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On Pinite Controllability of Second-Crder Evolution Equations in

Hilbert Spaces.
By Kunio TSUJIOKA
Institute of Mathematics and Department of Fure and Applied Sciences,

College of General Education, University of Tokyo

1. Introduction We consider controllability of a second-order evolution
equation in a Hilbert space E ;

62u

ol Au(t) + Bf(t) 0<tsT (1)

with the initial condition

u(0) = %2 (0) = 0 (2)
where A is a selfadjoint operator in E and B is a bounded linear operator
on a Hilbert space F to E, A function f(t) belongs to c({o, T] : F) and
it isvcalled a control function. A function u(t) is defined on [0, T] and
takes velues in E. H.O.Fattorini ([ 3 ]) studied controllability of a

first-order evolutiontequation in E ;

du = au(t) + Bf(t) 0<t T (3)
dt

with the initial condition
u{0) = 0 (4)

We shall derive the analogous result for controllability of (1), (2).
2, Freliminaries let E and F be two complex Hilbert spaces and let
A be a selfadjoint semibounded above operator with its domain £ (4) in E,

We denote the set of all bounded linear operators on a Hilbert space X into

a Hilbert space Y by L (X, ¥), Let B be an operator€ J(F,E).
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The norm and the scalar product in E ére respectively denoted by i = and
« 5 )‘ . A control f(t) is a function belcnging to Cl([O, T] ; F) for
some po'sitive T. Since A is semibounded abéve, we find some 4> 0 and §> 0.
such that (( -A+)u, u)2 $ "du;lz for u € S(A). We denote the positive
square root of the positive operator A_ = -A +oL by Af. ,B(Af'" ) becomes
a Hilbert space denoted by H_gz_ with its inner product defined by (u, V)H?{

‘ du

£ L
= (Ag u, A7 v) foru, v e,,Ey(AK‘T ). Putting u; =u, u, = -, the second-

order evolution equation (1) with the initial condition (2) is reduced

formally to the first-order equation

’ {
= /“1)(1:) = a1 1) (t) + Be(e) (5)
g 2
where
‘0 1% 0
CcL = , Bf(t) = ( ) (6)
LA o \ B£(t)

with the initisl condition

{/ui\{{o) =0 (7)
k“z)

We consider the equation (5) in the Hilbert space # = H. x E. Let Cl

P

\
be the operator in H! x E with its domain O (QU = 5) x 20z

such that OL{ Yy = %2 for(ul te G(C). X is the operator ¢
LUy : Au'1 )‘ L,

Ji (F; ¥ ) defined in (6). The operator CL is the infinitesimal

generator of a continuous group in X ([ 8 ]). We say that an ¥ -valued

fa

function '"1' (t) on [0, T] is a solution of (5) with a given initial value

\uz !



71

u LUy 0
() [0y = [ M0
\uz,-i “-,\u2°/
{ Y1) . :
(11) | 18 e & (G0 for G<t<T
\u,;}
ot |
(iii)‘ i (t) belongs to Cl({O, T] : F) and satisfies (5) for
\ugf

every t € ( 0O, T]. Since (O is the infinitesimal generator of a continuous
group etOL (- o0 <t < ©°), the evolution equation (5) with the initial

condition (7) has a unigue solution

uy 3%

(t) = S e(t'sm’ﬁf(s)ds

u, A
for any f(t) € Cl([O, T} : F). Let us return to the second-order evolution
equation (1) with the initial condition (2). We have a unique solution
~uft) of (1), (2) such that .
(1) u(0) =u'(0) =0 .

. ‘ 1

(11) u(t)e G(4), u'(t)e B-(a7), 0<tsT

(ii1) u(t) is twice continuously differentiable in E and satisfies

(1) for every t < (0, T].

For anf,' T>0, we define the attainable set p in % by

Ry :% ") :( T8 %¢ (s)as 5 £(t) e cX(lo, 7] ;5 F)
J

o
\uz.’!

