No.1542
Œ»Û‚̐”—ƒ‚ƒfƒ‹‚Æ”­“W•û’öŽ®
Mathematical Models of Phenomena and Evolution Equations
RIMS Œ¤‹†W‰ï•ñW
@
2006/10/18`2006/10/20
ŽR“c@’¼‹L
Naoki Yamada
@
–ځ@ŽŸ
@
1. •X‚Ì“à•”—Z‰ðE“€Œ‹‚É‚æ‚é˜ZŠp”ó‚̐^‹ó–AŒ`¬‚̃‚ƒfƒŠƒ“ƒO‚ÉŒü‚¯‚Ä(Œ»Û‚̐”—ƒ‚ƒfƒ‹‚Æ”­“W•û’öŽ®)------------------------------------1
@@@@Šò•Œ‘åŠw‹³ˆçŠw•” / ‹{è‘åŠwHŠw•”@@@Î“n “NÆ / –îè ¬r@(Ishiwata, Tetsuya / Yazaki, Shigetoshi)
@
2. AN APPLICATION OF AUBRY-MATHER THEORY IN LORENTZIAN GEOMETRY(Mathematical Models of Phenomena and Evolution Equations)-----------12
@@@@DIP. DI MATEMATICA, UNIVERSITA DI ROMA "LA SAPIENZA"@@@SICONOLFI, ANTONIO
@
3. Asymptotic solutions of Hamilton-Jacobi equations with non-periodic perturbations(Mathematical Models of Phenomena and Evolution Equations)---24
@@@@‘åã‘åŠw‘åŠw‰@Šî‘bHŠwŒ¤‹†‰È@@@ŽsŒ´ ’¼K@(Ichihara, Naoyuki)
@
4. Asymptotic solutions of Hamilton-Jacobi equations with state constraints(Mathematical Models of Phenomena and Evolution Equations)---33
@@@@‘ˆî“c‘åŠw‘åŠw‰@—HŠwŒ¤‹†‰È@@@ŽO’| ‘åŽõ@(Mitake, Hiroyoshi)
@
5. A Lotka-Volterra Cross-Diffusion Model in Spatially Heterogeneous Environments(Mathematical Models of Phenomena and Evolution Equations)---41
@@@@•Ÿ‰ªH‹Æ‘åŠw@@@‹v“¡ t‰î@(KUTO, Kousuke)
@
6. Existence and Nonexistence of the Global Solutions for a Reaction-Diffusion System(Mathematical Models of Phenomena and Evolution Equations)---58
@@@@–kŠC“¹‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È@@@ŽR“à —Y‰î@(YAMAUCHI, Yusuke)
@
7. Singular perturbation problem for nonlinear-diffusive logistic equations(Mathematical Models of Phenomena and Evolution Equations)---77
@@@@HŠw‰@‘åŠwHŠw•”@@@’|“à TŒá@(Takeuchi, Shingo)
@
8. On positivity of solutions of semi-linear convection-diffusion-reaction systems, with applications in ecology and environmental engineering(Mathematical Models of Phenomena and Evolution Equations)---92
@@@@Zentrum Mathematik, Technische Universitat Munchen / Dept. Mathematics and Statistics, University of Guelph@@@Efendiev, Messoud A. / Eberl, Hermann J.
@
9. Convergence of Optimal Control for Quasilinear Elliptic-Parabolic Variational Inequalities with Time-Dependent Constraints(Mathematical Models of Phenomena and Evolution Equations)---102
@@@@Žº—–H‹Æ‘åŠwHŠw•”@@@ŽRè ‹³º@(Yamazaki, Noriaki)
@
10. Free boundary problem for elastic material with linear strain(Mathematical Models of Phenomena and Evolution Equations)--------117
@@@@Department of Mathematics, Faculty of Education, Gifu University@@@Aiki, Toyohiko
@
11. The uniqueness and existence of level sets for motion of spirals(Mathematical Models of Phenomena and Evolution Equations)-----123
@@@@“Œ‹ž‘åŠw‘åŠw‰@”—‰ÈŠwŒ¤‹†‰È@@@‘å’Ë Šx@(Ohtsuka, Takeshi)
@
12. THE EXISTENCE OF MULTIPLE SOLUTIONS FOR NONLINEARLY PERTURBED PARABOLIC-ELLIPTIC SYSTEMS OF KELLER-SEGEL TYPE IN $\mathbb{R}^2$(Mathematical Models of Phenomena and Evolution Equations)---136
@@@@MATHEMATICAL INSTITUTE, TOHOKU UNIVERSITY@@@Î“n ’Ê“¿@(ISHIWATA, MICHINORI)
@
13. Large time behavior of bounded solutions to a parabolic system of chemotaxis in the whole space(Mathematical Models of Phenomena and Evolution Equations)---145
@@@@Department of Mathematics, Graduate School of Science, Hiroshima University@@@Yamada, Tetsuya
@