No.1421
Spi‚Q, Rj‚ÆSUi‚Q, ‚Qjã‚Ì•ÛŒ^Œ`Ž®A‡V
Automorphic forms on Sp(2,R) and SU(2,2), ‡V
’ZŠú‹¤“¯Œ¤‹†•ñW
@
2004/09/28`2004/10/01
D“c@FK
Takayuki@Oda@
@
–ځ@ŽŸ
@
1. Fourier transform of a minimal $K$-type vector in the minimal representation of $O$($p$+1,$q$+1) (Automorphic forms on $Sp$(2,$\mathbf{R}$) and $SU$(2,2), III)---1
@@@@‹ž“s‘åŠw”—‰ðÍŒ¤‹†Š@@@¬—Ñ rs@(Kobayashi, Toshiyuki)
@
2. üŒ`‘㐔‚Ì—ÊŽq‰»‚ƐϕªŠô‰½ ($Sp$(2,$\mathbf{R}$)‚Æ$SU$(2,2)ã‚Ì•ÛŒ^Œ`Ž® III)-----------------------------------------------------12
@@@@“Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È@@@‘哇 —˜—Y@(Oshima, Toshio)
@
3. —£ŽUŒn—ñ‚É•t‚µ‚½“™•û•\Œ»‚ɂ‚¢‚Ä ($Sp$(2,$\mathbf{R}$)‚Æ$SU$(2,2)ã‚Ì•ÛŒ^Œ`Ž® III)---------------------------------------------26
@@@@–kŠC“¹‘åŠw—ŠwŒ¤‹†‰È”ŠwêU@@@ŽR‰º ”Ž@(Yamashita, Hiroshi)
@
4. ”ñ‰ÂŠ·’²˜aU“®Žq‚̃[[ƒ^‚Ì“ÁŽê’l ($Sp$(2,$\mathbf{R}$)‚Æ$SU$(2,2)ã‚Ì•ÛŒ^Œ`Ž® III)-----------------------------------------------38
@@@@–¼ŒÃ‰®‘åŠw‘½Œ³”—‰ÈŠwŒ¤‹†‰È@@@—Ž‡ Œ[”V@(Ochiai, Hiroyuki)
@
5. ŽŸ”2‚ÌSiegel•ÛŒ^Œ`Ž®‚ÌFourier“WŠJ‚ÆGSp(2, $\mathbf{R}$)ã‚̋ǏŠBesselŠÖ” ($Sp$(2,$\mathbf{R}$)‚Æ$SU$(2,2)ã‚Ì•ÛŒ^Œ`Ž® III)-----44
@@@@ã’q‘åŠw—HŠw•”@@@XŽR ’m‘¥@(Moriyama, Tomonori)
@
6. WHITTAKER FUNCTIONS FOR $P_J$-PRINCIPAL SERIES REPRESENTATIONS OF $Sp$(3, $\mathbf{R}$) (Automorphic forms on $Sp$(2,$\mathbf{R}$) and $SU$(2,2) III)---55
@@@@ˆ¤•Q‘åŠw—Šw•” / “Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È@@@•½–ì Š² / D“c FK@(Hirano, Miki / Oda, Takayuki)
@
7. SPINOR $L$-FUNCTIONS FOR GENERIC CUSP FORMS ON $GSp$(2) BELONGING TO PRINCIPAL SERIES REPRESENTATIONS (Automorphic forms on $Sp$(2,$\mathbf{R}$) and $SU$(2,2) III)---65
@@@@“Œ‹žH‹Æ‘åŠw / ã’q‘åŠw—HŠw•”@@@Îˆä ‘ì / XŽR ’m‘¥@(Ishii, Taku / Moriyama, Tomonori)
@
8. Confluence from Siegel-Whittaker functions to Whittaker functions on $Sp$(2, $\mathbf{R}$) (Automorphic forms on $Sp$(2,$\mathbf{R}$) and $SU$(2,2) III)---72
@@@@ˆ¤•Q‘åŠw—Šw•” / “ú–{ŠwpU‹»‰ï“Á•ÊŒ¤‹†ˆõ / “Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È@@@•½–ì Š² / Îˆä ‘ì / D“c FK@(Hirano, Miki / Ishii, Taku / Oda, Takayuki)
@
9. The standard ($\mathfrak{g}, K$)-modules for $Sp$(2, $\mathbf{R}$) (II) (Automorphic forms on $Sp$(2,$\mathbf{R}$) and $SU$(2,2) III)---85
@@@@“Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È@@@D“c FK@(Oda, Takayuki)
@