For given A and B, we say that the evolution equation (1) with the initial

condition (2) is completely controllable (comrletely controllable at time T)

itUR N = X (_TT T =7 ). For a given operator A in E, the evolution
176
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equation (1) with the initlal condition (2) is ealled finitely controllable

(finitely controllable at time T) if it is completely controllable (completely
controllable at time T) for some finite dimensional linear space F and for
some B in £ (F, E) (ef.[ 3 ]). For the first-order equation (3) with the
[ ye( g(T-3)
initial condition (4) we define the attainable set Ry in E by R.= Lu=& e ABf(a)ds
(1) € Cl([O,T] ; F)S . The definitions of complete controllability (complete
controllability at time T) and finite controllability (finite controllability at time
T) for (3), (4) are given similarly (cf.[ 3 ]), We have -ﬁ; = (R, for any
N 170
finite T 0. In fact,h € (Ry) (= the orthogonal complement of RT) is
T T
equivalent to that(g e(T—s)ABf(s)ds, h) = S (f(s), B* e(T-S)A'h)ds =0
<o <
for any f(t) € clo, 1 : F), that is, Bre*Mn=0 for 0<tST, which is continued
tA th
analytically to O0<t < o0 since e 1s an analytic semigroup. But B¥e h=0
for 0< t if and only if h e (UR). Thus (RJ = ( UR) and Ky =R,
or 0L t <00 f and only 1 = i . us = and R, =\/ &, .
o v RT 170 © RT o b
Consequently complete controllability of (3), (4) at some finite time T is
equivalent to complete controllability. On the other hand we havs ‘RT CUQ@
>0
but R+ ){K?)eR{ does not hold in general since e* g not necessarily an analytic
semigroup. We shall ask for a necessary and sufficient condition on A in order that
(1), (2) is finitely controllable.
If E is a separable Hilbert space, E has an ordered representation relative
to the selfadjoint operator A ([ 2 ]). That is, there exist a positive measure
{,L defined and finite on bounded Borel set in (- to, o) vanishing outside é (a),

a decreasing sequence of Borel sets e » 1=1, 2, ... in (- co, o) with S(A) = o

0
and a unitary operator U on E into X = 5_ I,Z(en i ) such that we have
n=i
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> e,
i;(UAU_1)={f(%J=(f1(*),"'afn(A)v"')éiZLz(en'P)5kf(A)&;LL (en,fogand that
n=| nej
(UAU‘lf)n(z) =AL (A for £\ )e O(uav ) .
Ir ﬁ(en) 7 O for n< m and P‘(eml) = 0, we say that A has mltiplieity
m(A)=m. If P(en}> 0 for any n, we say that A has infinite

rultiplicity m(A) = @0,

3 Finite Controllability of Second-Order Evolution Equations

H.C.Fattorini proved the following theorem on finite controllability
of the first-order evolution equations.

THECREM 1 (Fattorini [3]) ILet A be a selfadjoint semibounded above

operator in a separable Hilbert .space E. Thén in order that the’ first-
order evolution equétion (3) with the initial condition (4) is finitely
contrallable it is necessary and sufficient that A4 has v finite multiplicity.
Mofecwver if A has finite mﬁltiplicity m, we can choose an m-dimensional

and an operator BéL(F, E) which makes (3), (4)

‘ ol
’..I
o]
@
\Y]
4
(0]
o]
m
o
[V
txf
',J

completely contr.olléble and (3), (L),‘ is not completely controllable for
any F with its dimension< m.

REMARK 1 In [3] , Fattorini remarked th%t the result of Theorem 1 can be
extended ?v&rther to a normal operator with a connescted resolvent. st us
consider finite controllability of the second-érder evolution equstion (1)

in its matricial first-order form {5). The operator etvL is normal but

it does not necessarily have a connected resclvent and that the operator
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has a special form given in (6). Therefore we cannot apply Theorem 1
directl&.

