§3. Semantical Notions

3.1 Quantities

Quantities are abstract elements, and are introduced for describing the course of the elaborations of expressions. Each quantity has its mode, type and value. Let Q be a quantity, then, we shall denote its mode by $m(Q)$, type by $t(Q)$ and value by $w(Q)$. Then it holds

$$t(Q) = t(m(Q)) = t(w(Q)).$$

pragmatics

Let V be a $<variable>$, and E be an $<expression>$. In a course of a normal program, if V has its ability "able", then V has its quantity denoted by $q(V)$. As the result of the elaboration of E, we shall obtain a quantity Q' or a $<label>$ L. For describing such conclusion, we use the notation

$$e(E) \Rightarrow Q'$$

or

$$e(E) \Rightarrow L$$

respectively. end of pragmatics

3.2 Values

Values are classified according to their types (or their styles) as follows:

3.2.1 effect type.

There is a sole value $done$ in the effect type.

3.2.2 real type.

A value of the real type is a real number. We shall use the following notations:

$$\mathbb{R} : \text{the set of all real numbers.}$$

$$\mathbb{I} : \text{the set of all integers, in the sense of the subset of } \mathbb{R}. $$

$$\text{round}(P) : \text{the integer obtained by rounding } P, \text{ where } P \text{ is a real number.} \quad (\text{round}(P) = \text{entier}(P+0.5)).$$

Semantical Notions - 1
3.2.3 bit type.

A value of the bit type is a bit-string. Bit-strings are defined with its length (∈ I), recursively as follows:

1) \(\varepsilon \) is a bit-string of length 0.
2) 0 is a bit-string of length 1.
3) 1 is a bit-string of length 1.
4) Let B be a bit-string of length n (\(n \geq 1 \)). \(B0 \) is a bit-string of length n+1.
5) Let B be a bit-string of length n (\(n \geq 1 \)). \(B1 \) is a bit-string of length n+1.

We shall use the following notations:

\(B \): the set of all bit-strings.
\(B_I \): the set of all bit-strings of length I, where I is an integer (\(I \geq 0 \)).

length(B): length of B, where B is a bit-string.

3.2.4 string type.

A value of the string type is a <string>. <string>'s are defined with its length (∈ I), recursively as follows:

1) ' is a <string> of length 0.
2) Let n be an integer (\(n \geq 1 \)); and \(A_i \) be a <basic symbol> other than ' and ',', or a <string>, and if \(A_i \) is a <basic symbol> then let \(n_1 \) stand for 1, if \(A_i \) is a <string> of length m then let \(n_i \) stand for \(m+2 \), for (i=1,2,...,n); then 'A_1...A_n' is a <string> of length \(n_1+2+...+n_n \).

We shall use the following notations:

C: the set of all <string>'s.
\(C_I \): the set of all <string>'s of length I, where I is an integer (\(I \geq 0 \)).
integer (≥ 0).

\text{length}(\mathcal{C}) : \text{the length of } \mathcal{C}, \text{ where } \mathcal{C} \text{ is a } \langle \text{string} \rangle.

3.2.5 reference type.

A value of the reference type is the empty set \(\emptyset \) or a set \(\{ \mathcal{C} \} \) with a sole element \(\mathcal{C} \), where \(\mathcal{C} \) is a quantity.

3.2.6 array style.

Let \(T \) be a type of the form

\text{array } T'

where \(T' \) is a type.

1) The empty set \(\emptyset \) is a value of type \(T \).
2) Let \(v \) be an integer,

\(u \) be an integer (≥ 2), and

\(\mathcal{Q}_i \) be a quantity of type \(T' \), for \(i=v, v+1, \ldots, u \).

Then the set

\(\{ \langle v, \mathcal{Q}_v \rangle, \langle v+1, \mathcal{Q}_{v+1} \rangle, \ldots, \langle u, \mathcal{Q}_u \rangle \} \)

is a value of type \(T \). (\(\langle v, \mathcal{Q} \rangle \) denotes the ordered pair of \(v \) and \(\mathcal{Q} \).

3.2.7 structure style.

3.2.7.1 Let \(T \) be a type of the form

\text{structure } \{ S_1 T_1, \ldots, S_n T_n \}

where \(n \) is an integer (≥ 1);

\(S_i \) is a <selector> for \(i=1, 2, \ldots, n \);

\(T_i \) is a type for \(i=1, 2, \ldots, n \).

