obtain a matrix whose maximum
eigenvalue is less than A,;;, = a, which is a contradiction. For d = A4, this fact
is guaranteed by our choice of A,,;,. We thus obtain

R LHEPRE: LEL

Clearly (G *(1,0))2 = 0 and we obtain (3.1). When x > 0, we can prove (3.1) using

the properties of non-negative matrices, but omit the somewhat lengthy proof here.
Let z,y € V, be in the same n-cell and assume the edge e,y is of type 1,

(i = 1,2). Clearly Np(z,y) = (G°™1); where G°" is the n-th iteration of G and

1 =7%(1,1). Thus, when the eigenvector x of A\, is strictly positive (that is, cases

(0), (1), (2-3), (3-2)), using (3.1) we have constants such that

Al x; = ¢ (G°"x); < (G°"1); < ea(G°"%); = e\,

mzn
Hence there is no directional dependence for the asymptotic order of the minimum
number of edges in the shortest path and the problem is reduced to the case of a
single type as discussed in [Kum2, FHK]. In particular, the heat kernel estimate
has the same form as (2.9).
We thus consider only the cases (2-1), (2-2) and (3-1) in the following. For each
case, the n-th power of A,,;, is given by

(2-1) (aon a%i(“;n_ ) ) (2-2) (“0" b"ngl ) (3-1) (aon - )

(G (

min
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Let 7(z,y) be the shortest path (with respect to the graph distance) from z
to y in V. Note that each edge in the path is either of type 1 or type 2. We
let di(z,y) be the number of type 1 steps in 7(x,y). We decompose the path
7(x,y) into connected components C; that only consist of type 2 steps and define
da(z,y) = max; |C;|. In other words, da(z,y) is the maximum length of a connected
chain of type 2 steps in the shortest path. Note that d;(-,-) is not a distance.

In order to define two associated shortest path counting functions, we decom-
pose the shortest path. For z,y € V such that p"~!' < R(z,y) < p", we can
decompose the shortest path from x to y as follows. Let z; be the first element
of V; on the shortest path from z (z; = z if x € V;). Define y; in the same way
by looking at the path from y. Then there is an L = L(z,y) < n such that there
in no element in V741 on the path between zr and y;. By the self-similarity of
the graph, it is easy to see that either z;, = y; or the number of elements in Vj,
on the path between xp and yr is uniformly bounded by some positive constant.
We define N} (z,y) as the number of type 1 steps in the shortest path on V,,
from x,, t0 Y, if Z;n # Ym- We decompose the shortest path on V,, from z,, to
Ym into connected components Cy, ; that only consist of type 2 steps and define
N2 (z,y) = max; |Cp | if Zm # Ym. Finally we set N (z,y) = 1 if z,,, =y, and
m # 0 (this is for consistency with the definition of N,,(z,y)). By definition we
have d;(z,y) = Ni(z,y) for i = 1,2.

We now change notation and let oy = a,as = d. Note that ay > as. For
z,y € V such that p"~! < R(z,y) < p", define n; = n;(z,y) < n so that o <
di(z,y) < ! for i = 1,2. Note that N? ,(z,y) = 1 for m’ > n;. Note also that
niyVng =n.

Let N, (z,9) = N} (z,y)log N} (z,y) for the case (2-2), N1 (z,) = N} (z, )
otherwise. We let N2 (x,y) = N2 (=,y) for all the cases. Then the following holds.

LEMMA 3.1. There exists c3.1,¢3.2 > 0 such that for allm >0 and x,y € V,

2 2
C3.1 ZN:n(xay) S Nm($7y) S C3.2 ZN:n(xay)

=1 =1

PROOF. Here and in the following, we sometimes abbreviate N, (z,y) (resp.
Ni (z,y)) as Ny, (resp. Ni). Firstly, when z,y € V,, are in the same n-cell and
ey is of type i (i = 1,2), then d;(z,y) = a? and Ni, = o™ = a; "d;(z,y) for
all m < n. Next, for z,y € V such that p"~! < R(z,y) < p", we can decompose
the shortest path from z to y into {z,z1,--- ,zr,yL, - ,¥1,y} as discussed above.