REMARK 2 In Theorem 1, finite controllability 15 eqﬁivalent to finite
controllability at any finite time. For fhe second-order evolution
equations, finite controllability does nét alwa&s imply g;nite controllability
at some finiteAtime. We shall give in Théorem 2 a result analogous to
Theorem 1. When (1), (2) is finitely controllable, using the résult of
Theorem 1 we can construct a finite demensional linear space F and

B <L (F, E) which makes (1), (2) completely controllable at any finite time. "
THECREM 2 Let A be a selfadjoint semibounded above operator in a

separable Hilberf.space E; Then in order that the second-order evolﬁtion
equation (1) with the initial condition (2) is finitely controllable it

is neceséary and sufficient thaﬁ A has finite multiplicity. Moreover

if A has finite multiplicity m, we caq'choose an m-dimensional 1ineag
‘space F and an operatoir BSﬁ_(F, E) which makes (1), (2) completély
controllable at any finite time and (1), (2) is not completely contrcllable
for any F with its dimension < m.

IEMMA 1 Let A be the infinitesimal generator of a continuous semigroup

o n
; §
in a Banach space X. If g (8%) = ?\B(An} and ii_ﬁ%_f;_gﬂ

=\ M=o

«

is convergent uniformly on an interval I=[0, t,] with 0<ty,®® , then

tig converges t.o'etA g uniformly on I.

-b -
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A )'1 . If A is the infinitesimal generator of

_FROOF Let J_ = (I -
— n n

an equicontmuous semigroup then sup k\ I "l= M<eo and the result follows

Mlz

gince etAJk g converges to “Z %_g_ uniformly on I. If sug m J ﬂ =eo
-y .

then sup‘.“(I - -—i )™l is finite for some constant p ({ 9]) and
b LY E Noll

that et(A ~B)n g converges to et(A"P) g uniformly on I.

et(A-@)J thn converges to etPI

Since etMn gze't J n g and that e

uniformly on I in the uniform operator tOpoiogy, we have the desired result.

LEMMA 2 If g,, g, €5 (A™) and that both Z——“—“—*-g*- and
1* =2 {2n)!
Z £ 3 oy
(2n)' converge uniformly on a finite interval 1=[o, to], then

g tMeng. 't
etQ( 1\ . Zb (@m)! § avm) in ¥ uni“ormly on I.

g R
o Z ﬁWAng'*Z G

g .
PROCF Slnce g; e S (A°°) (i=1, 2), it is clear that g 1 €S (O,
A" PR Y A%\
2n+1 (B3 _[* &2 2n [81) _ 1
As OC ( ) -( o+l and that (J ( = (,n for
| g ATy & Aey

n = 0, 1, 2y «es 3 we have formally 2 e o
t“ant ) Z mg”l (g,) Z pomnt zm!(g‘) {Z (zy«igg‘ ¥ ﬁz;ﬂfzmﬁ T

i ‘ &2 13w
= ‘ g} 4= {21 (27+1) \i ﬁ’:ﬂt’; + Z Zlné;g?l |

The validity of the above equality is assured by lemma 1 since

” M*ziﬁ&

{an)i on+i)! (zw)T any !

g I A?“,Z, P UAARY | gﬂf"n WA Bl oo

‘and

2:M it w “ | tim a‘%
\z___A_& ‘c"‘A&“ tmnz ul )Agtssn, Ay INGE .,

s, (Znen)d

uniformly on I,

LEMMA 3 If g & &) and that | 4% ﬂHécannz , n=0,1,2, «u. ,
. T . : !

.t olfC . .. -
for some ¢ » 0 and R ) 0, thene g is holomorphic in {(-s0,00) and
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) 7 6 Loy
* 1% S et Ng .
it has a representation e b L= e 1y ' uniformly on any

& = EST A

]
L]

finite interval in (- e,ee).

z v
l\) satisfies the assumption of Lemma 2

&2

i I”'“/\"Ai’-&“ <‘~"—§ (LR
(A" A < LR ¢ v

C vive Czw )l = vieg A\

FROCF - let g,705 g,=g, then(

because

LEMMA 4 For % > 0, we have /A" esAﬂé% for sufficiently large n.