Let \(\mathcal{Q}_i \) be a quantity of type \(T_i \), for \(i=1, 2, \ldots, n \). Then the set

\(\{ \langle S_1, \mathcal{Q}_1 \rangle, \langle S_2, \mathcal{Q}_2 \rangle, \ldots, \langle S_n, \mathcal{Q}_n \rangle \} \)

is a value of type \(T \).

3.2.7.2 Let \(T \) be a type of the form

\text{structure } ()\).

There is a sole value, the empty set \(\emptyset \), in the type \(T \).
3.2.6 procedure style.
Let \(T \) be a type of the form
\[
\text{procedure } (T_1, \ldots, T_n)\!^T
\]
where \(n \) is an integer \((\geq 1)\);
\(T_i \) is a type for \(i=1,2,\ldots,n \);
\(T' \) is a type.
Let \(V_i \) be a \textit{variable} different from each other, for \(i=1,2,\ldots,n \),
and let \(E \) be an \textit{expression}; then
\[
(V_1, \ldots, V_n)\!^E
\]
is a value of type \(T \).

3.3 Modes

Modes and their types are defined recursively as follows:
1) \textit{effect} is a mode of type \textit{effect}.
2.1) Let \(R_i \) be a real number for \(i=1,2,3 \), then
\[
\text{real}[R_1; R_2; R_3]
\]
is a mode of type \textit{real}.
2.2) Let \(R \) be a real number, then
\[
\text{real }[\text{precision } p]
\]
is a mode of type \textit{real}.
3.1) Let \(I \) be an integer, then
\[
\text{bits } [\text{exact } I]
\]
is a mode of type \textit{bits}.
3.2) Let \(I \) be an integer, then
\[
\text{bits } [\text{varying } I]
\]
is a mode of type \textit{bits}.
4.1) Let \(I \) be an integer, then
\[
\text{string } [\text{exact } I]
\]
is a mode of type \textit{string}.

\textit{Semantic notions—}
4.2) Let I be an integer, then

\text{string \{varying \{I\}\}}

is a mode of type string.

5) \text{reference} is a mode of type \text{reference}.

6) Let I_{i} be an integer for $i=1,2$; and let T be a type; then

\text{array \{I_{1}:I_{2}\}^{T}}

is a mode of type \text{array} T.

7) Let T be a type of structure style, then T is a mode of type T.

8) Let T be a type of procedure style, then T is a mode of type T.

A mode specifies a domain of values. Let M be a mode. The domain of values specified by M is denoted by

$W(M)$,

and is defined as follows:

3.3.1 $W(\text{effect})$ is \{(done)\}.

3.3.2.1 Let R_{1} be a real number for $i=1,2,3$. Then, $W(\text{real} \{R_{1}:R_{2}:R_{3}\})$

is the finite set

\{\{x|x \in R \land R_{1} \leq x \land x \in R_{3} \land \text{there exist an integer } y \text{ such that } x=y \times R_{2}\}\}.

3.3.2.2 Let R be a real number. Then $W(\text{real} [\text{precision } R])$ is some \(W\)

finite set of real numbers which satisfies following conditions:

a) If $0 \not\in W$ and $0 \not\in W$ and $x<y$ and there are no element z of

such that $x<z<y$, then

$y=x^{\frac{1}{2}}(|x|+|y|) \times |R|$.

b) There exists a positive number in W with a sufficiently large
absolute value.
c) There exists a negative number in \(\mathcal{W} \) with a sufficiently large absolute value.
d) There exists a positive number in \(\mathcal{W} \) with a sufficiently small absolute value.
e) There exists a negative number in \(\mathcal{W} \) with a sufficiently small absolute value.
(The meaning of the adverb "sufficiently" is unspecified.)

3.3.3 Let \(I \) be an integer.

\[
\mathcal{W} (\text{bits } [\text{exact } I]) = \begin{cases} 2^I & \text{if } I \geq 0, \\ \emptyset & \text{if } I < 0. \end{cases}
\]

\[
\mathcal{W} (\text{bits } [\text{varying } I]) = \bigcup_{0}^{I} \bigcup_{1}^{I} \ldots \bigcup_{I}^{I} \text{ if } I \geq 0, \\
\emptyset & \text{if } I < 0.
\]

3.3.4 Let \(I \) be an integer.

\[
\mathcal{W} (\text{string } [\text{exact } I]) = \mathcal{C}^I \text{ if } I \geq 0, \\
\emptyset & \text{if } I < 0.
\]

\[
\mathcal{W} (\text{string } [\text{varying } I]) = \bigcup_{0}^{I} \mathcal{C}_1 \bigcup_{1}^{I} \ldots \bigcup_{I}^{I} \text{ if } I \geq 0, \\
\emptyset & \text{if } I < 0.
\]

3.3.5 \(\mathcal{W} (\text{reference}) = \{ \emptyset \} \cup \{ \{ o \} | o \in \mathcal{Q} \} \).

