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 Summary
In this paper the nonjlinear scattering processes in an inhomogeneous,

finite, and plane-parallel atmosphere consisting of two-level atoms are
discussed. Stimulated emission and redistribution in frequency of radiation
energy are allowed for. With‘the aid of the method of self-consistent opti-
cal depths, the non-linear transfer problem is reduced to the solution of
linear integral equation, and furthermére, the initial value method based on
the invariant imbedding principle is used to convert the two—pqint boundary

value problem to the Cauchy problem.

I. Introduction

Recently, much attentions of astrophysicists 1n‘the field of radiative
transfer have been focussed on the non-linear LTE problems in the formation
of stellar spectra (cf. Thomas (1965); Avrett, Gingerich, and Whitney (1965);

; Jeffries (1968) * '

Hummer and Rybicki‘(1967)9. Because in the real stellar atmospheric condi-~
tions- the radiation fields dépend not only upon the local optical properties
of the media, hut also on therﬂdfation intensity impinging on the point uﬁder
consideration.

In a manner similar to that in radiative transfer in homogeneous finite
atmospheres, the invaraint imbedding technique (cf. Bellman and Kalaba

(1956), Sobolev (1956), and Ueno(1960)), and the combined operations method

(cf. Busbridge (1961)) have also been applied to the problems of diffuse



reflection and transmission of light in an inhomogeneous finite atmosphere ..

Furhtermore, methods using differential equations such as the generalized
Riccati transformation (cf. Rybicki and Usher (1966))and the discretization
method (cf. Fautrier (1964)) have been ﬁresented for the interpretation of
line formation in stellar atmospheres,whereas the kernel approximation
method (cf. Avrett and Loeser (1966)) and the flux derivative.method
(cf. Athay and Skumanich (1967)) have been used as an altgrnative integral
equation approach. On the other hand, the initial value method has been
applied to.the theory of Fredholm integral equation with kérnels reducible
to symmetric kernels. (cf. Kagiwada , Kalaba,andrscﬁumitzky (196%))

In g&rakan schooi the self-consistent optical depth method introduced by
Ambarzumian (1964) makes it possible in some cases to linearize the problems
of non-~linear scattering processes with the aid of realioptical depth as
the independent variable. In such a non-linear theory the real optical
depth of a point under discussion depends upon the radiation field and can
be determined only after the entire problem has been solved (cf. Engibaryan
(1965); Engibaryan (1966); Terebizh (1967)).

In this paper, with the aid of the self-consistent optical depth method
the non-linear transfer'problém is reduced to the solution of Fredholm
integral equation and furthermore the initial value method based on the

invariant imbedding is used to convert the two-point boundary value problem

to the Cauchy problem.

II. The equation of transfer

Consider a plane-parallel, isotropically and non-coherently scattering

atmosphere of the geometrical thickness Zo with the internal source

distribution B(t) . We inquire into the non-linear scattering processes of



radiation, whose excited and gzound states are respectively denoted by 1
and 2 . In other words, we consider solutions of the restricted two-level
problem of line formation with complete redistribution.

Let Iv be the specific intensity of the radiation along the direction
given by the element of length ds . Assuming the frequency-independent
source function S , the equation of transfer appropriate to this case takes
the form

@ A _peon, (1- B3 )(1 —9),

where kv(x) is the atomic abgorptlon coefficient expressed in terms of

the dimensionless frequency x, ni(i=1,2) andji(i=l,2) represent respective-

ly the populations:of i-th levels and the corresponding statistical weights,

and
2) S = (m _%. )
(3) o~ = 2hV/¢

The total number density, (nl+n2),is assumed known, whereas n1 and n2 are
inquired into. The frequency v 1is the transition frequency between the
two levels.

Put
(4) ds= dz/v,
where 2z -is the geometrical depth and v 1is the cosine of the inclination
with respect to the outward normal.

Eq. (1) should be solved subject to the boundary conditions
®» L(o,+v)=0 , L,Vv)=0,
where O0O<v¢l , i.e., no incident radiation upon the upper and lower boundary
surfaces.

Writing

6) (GO = ke RO, ko = ML B



and
a X = (V- Vo) /&Yy,
where kO is the atomic absorption coefficient at the center of the line ,

is the frequency at the line center, and AVD is the Doppler width,

Yo
which may have the thermal and turbulent components, i.e.
2412
®) A~—_—,))(.2_k_‘¥_ +-\L>
){D o mcz cA .

The real optical depth at the line center is
Zo .
Na %l ) d
@ T k(U Al
On the other hand, the limiting optical thickness ?O is given by
Zo To '
(10) To g h"cnl‘\' nz)o\z = T + Xg S(T) T")CH_ 2
0 [

where

I

(11) T = @—'("*‘%ff()’,

and S(t, TO) is the required source function. The limiting optical depth
of a point is its real optical depth in the case‘wheﬁ all the intensities
tend to zero.

Eq.(9 ) shows that the real optical thickness TO at z=z0 can not be

determined until we get the source function, whereas the value of the’

limiting optical thickness %, is given.

0
Let Einstein coefficimnts for absorption, stimulated and spoétaneous

emissions be respectively denoted by B12’ le, and 521’ and furthermore
let the rate of inelastic and super-elastic collisional transitions bé
respectively denoted by C12 and C21.

~ Starting with the statistical equilibrium equation for the two level
atoms
(12) T\p_( Ag\ + ,Bm‘j: + Cn> = Y\l(B\:LT + C;z),
where

(13) I = :%r? gdw j»dv ke 1y



we get the required Milne integral equation governing the line-source

function

o S6T) = (L-xaBE) + AD | Kir-w)stmat

where ‘
(15) NT) = ( {+ ——L<i ,M/P\T» ,
and |

(16) Bt = (& ST ) .