PROOF  Since[i"e A SF)\Z’“ &“Er U E(L )l _sup 7.;%"2 fl ult®
e .
we have || A7e Aﬁ £ sup W% 5 For P(O,“Anes‘q“ < sv.pg(-k)nee')g
-<XL0

mBe<ALp n ,
SR A ) £ s ) Lare™ e 2,
For H 2 0. I aReEA < may(sup( /\)n Ex , Sup % €* ) £ max(n! £77, ‘uneﬁﬁ
=< osAf p \ '

If n ) < eH eef-)z, the right hand side becomes n! & 1 because

)

N

nge-—nax Zn_) E'“:(&yeef“)nemz }Annzfl Ve .

PROOF of THEQOREM 2 (Sufficiency) Let A has finite multiplicity m,
Then by Theorem 1 the evolution equation (3) with the initial gondition
(4) is completely controllable at any finite time T for some m-dimensional

linear space F and for some B € L (F, E). 1In the following we show that

€4
e

ﬂ‘ .
B A::B e L (F; E) makes (1), (2) completely controllable at any time.

e:

iA

For any s with 0s& 7T, g&(s) A.( Bf(s) satisfies the assumption of

l
- Lemma 3. In “act in view of Lemma 4, I A ggﬂ-,. —" A" e Ay *Bf u
L n 0 S _1“” ]
(PRX TworY & \ 7 3 e By lemma 3, ew'( J - Z T A > ‘
’ A&

g i 42
=5 (27t

uniformly cn any finite interval in (- o0, o),

- h X 4 .
For any h= [’1 in (€.) , we have
h. .
2
(-]
nEs

ST cv—sm(o\ ds h - Z% Ale EAA‘ B{-(;) h
ae L)+ ,{ g ’z (r-sy*" A Ad Bfﬂ)

8 e )t

ds=a
X
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for any £(t) € cl([o, T] ; F), that is,

°°2n

B)" A;h1+z(z yi (A7e

oo t2n+1 " n&A

(2n+1)'

n gA

A,\ B)*h, = (8)

for 0OStST. By Lemma 4, | (4% €A B)*l| = & eEABHS\i Bl €™ n! and

| A" et A,( Bl <1 Ad Bﬂ £ n! for sufficiently large n. Thus the left hand
side of (8) is holomorphic in (--ec, ow) and that (A" B)* A" hl =
(AneeAAd B)*h = 0. The estimate ‘ AR eA" —té“ )" together

with Lemma 1 implies that

oo .n,n €A <
etAe&Au = Z the u  forue E
h=o

o L
uniformly on [0, f—. ]. Therefore we have ((e(t+£ )AB)*A:( by , u)

n!

1 n €A o
(3, 5 otHBu) = (A,( L ) (§ e em,

n,n &A ‘i‘

"

0 and

n,n €A~

o9 .
- _______i__... -
= ({ ;ot 4 ;, Ad'B )*n,, u) =0 for tefo, E‘? ] and ue E. Thus

N g
(e(t+£ )AB)* Ai‘ hy = (e(t+£ )AA B)* h, = 0 for t € [0, %_] . By analytic

continuation
(e“B)*h “(?—AA B)h, =0 for any tz2o0;
For any f(t) in Cl([O, T} ; F), we have

-
(ST;(T'S)ABf(s)ds, n) = { (e(o), (o{T-Mg)en ) as = 0

o

and
T 1 _
( X o{TM5¢(5)as, £7n) = j (£(s), Bre'T S)AAd h,)ds
(]
= ST (T'S)A AJ B)* h,)ds
=0 .
Therefore h1 and A& . belong to (R {0} .  Thus hy= h2 = 0 and

sufficiency is proved.