3.3.6 Let \(I \) be an integer, \(I' \) be an integer, and let \(T \) be a type.
Then \(\mathcal{W} (\text{array } [I: I']) \) is

\[
\begin{array}{l}
\{ \langle I, Q_1 \rangle, \langle I + 1, Q_{I + 1} \rangle, \ldots, \langle I', Q_{I'} \rangle \} | Q_i \in \mathcal{Q} \land t(Q_i) = T, \\
\text{for } i = I, I + 1, \ldots, I' \text{ if } I \leq I', \\
\emptyset & \text{if } I > I'.
\end{array}
\]

3.3.7 Let \(n \) be an integer \(\geq 0 \); \(S_i \) be a \(<\text{selector}>\) different from each other, and \(T_i \) be a type for \(i = 1, 2, \ldots, n \). Then

\[
\mathcal{W} (\text{structure } (S_1, T_1), \ldots, (S_n, T_n)) = \\
\{ \langle S_1, Q_1 \rangle, \langle S_2, Q_2 \rangle, \ldots, \langle S_n, Q_n \rangle \} | Q_i \in \mathcal{Q} \land t(Q_i) = T_i
\]
Semantical Notions-6
3.3.8 Let \(n \) be an integer \((\geq 0)\); \(T_i \) be a type for \(i = 1, 2, \ldots, n \); and \(T \) be a type. Then \(w(\text{procedure } (T_1, \ldots, T_n)) \) is the set
\[
\{(V_1, \ldots, V_n) \mid V_i \text{ is } \langle \text{variable} \rangle \text{ for } i = 1, 2, \ldots, n \land E \text{ is } \langle \text{expression} \rangle \text{ without } \langle \text{mark} \rangle \land
\begin{align*}
&\text{"begin let } V_1 \text{ be } T_1; \\
&\quad \ldots \\
&\quad \text{let } V_n \text{ be } T_n; \\
&E \text{ end"}
\end{align*}
\]

is a legal \(\langle \text{expression} \rangle \).

3.4 Implementation Dependent Factors

When we are concerned with a particular implementation, it is usual that not all values are realized in the implementation. So, the domain of values may be restricted, and biased in the form of implementation dependent. In the following, we use the notation \(w_u \) for such an implementation dependent set, transformed from \(w(M) \). In each implementation, modes are classified by the coincidence of the set \(w_u \). And we shall denote the representative of the class, which contains a mode \(\eta \), by \(d(M) \).

We shall use the following notations:

R1: An (implementation dependent) fixed negative real number with sufficiently large absolute value. It acts as a proxy in a \(\langle \text{real modifier} \rangle \) of the form \([E_1:E_2:E_3]\) when \(E_1 \) is absent.

R2: An (implementation dependent) fixed positive real number with sufficiently large absolute value. It acts as a proxy in a \(\langle \text{real modifier} \rangle \) of the form \([E_1:E_2:E_3]\) when \(E_3 \) is absent.

R3: An (implementation dependent) fixed positive real number with sufficiently small absolute value. It acts as a proxy in a \(\langle \text{real modifier} \rangle \) of the form \([E_1:E_2:E_3]\) when \(E_3 \) is absent.
modifier of the form \([\text{imprecision } I]\) when \(I\) is absent.

II: An (implementation dependent) fixed positive integer. It acts as a proxy in a \(<\text{bit modifier}>\) of the form \([\text{exact } I]\) when \(I\) is absent.

III: An (implementation dependent) fixed positive integer (usually \(\geq II\)). It acts as a proxy in a \(<\text{bit modifier}>\) of the form \([\text{varying } I]\) when \(I\) is absent.

IV: An (implementation dependent) fixed positive integer. It acts as a proxy in a \(<\text{string modifier}>\) of the form \([\text{exact } I]\) when \(I\) is absent.

5 Projections

When a value is assigned for a quantity, it is adjusted (or rounded) for the quantity's mode. Let \(W\) be a value, and let \(M\) be a mode of the same type with \(W\). We shall denote such an adjusted value by \(p(M, W)\) or \(p_w(W)\), and call it "the projection of \(W\) for \(M\)." Obviously it suffices that \(p_w(W) \in W_{\text{mode}}\), and \(p_w(W)\) is not defined if \(W_{\text{mode}} = \emptyset\). Since the set \(W_{\text{mode}}\) is implementation dependent, \(p_w\) is implementation dependent, too. So the following directions are not compulsory, though the implementors and users are suggested to refer to it.

