No.1094
’ZŠú‹¤“¯Œ¤‹† Sp(2;R)‚Æ‚r‚t(2,2)ã‚Ì•ÛŒ^Œ`Ž® II
Œ¤‹†W‰ï•ñW
@
1998/09/21`1998/09/25
“s’z@³’j
Masao Tsuzuki
@
–ځ@ŽŸ
@
1. POINCARE SERIES CONSTRUCTED FROM A WHITTAKER FUNCTION ON $Sp$(2;$\mathbb{R}$)-----------------------------------------------------1
@@@@‘åã‘åŠw—ŠwŒ¤‹†‰È@@@ì”_ O“T@(Sakuno, Hironori)
@
2. $SO_0(2n,2)$‚Ì—£ŽUŒn—ñWhittakerŠÖ”‚ɂ‚¢‚Ä (Sp(2;$\mathbb{R}$)‚ÆSU(2,2)ã‚Ì•ÛŒ^Œ`Ž® II)-----------------------------------------11
@@@@ÂŽRŠw‰@‘åŠw—HŠw•”@@@’JŒû Œ’“ñ@(Taniguchi, Kenji)
@
3. Embeddings of discrete series into some induced representations of a group of $G_2$ type-----------------------------------------29
@@@@‹ž“s‘åŠw—Šw•”@@@‹g‰i “O”ü@(Yoshinaga, Tetsumi)
@
4. Fourier expansion of holomorphic Siegel modular forms of genus 3 along the minimal parabolic subgroup----------------------------44
@@@@“Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È@@@¬“c GH@(Narita, Hiroaki)
@
5. Matrix coefficients of the large discrete series representations of $Sp(2;R)$ as hypergeometric series of two variables (II)-----60
@@@@“Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È@@@D“c FK@(Oda, Takayuki)
@
6. SLOWLY INCREASING GENERALIZED WHITTAKER FUNCTIONS FOR DERIVED FUNCTOR MODULES OF $Sp$(2,$\mathbb{R}$) AND NILPOTENT ORBITS-------83
@@@@“Œ‹ž“s—§‘åŠw—Šw•”@@@‹{è ‘ô–ç@(Miyazaki, Takuya)
@
7. $GL$(2,$\mathbf{C}$)ã‚̐V’JŠÖ” (Sp(2;$\mathbb{R}$)‚ÆSU(2,2)ã‚Ì•ÛŒ^Œ`Ž® II)----------------------------------------------------88
@@@@“Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È@@@•½–ì Š²@(Hirano, Miki)
@
8. The generalized Whittaker functions for the discrete series representations of $SU$(3,1)-----------------------------------------97
@@@@‰ªŽR‘åŠw—ŠwŒ¤‹†‰È@@@Îì ‰ÀO@(Ishikawa, Yoshi-hiro)
@
9. Representations of finite groups and Hilbert modular forms for real quadratic fields--------------------------------------------110
@@@@“Œ‹ž—‰È‘åŠw—HŠw•”@@@•l”¨ –F‹I@(Hamahata, Yoshinori)
@