92
- " tAe AB
((e (t+E)A ’B)*h ,w = (n, JHAE AA;BU)_ (h, , v?-::t A - AL B
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(Necessity) Let (1), (2) be finitely controllable. Then there exists

a finite dimensional linear space F = C" and B € £ _(F, E) which makes(1),

u u, F i=i, .. n
9 ? n)’ _lé 9 A 4

(2) completely controllable. Let (ul‘

v ; . |
be an orthonormal basis for F, then Bf(t) = Z gifi(t) where gi:Bu_,L and
; . 1=1 .

fi(t)=(f(t), ui). Let us prove that m(A)<{ n. Suppose that m(A)Zn+1,

Putting Ugi(X):(gil( A); 812(7\), see 9 gij()\), coe )9 lé ién,

Og ~
where g, .( A) é'Lz(e ,;A) with D ";!g ‘()\)lé}l(d)\)<m » 1=1, ... , n,
3

We have for any h€ E,
(E(e)gy, h) = (UE(e)g,, Un), = (A(e)Ug,(A), Un(R)),
=2 L?aej)gﬁn)hj(mwdm :

We £ind solutions hi(A) € Lz(gj, )5 =1, ... , m+l of the equation

N+
i’ gij()\)hj(x) =0 | p-ace. dne ., 1€ién (9)
3=t
such that (b (X), ..., b (X)), 0, .o, ) is non-null in X.
(k)_ < ) L)
In fact, let e ‘= e . \(-k, -k) for k=0, 1, 2, ... , then e = }’__‘joe .

Since B (en+1) > 0 and e(k) is a bounded Borel set, we have 0 < j—i(e(kc’))(w

for some k . If gij(7\)=0, 1£1Sn, 1€ j&€n+1, r\-a.e. in e(kO) then

non-null /L -measurable functions hj(7\.)= xe(ko}(X), 1€ jE€ 0+l ,

satisfy (9) and belong to Lz(enﬂ,!»() since L ‘hi(k )!?}((dk): }a{(e(ko))< oo .

( k k.Sl

Cehervise we £ind a Borel set e, C e 0)‘ with M (eo) > 0 such that

rank é\ g:ﬂ.()\), 1<isn, 1€j<€n + 1}': noz 1 for p-almost every X in e_ .,
LJ . -

et ¥, = §7xe €5 detley (X)), 325y, vee s 4y 5 3= 0y 5 oee s 3y )
dt -—-dn,
AL R . " . . . S et imn
14-' o wheres i ... lno and APERER Jno are respectively a distinct

- 10 -
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¢ combination from 12 ... n and 12 ... n+l. Then ML iy are M -measurable
. &

; , B
and eo~UM1‘ ."owhere ije-c i and 31 jn are taken from all such

Ji-- Jug - L C
combinations. As® [«L(eo)> 0, an My= Mil i’%has a positive J -measure for

-]l‘“ JK@
some i, ... 1 and j. ... J_ . Changing if necessary rows and columns
1 n, 1 nD ,
of the matrix {g AR s 1, e, lno’ j;-jl, ces ,‘j } . we‘m’ay ;

v

assume that(il,...,in():(gl... n.;)z(l 2y een no) Take- h ()= KM()\)

for ny +1< j<n+l and definé the remaining h a ) 1< 3$ n, by

"
Zo U\)h (1) -—-—%S}J ) for AeMo, i =0 FforAe €™ Mo
4= et

Replacing each hj(’,l) by h,} Y/ i i h (A )!, we have nan-null bounded
§=
f&-mesurable functions satis? ying (9). 2s M is a bounded Borel set, hj"(’l)
()L) ‘vanishehs on en—!-l\_Mo aﬁd »

(1£j¢ +l)ys in I. (e nel }{) since - h

J

bounded on MO . In the complement of e

el Ve déefine hj(l) =

by (R), O ey ), ve have (E(e)g, 1)=0

If we put h:U—l(hl(k), cee
for any Borel set e in G (4).

