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ON THE CLOSURE OF TRANSLATIONS IN Lp(Rk)

Masakiti Kinukawa

O. Introduction

We shall discuss some aspect of "closure of translations
theoren" (Cf. Re;f;erences listed at the end of this paper.)

Throughout this paper, we denote a conjugate exponent
of p ( 1{p{oe) by q, that is, 1{p{oo, 1 (A0 » /P + 1/q
=1, Let us define a sub-class wg of Lq(Rk} by

e = [ 9)en3(R )AL (R UM, = Lo (x€)]9x-1)] ¢ &
2 = [geoat@on @ gl s;p{gR; iz 239D o)
where B= (k-1)/p . Note that if k22 and 1{p(2 then

ng LE(Rk) . For &k > O, let us denote 9kx)exp(-b"’[x|) by

, e .1 A
?g(x} and i1ts Fourier transform ( in L (Rk) ) by %,(t) .

: A
We denote the zeros of the Fourier transform f(t) of f(x) €

tHr) by 2@ .

§l. Key Theorems.
Theorem 1. Suppose £(x)€IP(RI)ALN(R), P(x) €,
N

and f%P= O, then we have im ?s,(t) = 0 on the complenent

1
A 60+
of Z(f) . Bepecially, the above limit exists uniformly on any

25
£).

closed interval contained in the complement of Z(
The theorem for the case k=1 was proved by H.Pollard (1] ,
and there 1s no essential difference between the proof for the

case k=1 and for the case k22. e shall repeat the arzument
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due to Follard for the sake of completeness.

vet us put

U(g ,t,y) = (x)exp(~§lx+yDexp(it-x) dx .
Ry

A
Take any closed interval I contained in the complement of Z(f).
Then we have & real number a0 such that
A
ing|fie)] > 2 f [£()] ay .
tel 7l z =
The assumption f*—?:O implies

(1.1) f' £(y- ¥ Jexp(it- (y-) U(& ,t,y) dy = O.

4

X

A
Make the difference between U(§ ,%, ?)f{t) and (1.1).
‘then we have

U(E ,5,3)5(6) - O

L1}

s‘R f(y-% Jexp(it: (y-§) [U(é’ 5y § )~ UC 6’9’6,:?)]@37
i |

L}

Lz—iléa ’ ,J(W-Eb R

An elementary calculation shows that

[v(6,5,3) - U(s,t,7)]

a9l 670 |y - 31}
(1.2) - ' eti/p vy - %] »
where we have denoted constants by M's. 3y (1.2), we easily
see that
EARE N St f 17112687
i7lga
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and we have
|9, ¢ 2 sup|u(e,5,7)] S [£() ] av,
H vl >a
where we have fixed b)>»O0 . Now we are ready to conclude

the following inequality;
sup |U(& ,6,%) {%(t)( -2 f f(y)| ay
o [006,5, )] ] gisa O

< Mn 6' l-—l/P

9

which shows the conclusion of ‘Theorem 1.

Theorem 2.  Suppose f(x)eLp(Rk)nLl(Rk) R ?(X) &
LQ(RK}ALZQR,_) and lim §(t) - 0 on the complement of z(%).
= 6>0r °C
Then we have I# ? = O,

For the proof of Theorem 2, we use a tecnigue developed

by A.Beurling [2] . Put \{’= f%9, then \}'(X)eL‘g(Rk) .
3y the Parseval relation and the Schwarz inequality, we have

PN A A 2
‘(Ra.- 1£¢6) @elt) - Y ()] at

]

(6

M ij dx I ka (y) ?(X_y){ekrptnglx—37[>'e@(—€‘xg)}dyg~2

iy EP [£(y)lay le?(X-y)lgl zp(=~F==7])
k e - exp(—ﬁ"}:l )‘2 dx .

]

Hence, by the Lebesgue theoren, s,lirg*I(G') = 0.

la) N
since lim | ¥- Vel = 0, we et Lim ¥ - £9_1l , = 0, that is
£ 0+ ¥-tely- 0 Fpot Y Iell 2 ’ ’
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| ( ) = ( r( = = =
U f(t hi i;;L ) 0. 30 we have .
4‘ JLlin ? G ) v l} f# y 0

Theorem 3. We suppose ?(x)e‘d%,\Lg(Rk) or ?(X>6Lq(Rl)f\
. A
L”(R;). Let F be a closed sub-set of R . If lim P(t) =0
1 g0t 6

on the complement of F, then the above limit exists uniformly
on any closed interval contained in the complement of F.
Under the assumption“§>6Lq(Rl)AL°°(R1)",Theorem % was égbﬁed
in[3]. We give a proof under the assumption “?ewl%,\LZ(Rk) s
'

(k il) ‘, take any closed interval I which is contained

in the complement of ¥, Find a function f(x)ein(Rk)fol(Rk)

such that 1T supp(f)c:'CF, 8y the asumption, we have
é&r& §§(t) = O on the complement of Z(%)' . Since ?(x)eLg(Rk),
avplying Theorem 2, we have f*-? = 0. Now we can apeal to
Theorem 1., and we have éim §%(t) = 0 uniformly on +t € I.
-0t
§ 2. Closure problems (1).
We shall introduce several notions for the discussion of

"closure of translations problem™.