Using the first observation and the self similarity of the graph, we see that

L—-1 L—1
N%z = Zal_mdl(mj;mj+1)+ Z al_mdl(yj,yj+1)—}—al_mdl(mL,yL) AR
j=m j=m

L-1 L—-1
N2 <[ D) ag™da(wg, mi01) + D 0 " da(y;,9541) + 05 "da(an,yr) | VL
j=m j=m

For i = 1,2, let g; be the largest j > 0 such that either d;(x;, z;4+1) or d;i(y;,y;+1) is
non-zero. When d;(zr,yr) # 0, we define ¢; = L and when all these values are 0 we
define ¢; = m. Note that there are constants such that ¢ < di(zj,2j41) < c20]
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if it is not zero. The same fact is true for d;(y;,y;+1) and d;(zr,yr) (in this case
j = L). Thus, using the estimates of N} above, we have constants such that
czal’™™ < NI < cqaf ™. Since Y < di(z,y) < a;“‘"l, we see that n; + ¢z <
q; < n;+ cg when n; > m and

(3.2) @MV < NE <ggla ™ V1] i=1,2,
where [z] is the maximum integer not greater than x.
. b .
We next compute N,,. Note that we are in the case Apin = ( 8 d ) with

a > d (d = a for the case (2-2) and b = 0 for the case (3-1)). Firstly, when z,y € V,,
are in the same n-cell and e, is of type 4, (i = 1,2), then N,,, = (G°(»=™) {(1,1)),.
Clearly,

Cg( n—m ) for (2'1): (3'1)7
(33 ¢ () <ar() <] 0,
co( gn-m ) for (2-2).

Now, since @ = minyc g1 by and S!, S? are finite sets, by taking v > 1 large enough,
we have va + b = minycg1 (b1 + by) and d = mingcg2(yb1 + be). In particular,

va+b

(3.4) G()="

| )>d( 7).

On the other hand,

1 1 N+l _am ™1

1
o(n—m) > o(n—m) > o(n—m) ¢ Y
G (1) 2 =G (VT 2 ()4 560 (],
where we apply (3.1) to obtain the last inequality. Applying (3.4), we have the
same lower bound (with different constant) as (3.3) for (2-1) and (3-1). For the
case of (2-2), we have

G( ('7&+$_: 1)b)d! )ZaH_lG( ’Z’ )+(l+1)balG( (1) )= ( (’7a+(la;|;22)b)al+1 )

for each I > 0. Applying this inductively, we have the same lower bound as (3.3)
(with different constant).

Finally we consider the general case z,y € V with p"~! < R(x,y) < p". By the
definition of n;, a}" < d;(z,y) < a**! for i = 1,2. Using the same decomposition
of the shortest path, by similar arguments to the case of N}, and by applying
the result for z,y € V,, being in the same n-cell, we have the following (since the
arguments are similar, we leave the details for the reader); N, can be estimated
from above and below by some (uniform) constant multiple of the expressions given

below (note that a = a1,b = a2),

2
(2-1) and (3-1) D [ ™ V1], (2-2) (n1 —m)[af ") + [af? T V1.
i=1
Combining this with (3.2) and by the definition of N} , we obtain the result. [
For later convenience, we take c3.1 < 1 and ¢35 > 1. For each ¢ > 0, let
I: =1 (k,n) = inf{j : N;(x,y)Tj > ck} An.

We will omit ¢ when ¢ = 1.
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LEMMA 3.2. (a) Assume I' < ny, then lc,, <1* where i =1,2. .
gb) Let jo = jo(l,z,y) be such that max; Nli = Nl”. Assume | < n, then l{‘}(zcm) <

ProoF. For (a), using Lemma 3.1 and the fact that [; < n;, we have

)

i 1 i
k< Njit" < —Nu7t
C3.1

giving the result. For (b), note that N;/2 < C3_2]\7lj°. Since I < m, we have

kN o1
5 < 57 < czoNj°T,
giving the result. (|

LEmMA 3.3. (a) For ¢ > 1, there exists c3.3(c) > 1 such that
Nlc(mvy) S Nl(xay) S C3.3(C)Nlc(.’1]',y)-
(b) For each ¢ < 1, there exists ¢3.4(c) <1 such that

c3.4(C)Nlc(:I;7y) < Nl(l’,y) < Nlc(may)'
Both (a) and (b) also hold for N*.