For g,y = X aE(L )gi, we have by Lemma 3

=N g o ~ l"
(etu(gi\f}’(h) )i: ,ZSN Gon ).X d(E(l)g ’ :)_o
%1} JE | 3
Letting N> =@ , we have (ew"(g)) , (h))i: 0. Hence <S e(t—s)( . : (S>AS,
| . | o VEIT1'Y

3]
( ) )=0 for any T>0 and for any f'i € Cl([O, T] ;3 €) which implies that ‘
Y { o+ \.L . 1 +
( )6 (RT) for any T> 0. Thus ( {%/O’R’I"' + {O’[ snd %})?2\‘, £+ €  contrary
h ' .
to the assumption.

Froof of sufficiency and necessity given above alsc shows the validity of

the second statement in Theorem Z.

- 11 -
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4. Applications

Example 1 We consider the initial-boundary value problem for one-dimensional

wave equation ;

2 2
2.9.(_1(_54). - l_ubb_ﬂ + q(x)u(x, %) = g(x)f(t) ,
2t 7R
0<t<T, 0<x<R L w0 (10)

wigh the boundary conditions
| gou(O,. t) + alux(D, 1) = bou(O, t) + bl'ux(o, t) =0
0StET (11)
and with the initial condition | |
ul(x, 0) = %‘%‘(x, 0)=0 , x € (0,2 ). (12)
where é(x) e cfo, L1, ex) e LZ[O, L) and a;, by are real constants such

that a 2

2 2
o * 8 #O,bol+b1 £ o.

Let A be a differential operator ‘?‘%_ -q{x) with its domain S’ (a) =
{u(x)e Ezz(o, £ ) ; ulx) satisfies the boundary conditions (10) in |

| E:LZ(O, e )}. Then A is a selfadjoint semibounded above operator ian

and A has a sequence of simple e‘igenvalues{ln} n=0, 1, 2, ... strictly
decreasing and diverging at - oo . Multiplicity of Ais 1., Let

{ @nf n=0, 1, 2 jooe be eigenfunctions corresponding to eigenvalunes {)\1} ’ |
n=0, 1, 2, ... which forms a complete orthonormal basis in LZ(O,-@).

*

The . following asymptotic properties hold, that is, for n=.}—),n(n:0, 15 2504)

- 1 ©n _
%gizg( Wy - @) = 5 Mm 5 =D (13)

where D is a positive constant. (cf. fog., [7])
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LEMMA 5 The evolution equation ;
ulxa 8) _ pu(y, 1) + glx)£(t), ulx, 0) = 0, W

2t
| 0<tgT, 0<x <y
in LZ(O, £) is completely controllable if and only if (g, 3’n) 30 ’for
n;O, 1, 2, ... v

PROOF Let h € (RT)J_, then we have
% T '
A T-8) : i
Qe ™D @F ) 0 o ) Fader Wi2(o, = O
for £(t) € cX([0, T] ; €), that is,
co ' s
Mt
2 (e $)(Fps 1) = 0 HON R - (15)
for t €0, T]. By analytic continuation, (15)’_ holds for t € [0,0) ,

For any )_#)m_(nzo, 1,2.00 ) with ReDH—,

o0 -] —
(O OaNt, Enh |
0= h dt = ZrRAN . 16
’Y;L—t‘; o © fn'n 72’0 An—> o (36)

where g = (g, 33“'), h = (h, San). By analyticity we have

%i—?_-f_-zo for X¥A, (50, 1,2 ...)

Let r:n: &z € € ; lz—M’ = en} where S_n is a positive number such that

1 gmh;m dz = 0

l,n%rm for m¥ n. Then we have gnFn = 211;1&- g‘:o £TAm
n

1
for n=0, 1, 2, ... . Thus (R;) ={0}is equivalent to that g $0

for n=0, 1, 2, ...

o0
PROPOSITION 1  Let g(x) = g, P, » vhere
n=p =

EM for some M> 0 and £> 0 (n=0, 1, 2, ...) (17)

g, % 0 and \gn‘§ Me
Then the initial-boundary value problem for wave equation (10). (11),

(12) is completely controllable at any time T > 0.