A linear subfamily w of LY may introduce such the weakest
topology into Lp(Sk) that it makes only elements of W

. . & . )
continuous 11n§; functionals on kaRk). ve call such a

tovology mentioned above by "w-tovology". We denote the
closure of the linear manifold spanned dy the translates of
jo: i A, 303 e 3 *
f(x)e Lfkﬁk) by TEE;W] , where the closure is considered
AN

under i-topology.



L closed sub-set F of R, 1is said to be a (U;VW)-set
if the relations
N
lim @ (t) = C on t €CF ewe 1Ur,
60¢ L ¢ (R

imply that @(x) = 0, a.e..
Using the notions introduced above, we can interprete

Theorems 1 and 2 ir{bhe following forms.

Theorem 4. Let f£(x) € LP(ROALI(R) . If () is a

(U;Wl)-set, then 1[f;ul]=1P(R).

1
Theorem 5. Let f(x)eLpLRk)nL (Rk). If

101

A
(5 LURIA LR ] = IP(R), then 2(£, is a (U;LE(R A

LE(Rk) Y-set.

- Dy 1
Theorem 6. Let f(x)€L (R )AL (R.).

Then
. yd 2 = LP(R )
(z; g AL (R ] = LP(R)

» A
if and only if '2(%) is a (U; WY A IP(R) D-set.

§5. Closure problems (2).

According to R.E.Edwards [4] , we shall introduce a

notion of thin-set. 4 closed sub-set F of Rk is said to

be (p;W)-thin if the relations
A
supp(P ) CF, P ewC LU )ALT(R)

. \ - A
imply that (x) = 0, z.e. where supp(Q ) means the
9 2
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)

cuprort of the wzeneralized rourier Transiorm ( i.e. a pseudo

A
measure ) § of ?ELOO(A.L_} .
Thgorsm 7. A closed sub-set FC 5. is (p;lf%,\LC(E{,,) )=
Ea L L.

&
I...)
FQ)
-
I—J
W
4
~
L

jante]

2
oy

shin, 1f snd on

for the case k=1, we can exclude the word " L°(R,_ ) "

Trom The above statement ( cf. Ldwards [L‘r] ), That is, the

notion (Uj ;»q(Rl)h ’LOO(Rl) 3 is equivalent to the notion

T =l ~rmAa T T AT g L a 2 h]

or the proof of Thneorem 7, suppose 7 is <P’“k/\L <Rk’ ).
Tn ~dar © how the 34 71059 2 R it ia oh
In order %o show thet I is (U4 AL (nk)), it is enoush
o saow that the relations

2 . . + 2.,
lin @(t) = O on t €CF, P €4l AL7(R,)
e I
. . A - . ..
imply supp(? J& F. For this purpos, take any closed interval

I CF. Consider any fuanction 1’ € ,8 ( the 3chwartz space)

? in )8,( the

vemrerate distribuvlion space, the dual space of ,X )s wWe have

A
< ? ) Y): lim 53% ?c(t>+(t} dt = lim fl ﬁ_(t: f/(t) at .

i}

A
such that supp(Y ) & I. 3ince lim
. ‘f’ €01 ?b'

—

3o+ €0+

A
Sy Theorem 35, 6;—%01- ?o,(t) = 0, uniformly on t €I. Therefore,

1 A -~ - . N 1 11 A —
we have ' ? , \[I » =0, wiich shows that supp(@ )g =,

. . a4
Conversely, we surpose that is Uiz AL (R
- ) \ o =2
In order to show thet 7 is (Ui aAl7(R) ) we have

N
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*)
J.E.Mahane [f}] and Ldva QC[b]

'? V. falze eny voint

the definition of ‘i;(? ),there

1,

We may supc

linm ? (t ) = 0, which completes the proof.
€30+ ¢
In the second part of the above arzument, we d

then we have

>
L“-property of ? . In fact ,

Theorem 8. If ¥ is (U“”q)) then F is (P;Tg),

Poigson summability of

e

§U» Unigqueness theorem for the

risonometric integrals.

e may interprete Theorem ' in the following form:

e

Theorem 9. Let Q(x) ew ,/\L (D-v,-/ and F be (D’tt"r’c AL (q’ J)_

1f lim f ?(x)exp(it-x)exp(—G}x}} dx = O
-0t 11

?(Y\ = C, a.e. . (For the case k=1, wve can
; sbove assumntions.