PrROOF. When ¢ > 1, I, > [ so that NV;, < N; and the first inequality of (a)
is clear. To prove the second inequality of (a), we first consider the case (2-1) and
(3-1). As discussed in the proof of Lemma 3.1, we have constants ¢;, ¢ such that

2 2
cl Z[a?i_m V1] < N, <c Z[a?i_m V1.
i=1 i=1
If | = n, then I, = n and the result is clear. We thus consider the case [ < n. In
this case, N;7! > k so that
2
k<e > a7 VI < 2efal T v,
i=1

where [a?ojofl V1] := max; [a?j_l V1]. Now, note that N,_,, < e37™/2 for ezy € By,
(see the paragraph just after Corollary 4.11 in [HK?2]). From this, we see a? <7
for j = 1,2, especially Ta;1 > 1. Take L € Nas the minimum number that satisfies
(Taj_l)Lcl > 2¢o¢. If nj, — (I + L) > 0, then
ck < (re; 1)Lclk < Mo L < L
262 J0
so that [, < [+ L and the result holds. On the other hand, if n;, — (I + L) <0,
then there exists ¢4 > 0 such that n <1+ ¢4. Then, N; < ¢5 for some ¢; > 0 and
the result holds. The case (2-2) can be proved similarly.
(b) can be proved in the same way as (a). O

The following comparison is important.

PROPOSITION 3.4. There exists c3.5,c¢3.6 > 0 such that the following holds.
2 2

€3.5 ZNZ (z,y) < Ni(z,y) < C3.ezNii(l";y)-

i=1 =1
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PrOOF. We first consider the case I < m and I; < m; for ¢ = 1,2. We note
that N, < N (i =1,2) and Np, < Ny, for ma < my. By Lemma 3.1, Lemma
3.2 (a) and Lemma 3.3 (b), we have

2 2
3.1 ZNﬁ <csa ZNZCS L <N, < (cs.4(cs1)) ' V.
i=1 i=1 '
On the other hand, by Lemma 3.1, Lemma 3.2 (b) and Lemma 3.3 (b), we have

2
Nl S 203_2NZJ0 S 203_2NIJ]% S 203_2 Z Nlii S C1 ZN%

(2¢3.2)~1 i=1 i
Combining them, we obtain the desired result.

We next consider the case | = n where N; = N,, = 1. Using Lemma 3.1, we
have

csaNjm7 < Nj7?l <k, Vi<m, i=1,2.

Thus, li/c&l =n for ¢ = 1,2. Using Lemma 3.3 (a), we obtain the desired result.

We now consider the case ' = ny, where N = N} =1 and
L _
(3.5) N;17 <k, Vi <n

holds. Assume first that I = ny. Then, using Lemma 3.1, we have NjTj [esa < 2k
for all j < n so that ly., , = n. Thus, with the help of Lemma 3.3, the result can
be proved in the same way as in the case I = n. Now assume that {?> < ny. By the
definition of 12, there exists ¢z > 1 such that

ek > N2 > k.
Combining this with (3.5) and Lemma 3.1, we obtain
C3_2(CQ + ].)k,‘ > C3_2(Nl12 + Nfz)le > ]\]'127'l2 > 63_1(Nllz + ]V}%)Tl2 > c3.1k.

Thus we have lc,, <1* <l ,(c,+1)- Using Lemma 3.1 and Lemma 3.3, we obtain
the result.
The case where [?> = ny can be treated similarly and the lemma is proved. O

By (2.8) and Proposition 3.4, we have the following.

__S_ i
(3.6) Pr(z,y) X c1k™ 5+ exp(—co ZNi(k,n)(a:,y)).
i
For i = 1,2, let d; := log, o; and define di, = (§ +1)/d.. For the case (0), (1),
(2-2), (2-3) and (3-2), define d. := log, Apin,dw = (S + 1)/d. where Apy, is the
maximum eigenvalue of A,,;,. By Theorem 2.4 and Proposition 3.4, we have the
following expression for the heat kernel estimates.

