* このページに掲載している原稿は 速報ファイル です。
* These papers are "unissued version".
RIMS Kôkyûroku
No.2066
発展方程式論とその非線形解析への応用
Theory of evolution equations and applications to nonlinear problems
RIMS 共同研究(公開型)
 
2016/10/12〜2016/10/14
石井 克幸
Katsuyuki Ishii
 
目 次
 
1. A free boundary problem for the Fisher-KPP equation with a given moving boundary (Theory of evolution equations and applications to nonlinear problems)---1
    沼津工業高等専門学校   松澤 寛 (Matsuzawa,Hiroshi)
 
2. 対数拡散方程式の解の漸近挙動 (発展方程式論とその非線形解析への応用)--------------------------------------------------------------11
    岡山理科大学理学部応用数学科   下條 昌彦 (Shimojo,Masahiko)
 
3. Gradient estimates for mean curvature flow with Neumann boundary conditions (Theory of evolution equations and applications to nonlinear problems)---35
    日本大学理工学部 / 東京大学数理科学研究科   水野 将司 / 高棹 圭介 (Mizuno,Masashi / Takasao,Keisuke)
 
4. Fractional Cahn-Hilliard equation (Theory of evolution equations and applications to nonlinear problems)-------------------------46
    東北大学大学院理学研究科数学専攻   赤木 剛朗 (Akagi,Goro)
 
5. On some flux saturated diffusion equations (Theory of evolution equations and applications to nonlinear problems)----------------59
    Departament d'Analisi Matematica, Universitat de Valencia   Moll,Salvador
 
6. The Keller-Segel system on networks (Theory of evolution equations and applications to nonlinear problems)-----------------------80
    SBAI, "Sapienza" Universita di Roma / LaMME-UMR 807, Universite d'Evry Val d'Essonne   Camilli,Fabio / Corrias,Lucilla
 
7. Boundedness and convergence to steady states in a two-species chemotaxis system with logistic source (Theory of evolution equations and applications to nonlinear problems)---94
    東京理科大学理学研究科数学専攻   水上 雅昭 (Mizukami,Masaaki)
 
8. Well-posedness for Keller-Segel system coupled with the Navier-Stokes fluid (Theory of evolution equations and applications to nonlinear problems)---109
    九州大学数理学研究院   三浦 正成 (Miura,Masanari)
 
9. Solvability of complex Ginzburg-Landau equations with non-dissipative terms (Theory of evolution equations and applications to nonlinear problems)---118
    早稲田大学基幹理工学研究科 / 早稲田大学理工学部   黒田 隆徳 / 大谷 光春 (Kuroda,Takanori / Otani,Mitsuharu)
 
10. Stability analysis and quasi-neutral limit for the Euler-Poisson equations (Theory of evolution equations and applications to nonlinear problems)---137
    Department of Mathematical Sciences, Ulsan National Institute of Science and Technology / Department of Mathematical Sciences, Ulsan National Institute of Science and Technology / 名古屋工業大学工学研究科   Jung Chang-Yeol / Kwon Bongsuk / 鈴木 政尋 (Jung,Chang-Yeol / Kwon,Bongsuk / Suzuki,Masahiro)