In the restricted two-level problem A and B depend only on the kinetic
temperature and the electron: density.

Clearly, the solution of eq.(l4) is equal to that of the transfer
equation (1) with the boundary conditions (5).

In eq.(14) the kermel K(t) is given by

W .

an K@) = A) KOE (kux)dn (+>0)
where k(x) is given by-;q.(6) and El(t) is the first exponential integral
for positive argumentt,
1)  Es(%) - S:, eV -i} (tyo).

In eq.(17) A is the normalization constant

W
(19) Al koodk = L.

_'a.

III. Cauchy gystem . for the Milne integral equation

Putting o
20) Jt, ) = SET)/NT
and -
e Le{fw) = £ KO-t dmd,

from eq.(14) we have

@)  [i- L) {S(t,TD)S = B ,



where 1 is an identity operator, and
(23) B(x) = (L-Xq)BEO/A),
and A and B are tabular functions of .

In a manner similar to that given by Kagiwada, Kalaba, and Sch_umitzky
(1968), we shall derive the iﬁitial value problem for the integral equation
(22).

On differentiating eq.(22) with respect to Tp > We get

@ T (0T) = LKE-DAT) J@w) + L-(S:R(T,‘R)} -

Introduce the &(t,tgy)-function as the solution of the integral equation
e B, w) = Km-1) + Ld 2wy

The comparison of eqs,(24) and (25) provides us with
@26 I, (L) = IAm) I, ) 26,7,

This is a required differential -equation expressed in terms of J(7,To)
and ¢(t,Tq).

Eq.(25) is rewritten in the form

en &)= A S: o0 B rpoCr-t)dx v L] @t,‘f»)} ~

Introduce the auxiliary equation

08 M(nT3 v 1) = kooe ™Y L MGGy
Then, ®(t,To) may be expressed in terms of M-function
29 PE,w) = S: XL Ak M (Lo V, X)dx dvy/ .
on differentiatin;eq.(ZS) with respect ro 1y, we get
s Mg (T 3V,X) = ~,\§(/.il S -0V + ’ti M) K- MeE;s:va)
+ L %Mn(?c,r,; vy X)§ -
Recalling eq.(25), eq.(30) is converted into the following expression

ov 1= L] {fw}=0

where



e )= Mg ousva) ’\'-E\L/HM(T)TU' v, X) — IXR) BT, T )M, ms v,
Since f(t) is a solution of the homogeneous Milne type integral equation,
we have

39 Mugus V)= — RO Mt T3V, 1) + LAT) B, ) M, 1540,

The expression for M(tg, T¢ § V,x) takes the form ;

W o (T — Rigln -1 ‘
o0 MEmsv, 0= ke + A§ Ky | 4 | we MGE o5V, DR
) .

Introducing the scattering function

L ~RON(T -1V
35 RG;V,u3X,% )= RX) SoMﬂe M(t‘,-(;;u,xu)d&)

and interchanging the orders of integration in eq.(34), we obtain
- & | :
30 MGT;v,1) = k() + %&NM)M [ Riws v, wsz,y)de .
The differentiation of eq.(35) with respect to t1( provides us with
6371 Ry, (T3 Vo W 3%, Xo) =— (kgz N .MMDL)R-i’ Rk A(T;)X(TD;»’,X)’XG@;\A,JIO)’

where W 4 ‘
38 X@ov,x) = 4+ %&m%)o%ﬁ@;u,vmx)dgg=M(n,ro;V,7<)/k(x).

Excepf for the notation, eq.(37) reduces to that given by Bellman, KalaBa
and Ueno (1962). -

The initial condition comes from eq.(35) such tﬂat
@3 RO3V,u; %%)=0.

Furthermore, it should be mentioned that eq.(37) is detived under the
assumption of the principle of reéiprocity |
“wo) ‘R(‘G;\/,Lk;x,:u):R(u; W,V 3%, 1),

Via eq.(36), M(tg,71p3Vv,x) is expressed in terms of S—function.‘ Then, tﬁe
aoiution; M(T,Tg ;V,X), ofvthe auxiliary equation is computed by eq.(33),
allowing for eq.(29). Hence, the evaluation of the modified sourcé function.
J(t,7p) with the aid of eq.(26) néeds the determination of J(%(,Xg).

Recalling eq.(22), we have

— b i 2,
W J(6,6)= B) + “Afg.w Saem,\/,x)\ww dv



where the emergence function

w etn,v, )= (Te FETY @) Tom ) e

o]

On the other hand, comparing eqs.(22) and (25), weiget
) T _.,
@ AR Tew) K -0 dh = S P (1,T,) BHAR)T

Then, we have an alternative expression of the emergence function as
below: G |
(44) et V, 1) = S A BE) M, 5V, )dr

Once the R-function has been given by eq.(Bf), making use of eqs.(20),
(26),(29),(33),(41), and (44), the source function S(t,T() under consideration
can be &etermined.

Assuming that the particles have Maxwellian velocity distributions corres-
ponding to a kinetic temperature T, the collisional transition rates are
provided by
(45) Ca = N2 Cau/My
where ni*(i=1,2)'s represent equilibrium number densities according tq
Boltzmann equation ‘“)/h:r
(46) (ﬂ:/ n) = (%’/3‘)e~

On inserting the thermodynamical equilibrium approximation given by eq.(46)
into eq.(9), we can approximate the real optical thickness T . Then,/via
eqs, (20), (26), (29), (33), (41), and (44), we can get the first approximate
value of the source functions S(t,7(), which is used for the evaluation of
the amended real optical thickness via eq.(10). Hence, such an iterative
procedure will be continued until the satisfactory coincidence of the real

optical thickness.
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