R.@.udwards (4] save several euanrvles of
e At et g 1 79 Y Lo (%) Yethin
any discrete set 1s  (pj; L*(R, ) AC.(R_) )-thin,

v o s

-~
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where CO(Rk) denotes the space of continuous functions on Ry
which tends to zero at infinity. Combined this fact and Theorem

9, we have the following uniqueness theorem:

Theorem 10. A discrete set is a set of uniqueness for the

Poisson summability of trigonometric integrals of ?e-wﬁ,\co(Rk)n
2 qr- N
L (Rk) or @ EI»(Rl),\CO(Rl/.

From the fact that any discrete set is (p;Lq(Rk),\CO(Rk))—
thin, Zdwards concluded that if fe Lp(Rk),\Ll(Rk) and if Z(%}
is discrete then T[f;LQJ = Lp(Rk). This was proved also by I.E.
Segal [6] .

§5. Simple proof of uniquness theorem for the Poisson summ-

ability of ‘trigonometric integrals.

The proof of Theorem 7 suggests us a simple proof of unique-
ness theorem for the Poisson summability of trigeonometric

intesrals: The following simple result is a key for the problenm.

A
Theoren 11l. Suppose ‘e TR, ). If 1lim (t)=0 for
zgeorenm Li. PP f k =y ?% )
all teiﬁk , and if the above limit exists uniformly on any

finite closed interval in R, , then ? = 0, a.e. .

k

The proof of Theorem 11 is nothing but the repeat of the
N A
proof of Theorem 7. In fact, we have é&gﬁ}%::?, distributional-

A
ly. The assumption of uniformity implies that %h%+?€= O.
>

A
This means that @ = O, that is, @ = 0, a.e. .
As a consequence of Theorem 11, when we want to conclude
Pal
"9 =0, a.e. " from " lim ??(t) =0, everywhere " , it is

6§50+
enough to show that the above limit exists uniformly on any
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closed interval in R, . Therefore, combine ‘Theorem 3 and

Theorem 11, we have

Theorem 12. Suppose ‘PEW}%,\LE(RK) , k

N
%imo‘, 96,(17) = 0, everywhere on Rk s Then ? = 0, .€. .

We have to remark that we do not drop the assumption ¥ L2 "
from the above theorem even for the case k¥ = 1. The situation

is as follows: For the proof of Theorem % under the assumpiion

"Pe Lq(Rl),\ 1> (Ry) " , we need the uniqueness theorem. (Cf.
Proof of Theorem B in [1] and Proof of Lemma 2 in [ 5]) .

-

However, when we prove Theorem 3 under the assumption

"Q e 'WE AL2(RK)’ k21" , we do not need the uhiqueness

theorem.

When the case k = 1, we can generalize Theorem 12 in the

following way:

Theorem 13. Suppose @€ Lq(Rl),\ Lo (RyJ, and

(5.1) II ; §‘(t)’[2 at € ¢(I) ¢ oo, for€»0 and for any

finite interval I in Rl s

where C(I) is constant devending only on I.

N
If %&ng?c(t) = 0, everywhere, then ¢ =0, a.e. .

For the proof of Theorem 13, we have to show that the limit

A
Lin Ps(t) = 0 exists uniformly on I. In order to esbablish
t

the above, we need a theorem corresvonding to ‘heorem 3, and
™

hence we want to have a result of type of Theorem 2. For this

purpose, just repeat the argument in [2] , then we have
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Theorem 14.  Suppose | xll/2f(x) ELl(Rl) , PE€ %0 (R,)
A A
and (5.1). If }i%f?f(t) = 0 on the complement of Z(f), then
fx$ = 0.

From Theorem 14 and Theorem 1 of the case k¥ = 1, we have the

following:

Theorem 15. Suppose Pe€ Lq(Rl)nLOO(Rl)‘ and (5.1). Let F
be a closed subset of B, . If lim § (t) = 0O on the complement
1 §30+7°6
of ¥, then the above limit exists uniformly on any closed inter-

val contained in the complement of F.

Fron the above setting, we can conclude Theorem 13.
Remark that (5.1) holds if Pe Lg(Rl). This follows from the

Parseval relation.
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