-13 -
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FRCOF Consider controllability of the second-order evolution equation ,
%) /
S 2 = Au(t) + gf(t), 0<t&T, u(0)=u(0)=0 (18)
t
x (%) -
in L2(0,$). If we put g = (& +1) egzl‘ g,» We see that > ]gnjgl2<°°
e =0

and g 2% 0 by (17). It follows from Lemma 5 that the first-order evolution
7

equation (14) is completely controllable at time T if g(x) in (14) is

A

g(x) makes (18) completely

replaced by g(x) = Zg Thus g(x) = &*

oS -

controllable (see proof of Theorem 2).
REMARK 3 If q(x) is nonnegative, @ =20 for n=0, 1, 2, ...
and (17) is weaken to
. - €40, :
g, ¥0, |gfs Me E (m=0, 1,2, ... )
tof© ~
PROCF Firstly we show that e (g) is holomorphic in (-se, o0).
’ 2 ® n 4 2 G 2‘ 2
n 3 _
In fact, | &%y &l = | 2 Gl g R || = | Z_-}?R—)\kﬂi)g i
S oan 2 2600
EQYS g_cok(wk+ 1)e <%k
=0 ‘
For any & with O <§<§ , we have
O (s 1) €V — (" o8 P (wi + 1) SPTEI
' @ w&~¢ 0
< L™ Saam 1)t (3o )2 Pwi+ DEC D% ontf 5 wir 1)E «
Putting C(£,95) = ;:o( Wi*-l)ez(s -€ )%)2 , we have an estimate

“AnAl gl € c(&,5)M (an)! © 20
20 2ny,.n, % | v &P, 2n
Thus 5 —AAC 2D (gi)‘? \ < co(e,% )M Z\g\ .
n=o L0 0
It follows from Lemma 2 applied to g = 0, g, =8 that e ( ) is

g
} . o\ -
holomorphic in (-§,8 ). But since eta( ) t“m* (t-tg m(g) for any
, . g
6] ' .
oty € (-w,.be) ’ e'm‘(g) is holomorphic in ‘t': [t- to\<8} .

T -1 -
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' 3
Hence it is holomorphic in (-9, 29, As in proof of Theorem 2 if h= (hllé(?}z,r)
Q 0 hl h2 o
then (e » \n ) =0 for 0$tS T, which is continued analytically
5 :

tot € (o0 ,%) . Thus ('R,IJL and ;{-Ql—.i, do not depend on T. “By Lemma 6
given below 'RT % if T>2®D and therefore R—T =% foranyT > O.
LEMMA 6 For any g= 'g;ogn ¥, with gn:\:O, we hrave |
Re=% ifTH2ED
REMARK 4 If 0K T2 D,?{Q—; =% dées not hold in generai unless some
more strong condition is imposed on g.
DEFINITION A subset ‘M€ of I.Z[O, T] is said to be linearly independent
if every £ € W does not belong to the smallest closed subspace spanned by It -11;;
PROOF of’LEMMAé As a.sequence o= Zg , N2O satisfies the assumption

w=o

of Lemma 3 we have N :
IQm*l
m(°) = (w- T 2 SKAK '9’«))
Y

It
I
g M
{

i
a R
25

Letting N - 6o
éﬁét(a‘) _ Eé; .S.llg[:XEilégkfFK )
g S cos *f:l?‘: BT

uniformly on any finite interval in (-vo,oa). Therefore h belongs to

A
(RT) if and only if

20@%’; gkhji + Z_ m(@*)gkhi =0 (19)

uniformly on [0, T] where hk = (g ?k HL and hk =(h, $) g -
let M = {cos,r'\-)‘k t, sinyTRpt | =0, 1, 2, ... } if Xp %0 and
M ={ 1, t, cos Tt , sin Tt | k=1, 2, } if lo= 0. As T > 27D,

-15 -
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the estimate (13)impliesthat Wﬂi is linearly independent in L [0 T)

(cf, f.g.,,[A] and [6]), Noting that (19) holds in L [O, T]-topology,

we haye that

= gkhi =0 fork =0, 1,2, eu.