THEOREM 3.5. There exists constants c3.7,¢3.8 > 0 such that for x,y € V and
k > d(z,y), the following holds.
Case A: In the cases (2-1), (3-1) and (3-3):

di(e,)® \ P (dya )\
pr(m,y) < 3.7k~ T exp ¢ —cs8 (%) +<%
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Cuse B: In the case (2-2):

pr(E,y) X ca k™S (5HD

d 1 d1(z,Y) \\dy To1 A \ To=T
. (( 1 (2,9)log () ) (o)

k k

Case C: In the remaining cases (i.e., (0), (1), (2-3) and (3-2)):
d AN =
pi(@,y) < ca.7k™/ 5 exp (_03.8 (%) ) )

PROOF. In this proof, we write a, =< b, if there exists ¢;,co > 0 such that
c1an < b, < caa,. We first prove Case A. Using Proposition 3.4, it is enough to
prove the following,

di(z, y) %
k

Assume [* < n;. Then, by the definition of /;, we have N},

(3.7) N < (= ) e Vi=1,2.
lTl 1<ck< N;;Tli
so that k < Nl"irl < c3k for some c3 > 1. Combining this with the fact N¢ =

(@} ™™ Vv 1], we have
—ni | —ni

log(kaz ) +C4 S l’L S Og(kaz ) +C5.

log(7/eui) log(7/eui)
Thus, noting that d;(x,y) < o, we have

lel = a;{bi—lz - a:-”a; lfg(‘r/al) — a;“ <a]£L )lg( [oi)
. logrt o o ) di

(3.8) < QT e < (%)75—1 .
Here we have used the fact that dif, = (S + 1)/log, a; and ptt = a‘f:” =,

so that di, = log7/logay, loga;/log(T/a;) = 1/(di, — 1) and log7/log(T/c;) =
d:,/(di, —1). Thus (3.7) is proved when I* < n;.

Next, assume I > n; (thus I* = n). Then N} < ¢ for some ¢g > 0.
On the other hand using the last asymptotic equ1valence in (3.8), we see that

(di(z,y) % [k) 5t = is bounded from above by some constant. Thus (3.7) is proved
in this case.
We next prove Case B. Using Proposition 3.4, it is enough to prove the following,

(i@ )Iog(RER) e o (@)™
k ’ - k

The second asymptotic equivalence is proved in the same way as Case A, so we
consider the first asymptotic equivalence. Assume {* < n;. Then, by the definition
of l; and the fact NL < (ny —m)[af*™™], we have N} =< (ny — I')ay*™ " and
(n1 —Ma~ 7 < k. Thus, (n, — MY(oy /7)™~ < k/7™ . Note that by simple
calculatlons we see that if for fixed 0 < A< 1,2A* xyforalll<zand 0 <y <1,
then there exists ¢7,cg > 0 such that

log(1/y) | loglog(1/y)
log(1/X) ~ log(1/X)

(3.9) Ni =< (

log(1/y) | loglog(1/y) .
log(1/A) " log(1/A) ¥

—g<z<
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Thus, z(Ar)* < y~les(An)/10g(1/X) (1og (1 /y))lo8 7/108(1/X) - Applying this with z =
ny — I,y = k/7™ and A = a1 /7, we have

N = (m — )7 = (o] 0% log(a1 /i) 7.

Noting that d;(z,y) < a*, we obtain (3.9). The case I' > n; can be shown easily.
We omit the proof of Case C as it is similar and simpler (see [HK3] etc.). O

REMARK 3.6. (a) The choice of A,,;, given in this section is not necessarily
unique. Even so, if there is more than one choice of A,,;,, then the matrices chosen
have the same eigenspace for the maximum eigenvalue. This can be proved by using
the properties of non-negative matrices.

(b) In this section we discussed the case where there are two types of steps for sim-
plicity. We note that even if there are more than two types, if all the corresponding
minimal step matrices can be decomposed into one or two irreducible components,
and if (3.1) holds, then the arguments given in this section can be applied and we
have the same type of heat kernel estimates.