3.5.1 \(p(\text{effect, done})\) is done.

3.5.2 Let \(W\) be a mode of real type, and let \(R\) be a real number.

Then \(p(W, R)\) is a real number in \(W_{\text{mode}}\) which is nearest to \(R\).

3.5.3 Let \(I\) be an integer (\(\geq 0\)), and let \(B\) be a bit-string.

Then \(p(\text{bits } [\text{exact } I], B)\) is

\(\epsilon\) if \(I=0\);
\[
\begin{aligned}
&\text{if } I > 0 \text{ and } B \text{ is } \varepsilon; \\
&\quad I \\
&b_1 \ldots b_n \text{ if } I > 0 \text{ and } B \text{ is } b_1 \ldots b_n \text{ where } n = \text{length}(B) > I, \text{ and} \\
&\quad \quad b_i \text{ is } 0 \text{ or } 1 \text{ for } i = 1, 2, \ldots, n; \\
&b_1 \ldots b_0 \ldots 0 \text{ if } I > 0 \text{ and } B \text{ is } b_1 \ldots b_n \text{ where } n = \text{length}(B) < I, \\
&\quad \quad n-I \quad \quad \text{and } b_i \text{ is } 0 \text{ or } 1 \text{ for } i = 1, 2, \ldots, n. \\
\end{aligned}
\]

\[p(\text{bits } [\text{varying } I], B)\]
\[
\begin{aligned}
&\text{if } I = 0 \text{ or } B \text{ is } \varepsilon; \\
&b_1 \ldots b_n \text{ if } I > 0 \text{ and } B \text{ is } b_1 \ldots b_n \text{ where } n = \text{length}(B) > I, \text{ and} \\
&\quad \quad b_i \text{ is } 0 \text{ or } 1 \text{ for } i = 1, 2, \ldots, n; \\
&\text{B} \text{ if } I > 0 \text{ and } \text{length}(B) < I. \\
\end{aligned}
\]

3.5.4 Let I be an integer (≥ 0), and let C be a <string> of the form
\[c_1c_2 \ldots c_n\]
where \(n = \text{length}(C)\), \(c_i\) is a <basic symbol> for \(i = 1, 2, \ldots, n\).
Then \(p(\text{string } [\text{exact } I], C)\) is
\[
\begin{cases}
\text{"}c_1 \ldots c_n\text{"} & \text{if } n \geq I, \\
\text{"}c_1 \ldots c_{n-1}\text{"} \quad \text{if } n < I.
\end{cases}
\]

\(p(\text{string } [\text{varying } I], C)\) is
\[
\begin{cases}
\text{"}c_1 \ldots c_I\text{"} & \text{if } n \geq I, \\
C & \text{if } n < I.
\end{cases}
\]

3.5.5 Let W be a value of reference type.
Then \(p(\text{reference}, W)\) is W.

3.5.6 Let I be an integer, I' be an integer > I, and let T be a type.
And let W be a set of the form
\[\{<v, c_v>, <v+1, c_{v+1}>, \ldots, <u, c_u>\},\]
where \(c_i\) is a quantity of type T.
Then \(p(\text{array } [I: I']T, W)\) is
\[\text{Semantical Notions-9}\]
\{<I, \xi_i'>, <I+1, \xi_{I+1}'>, \ldots, <I', \xi_{I'}'>\}

where if \(v \in \text{int}\) then \(\xi_j'\) is \(\xi_j\), else \(\xi_j'\) is unspecified, (but \(t(\xi_j') = T\)) for \(j = I, I+1, \ldots, I'\).

3.5.7 If \(t(M)\) is structure style, and \(t(W)\) coincides with \(t(M)\), then \(p(M,W) = W\).

3.5.8 If \(t(M)\) is procedure style, and \(t(W)\) coincides with \(t(M)\), then \(p(M,W) = W\).

3.6 Abilities

During the elaboration, each \(<\text{variable}>\) is in a state of ability which is either \underline{able} or \underline{inable}, and may be changed to its alternative. We shall denote such ability of a \(<\text{variable}>\) \(V\) by \(a(V)\). If a \(<\text{variable}>\) \(V\) is \underline{able}, \(V\) is associated with some quantity, which we shall denote by \(q(V)\).

\underline{Pragmatics}

Briefly speaking, a \(<\text{variable}>\) is made \underline{inable} at the entrance of the \(<\text{block}>\), and is made \underline{able} at the end of the elaboration of its \(<\text{declaration}>\).