i.e.,
1 .
hk hk for k=0, 1, 2, ...
Hence (RT ={0} ana Rp=% 1rT> 2mD,
EYAMPIE 2 Let A be a differential operator-jgé in L (—90 ea) with

. .
its domain 8(4) = ELz(-oo,oo). As for finite controllability of (1), (2)
we have a following

PROPOSITION 2 The initial value problem for one-dimensional wave

~equation
2 1 2 = Au + ig (x)fi(t) 0Kt&T, - o0 X< @
=\ ' '
u(x, 0) = ut(x, 0) =0 ; (20)

<

is completely\controllable at any time T if
-+
- 2,2
g, (0 = FLE ) Fey =1, 2.

where

S ® g(x)dx for g & ﬁl(-oo,OO) and
2 -N
gﬁqis a non—null functlon in L ( oo, 00) with compact support and

S‘g(s) gls)= (27c)

m
> oo

gz(x)=gf(x—h), h # O.

LEMMA 7 (Fattorini [ 3 1) The operator A has multiplicity 2.

PEQOF It is clear that e; = (&) = (-9, 0]. We set ey= e, and

L
= dA/ 2\M* which is a measure on e;» 1=1, 2.

- 16 -
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Let U be an operator on 12 (- 09,09) onto X = ZL (ei’ !.() defined by Uu(A)
=1

(u( lN‘ - I)\P- )). Then U is a unitary operator because

o] ,
[lull 12 (=00 y00) 4‘1“ 12(= o0, 00) = S‘u(x)l dx + S [1?()()'2 dx =

o

5 u( l/\\z)lzd)\/z N* 3 u(- INZ )ldx/z \xlz = Uu“2 . Let

f eglL e;» P, then ¢ 2l £(n) = @R (), B0 Tel- wi )) =
ATTCINE), TR wb) = asn.

LEMMA '8 (Fattorini [3]) The first-order evolution equation in LZ(—DO,QO)

28 e F g, (1)

i=t
with .the initial condition

u(0) = 0
is completely‘controllable where g, are given in Proposition 2.

PROOF If h ¢ (RT)'L‘ , then

2
ZJ joé\(t—s)d(E()\)g ’ h)f (s)ds = 0 for £,€ clo, T],
=1

-0

that is, Sve)L d(E(k)gi; h)

-

, 0 0
For any | with RepyO | 0 :j olX - H)td(E()\)g , h) _5 —f?d(EO\)gi, h).

By analytic continuation, O rm a(E(N )gi, h) for any complex number

0 for O t£T.

pé& (-e0, o] Therefore (cf, f.g.,[2]), (E(a, b)g , h) _m <

lim lim (Rp €1, A) -R(p+ €14, A) €, Wdp =-Lv x

§240 €>+0 2| L

lim lim agﬁo((g-ei -0 - (p+et -x)"HalE(N)g,, n) = 0
Grroto ] 2o

for -e¢ ad{b{oo. Thus we have 0 = (E(e)gi, h) = (UE

[

C1
(Y)
~——
(31}

ct
U]
fon
3

{ {} t_/\l ) 4 { Yh{ 'Yy d>\ = (=] 2l 2e
! (Ei(q R + gix_-j:i;h\--j:\)) = 0 for every Borel se
e

-~ 09, 0 ). Hence

—~~ N

- 17 -
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R .A
2, (%) BUR) + 7y (-4 B(-{R) = 0
BE) DR + 5 (%) B(-R) = 0 (22)
for-/l-almost every A in (= ,0) .
y ~ |
Since gz(x) = gl(x -'h), we have gz({if)=ebﬁthg(f5:), gl(J:i)gz(-J;i)
-,g;(-@gz(ﬁ) = -2i si@@(ﬁ)g(—ﬁ) %0 . for almost everyl .
| ~ |
It follows from (22) that h(A) = 0 and (R)) = {0} .

PROOF of PROPOSITION 2. The assertion is proved by Theorem 2 and Lemms 8

|
- JEA T -
because gi& = e Al 9;, i=1,2 .

- 18 -
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