(c) We believe that the general case of n edge types could be treated similarly, but
there are more possibilities for the form of the heat kernel estimates. For instance,
when the Jordan cell for the maximum eigenvalue of some irreducible component
of the minimal step matrix is p-dimensional, then the (1, p)-th element of the n-th
power of the matrix is of order n?a”. Thus we should define N}, := N} (log N}, )?
and the corresponding part of the heat kernel estimate (in the exponential) should
be as follows

<{dl(x ) (log(“G20))» }dw>d =
—C3.9 - ‘

4. Law of the iterated logarithm

In this section, as an application of the heat kernel estimates, we discuss the
law of the iterated logarithm for the sample paths of the random walk. We will
only treat the case (3) of the last section, as this case already includes interesting
aspects of the process we treat.

THEOREM 4.1. For case (3), there exists c4.1(i) > 0 such that

lim sup . di(Xo, Xx) :
k—oo k/%w(loglogk)l—1/dw

The proof will follow from some preliminary results. We begin with a little
notation. An n-graph complex is the subgraph of V contained in an n-cell. We
write D! (y) for the n-graph complex containing y and the neighbouring n-graph
complexes. We will write 8; D} (y) for the boundary points z € D} (y) which have
di(y,2) > af. Let Tq = inf{k : X} ¢ A} be the exit time from a set A and
define a sequence of crossing times by T = inf{k : X € V,,} and for i > 1, let
Tim = 1nf{k > Tiﬂ_ll : Xy, € Vm\{XTi"ll}} and Wz-m = Tim - TZEI.

= ¢4.1(4), P —as.,i=1,2.

LEMMA 4.2. For oll x € V there exist constants c4.2,¢4.3 such that fori=1,2,

i\ D)
P?(di(z,Xy) > X) < cgoexp | —cas ( A ) , k> A
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PRrROOF. The proof of this result uses hitting time estimates. Let n be such
that o' < XA < a. Observe that, by the roughly uniform exit law of D, (y),

there exists a ¢; such that
Pe(di(z, Xi) > A) P*(Tp,(z) < ks X1y, ,) € 3Dy (v))

¢1 sup PY(Tp, () < kX1, ,, €0:D,(y)).
YEVyh -1

<
<

By the crossing time estimates of [HK2] Lemma 4.4 and Proposition 4.5, as used
in the proof of [HK2] Theorem 4.6, we have the following for all 0 < m < n,

n—m

PY(Tp,(y) < k|X1,,,, €0:Dy(y)) < PY(Y_ W<k
=1

v)
< exp(—c20l ™™ + cz(af T k) ?)

If we choose [ := inf{j : o} 79 > k} A n, then
P¥(Tp,y) < k|XTDn(y) € aiD;(y)) < eXp(—C4azT‘_l).

Rewriting this, using the definitions of [ and n, we have the estimate. O

As we are in the case (3) we can find vertices z} € V such that d;(0,z}) = [A]
and d;(0,z}) = 0 for j # i. We will write

Bi(Z',T‘) = {y : dl(oay) 2 dl(oax)JR($7y) S Tl/(s+1)})
and
B(z,r) = {y : di(0,y) < d;(0,), R(z,y) < r'/(STD}.

LEMMA 4.3. There exist constants c4.4,¢4.5 such that fori=1,2,

g\ 1/(d=1)
PO(Xk c Bi(.’l?;\, kl/(5+1))) Z C4.4€XP | —C4.5 <T> ; k> A

PrOOF. For this lower estimate we will use our heat kernel lower bound. Writ-
ing B; = B;(z},k'/(5*V), we have

PY(XyeB) = Y pi(0,9)uly)
YyEB;
i\ 1/(d,—1)
o 4,0.)"
. S/(S+1 _ J\Y
> M(Bl)ylenlzf?ik /(1) exp czj:( A
F\ 1/(d%,—1)
d(oay)dz"
4.1 > crexp | — sup A AL A
@) 1 2( X

If we now observe that within the set B; we have constants such that

sup d;(0,y) <

Cl)\ + CQk‘l/df" j =1
YyEB;

cak' /4 j#i.
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Thus, placing this in (4.1), we have

P\ 1/(d%,-1) g 1/(d,-1)
wp (02) " [ )
. 7
yEB; c;/(dw 1) ,] # i
and hence the result. O

Let h¢(k) = ck'/%w (loglog k)1=1/% and write hy(k) for hl(k).

COROLLARY 4.4. For each i = 1,2, there exists N > 1 such that, if T satisfies
di(0,Z%) = [hS(N™)], then there are constants c4.¢,Ca.7,Ca.8 Such that

(4.2) P’ (Xnn € By(&", N™/(St1)) > C4,6n*64-501’(%‘”,
and for all z € Bi(#7 ', N(n=1/(S+1))
(4.3) PZ(XN" c Bi(.i'?,N”/(S"‘l))) > 04.8n_c4_7cl/(d:‘]_1)-

PRrROOF. For (4.2) we substitute A = h{(N"™) in Lemma 4.3.

For (4.3), for any vertex pair z € Bi(&} 1, N(»=V/(5+1)) o € By(37, N™/(5+1),
there is a constant ¢; such that d;(z,y) < hS(N""1) + ¢, N(»=D/(S+1) Hence
applying the same approach as the proof of Lemma 4.3 will give the result. |

Finally we state a triviality result for tail events associated with our random
walk. This is a simple extension to the random walk case of Theorem 8.4 of [BB3].

LeEmMMA 4.5. Let A € Ngo(X, : n > k) be a tail event, then P*(A) =0 for all
x or P*(A) =1 for all x.

PROOF OF THEOREM 4.1. We need to modify the usual proof of the law of
the iterated logarithm to allow for the existence of different types. Firstly, by
Lemma 4.5, it is enough to show that there are constants ¢;, ce such that

d;(0, Xy)

. T
o Sl =
The upper bound is standard as we apply the upper estimate of Lemma 4.2
and the first Borel-Cantelli lemma.
For the lower bound we use a slight variant of the second Borel-Cantelli Lemma.
In the case of a Markov process we can use a simple modification of the proof to
show that if A, is a sequence of events, each in o(X}, : k < N™), then, if ) P(A,N
AS 1) = oo, then P(A, i.0.) =1, for a discussion see [HHH] Lemma 4.5. Let
A, = {Xnn € B(#P, NY(5+U)1 so that AS_; = {Xyn-1 ¢ B(aP™", N(n=D/(S+1)y]
Now B, 1 := {Xyn-1 € Bi(g7~!, N(»=D/(5+1))}  A¢_,| and hence

P°(4,NnAS_ ) > P°A,NB,_;)
= P%A4,|B,_1)P°(B,_1)
We can now apply both estimates of Corollary 4.4, to get

< ¢y, P’ —a.s.

1/(d%, —1)

PY(A, NAS_) > capcagn(castean)e

We can now choose ¢ = (4.5 + 04,7)_(%_1) to obtain

PO(An n A%_l) > C4_664,8n71.
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Thus the sum diverges and we have that the event A,, occurs infinitely often. Thus
Xyn € B(E*, NVY5+D) 4.0, P° —a.s.

By the construction of the set B(i, N™/(5t1)) we have that there is a constant ¢’
such that d;(0, Xy») > ¢'h¢(N™) infinitely often. Hence

: di(0,Xy) _ . di(0, Xnn) o/ po
| ———=>1 —_——— > P° —a.s.
1]rcrisip k) > 17rbn_)s01<1)p BN 2 c'c, a.s
This completes the proof of our LIL. O

We note that this shows that the size of fluctuations in the different directions is
different. The construction of d;(.,.) ensures that if X}, has moved in the direction

of type i, then d;(0, X};) < R(0, X;)% and hence

di(0, Xz)% _ R(0, Xj)5*
k - k ‘
Thus the bulk spread of the random walk is determined by the resistance. However
if we look at the large fluctuations we see that the direction has an effect as
R(0, X,)5+!
k
Thus the size of fluctuations in the different directions is different and we would see

that the process makes larger extreme movements in the direction with the largest
d?, (that is, the smallest a;).

< (loglog Ic)div_1 infinitely often.

5. Diffusion case

In this section, we will mention diffusion processes on u.f.r. fractals and their

heat kernel estimates. For u,v € I(V},), define
(5.1) ggo(uav) =p" Z S@o(wo Wy, iy, v0 ¥y i),
11,000 yin €1

where S, (€,€) = 2, jerp (Qo)ij(& — &)?/2 for each € € I(Ir). Let # be the
normalized Hausdorff measure on K. Then, the following is known (see for example,
[HK3, Kig]).

THEOREM 5.1. Let Qo € Int(Qar) be as in Assumption 2.2 2), i.e. F(Qo) =
pé(l)Qg. Then, there is a local regular Dirichlet form (€, F) in L*(K,dd) satisfying
the following,

F = {ueCE,R):sup é‘go(u,u) < o0},
E(u,v) = lim ggo(u,v) for u,v e F.

For each m € N, let K,, = o™K and define o, : C(K,,,R) — C(K,R) by
omu(z) = u(a™z) for z € K. Set Fems = 0-mF, Ecms> (U, v) = p~™E(0mu, onv)
for u,v € Fom>. Let v be a Hausdorff measure on K such that v|; = ¥ and
Nv=vo¥7'. Now let

Fr = {vel(K):ul|k, € Fcms forall meN,
K,.) < 0o} NL*(K,dv),

lim &cps(ulk,,,u
m—0o0

gK(u7'U) = "}i_r)noog<m>(u|Km7v|Km) for u,v er.
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Then, (§x, Fk) is a local regular Dirichlet form on L?(K,dv), Fx C C(K,R) and
the following scaling property holds,

Ex(u,v) = p€g(uoTy,voTy) for u,v € Fk.

Let {X;};>0 (resp. {X;}:>0) be the diffusion process corresponding to (€, Fx)
(resp. (£,7)). It can be shown that there is a jointly continuous version of the
heat kernel pf(z,y) (resp. p;*(w,y)) such that E*[f(Xy)] = [i pi* (z,)f (y)v(dy)
for all f: K — R (resp. E*[f(Xy)] = [z pf (z,4)f(y)D(dy) for all f: K — R). In
the following, we write p;(z,y) for both pX (x,y) and pX(z,y) and state the results
for K and K simultaneously. Let
k(n,t) :=inf{j : Npyj(z,y)7"" > t}.

Then the following holds (see [HK3| for the case of K; recall that our labelling of
V,, is the opposite to the one given in [HK3)).

THEOREM 5.2. There exist constants cs.1,¢5.2 > 0 such that for all x,y € K
(resp. K) andt >0 (resp. 0 <t < 1), if p" ! < R(z,y) < p”, then

_5
pe(,y) X 5.1t 5+ exp(—cs5.2Ny(n 1) (7, 1))

Now, we consider the case of two step types. For each z,y € K (or K ), define

N? , N_n,
D;(z,y) := limsup #, =1,2, D(z,y) := limsup %

Note that if we take liminf instead of limsup, there is only a (uniform) constant
time difference (due to the results in Section 3). By similar arguments to those in
Section 3, we can translate Theorem 3.5 to this setting as follows.

TH]:]OREM 5.3. There exists constants ¢s.3,¢5.4 > 0 such that for oll z,y € K
(resp. K) andt >0 (resp. 0 <t < 1), the following holds.
Case A: In the cases (2-1), (3-1) and (3-3):

i 1
D dy, '\ b1 D &2\ -1
pe(@,y) = esat 5/ D exp d —cs 4 (M) + %

Case B: In the case (2-2):

pe(z,y) < cs.5t S5

1 1
D ,y)1 D1(z,y) \\dy \ Tw—T D dy \ dw—T1
X exp{ —cCs4 <( 1(@y) los(Z)) +<72(x,y) )

t t

Case C: In the remaining cases (i.e., (0), (1), (2-3) and (3-2)):

1
D dw \ Tw-1
pe(w,y) X c5.5t 5/ (5T exp (_05,4 (%) ) .

By definition, df, = (S + 1)/d’ is the box dimension of the type i path with
respect to the resistance metric, where d¢ = log, @; is the chemical exponent of
the type 4 path (with respect to the resistance metric). Thus Theorem 5.3 gives
an affirmative answer to Conjecture 6.9 and 6.10 in [HK3] for the case of two step
types.
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We can also obtain a law of the iterated logarithm for the long and short time
behaviour of the diffusion process on K which corresponds to that of Theorem 4.1.
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