Infinite tensor products of operators

第1544号

§1. 序

ここでは現在準備中である KITAGAWA AND NAKAGAMI [2] の結果を紹介する。

§2. 定義と記号の説明

I : 無限添字集合

$J \subseteq I \iff J$ はIの有限部分集合

$\mathcal{H}_i : \{0\} でない Hilbert 空間 ; \ \mathcal{H}_\nu \in \mathcal{H}_i$

$M_c : \mathcal{H}_c 上の von Neumann algebra ; \ \mathcal{H}_c \in M_c$

$\Gamma_0 : Co$-sequences 全体の集合 ; \ \Gamma_0 \in \Gamma_0$

$c_\nu \in 0 < \|c_\nu\| < +\infty$

$(\mathcal{H}_c) \sim (\mathcal{H}_c) \iff \sum |\langle \mathcal{H}_c \rangle - 1| < +\infty$

$(\mathcal{H}_c) \cong (\mathcal{H}_c) \iff \exists \text{正规作用素 } \mathcal{H}_c \in M_c \text{ が存在}$

$\sum |(\mathcal{H}_c \langle \mathcal{H}_c \rangle - 1| < +\infty$
\[\Gamma = \Gamma _0 / \sim \]
\[(\Gamma) = \Gamma _0 / \simeq \]

※れり：完全無限テンソル積
※れり：\(\mathfrak{p} \in \Gamma \)に対応した不完全無限テンソル積
※\(M_{\mathfrak{p}} = \left(\cup _{j \in \mathfrak{p}} (\mathfrak{p} \times M_{\mathfrak{p}}) \otimes C(\mathfrak{p}_j \chi _{\mathfrak{p}}) \right)^{\prime} \)

ここで、\(C(\mathfrak{p}_j \chi _{\mathfrak{p}}) \)は\(\mathfrak{p}_j \chi _{\mathfrak{p}} \)上のscalar作用素全体
※\(M_{\mathfrak{p}} \)：\(\mathfrak{p} \in \Gamma \)における制限

§ 3. 作用素の無限テンソル積

\(x \)を\(\mathfrak{p} \)上の有限無限作用素としたとき、\(||x|| < \infty \)が成り立つとすれば、\(\mathfrak{p} \)にその無限テンソル積\(\otimes x \)を定義でき、各\(x \)の極分解\(x = x_1 \alpha _1 \)により、その\(\otimes x \)は\((\otimes x_1) (\otimes \alpha _1) \)と表すことができるが、数からの応用を考えた場合には、\(||x|| < \infty \)という条件は必ずしも適切ではない。そこで定義域と不完全テンソル積
※れりに必ずしも適合させることにより、これより弱い条件の下で作用素の無限テンソル積を与えることにする。

※れりに対する
※れり：稠密な定義域\(\Theta (x) \)を持つものではない\(x \)上の関作用素
※れり：\(x \)の定義域
※れり：\(x = x_1 \alpha _1 \)：極分解
(\mathfrak{z}_0) \in \mathbb{C}, \mathfrak{z}_0 \in \Theta(\mathfrak{z}_0) \text{ に対して}

\Theta(\mathfrak{z}_0)^o : \mathfrak{z}_0 \in \Theta(\mathfrak{z}_0), \{ \mathfrak{w} : \mathfrak{w} + \mathfrak{z}_0 \} \text{ が有限であるような}
\mathfrak{z}_0 \text{ により強られる線形空間}

\Theta(\mathfrak{z}_0)^c : \mathfrak{z}_0 \in \Theta(\mathfrak{z}_0), \mathfrak{z}_0 \in \mathbb{C}, \prod \{ \| \mathfrak{z}_0 + \mathfrak{z}_0' \| : \mathfrak{z}_0' < \mathfrak{z}_0 \} < \infty

\mathfrak{z}_0 \text{ により強される線形空間}

以後 \(\mathfrak{z}_0 \in \Theta(\mathfrak{z}_0)^o \) は \(\Theta(\mathfrak{z}_0)^c \) と呼ぶようにとる。同様の記号 \(\Theta(\mathfrak{z}_0)^o, \Theta(\mathfrak{z}_0)^c \)
を使い、次の事は容易に示される。

\[\exists \mathfrak{y}_0 \in \Theta(\mathfrak{z}_0)^o : \mathfrak{z}_0 \mathfrak{y}_0 = \mathfrak{z}_0 \]

\[\iff \{ \mathfrak{w} : \mathfrak{w} \mathfrak{y}_0 = \mathfrak{z}_0 \} \text{ は有限} \]

\[\iff \sum \| \mathfrak{w} \mathfrak{y}_0 - \mathfrak{z}_0 \| < \infty \]

定義。\((\mathfrak{z}_0) \in \mathbb{C}, (\mathfrak{z}_0) \in \mathbb{C} \) とする。\((\mathfrak{z}_0) \) が (d) から (d)
又は non (d) を満たす場合に (x) a (zero x is non zero)
reference vector という。\{ (\mathfrak{z}_0), (\mathfrak{z}_0) \} a (a), (a), (c)
(c) (d) を満たす場合にも (x) a (non zero) reference
vector という。

(1) \(\mathfrak{z}_0 \in \Theta(\mathfrak{z}_0), \prod \| \mathfrak{z}_0 + \mathfrak{z}_0' \| : \mathfrak{z}_0' < \mathfrak{z}_0 \} < \infty \)

(2) \(\mathfrak{z}_0 \in \Theta(\mathfrak{z}_0), \prod \| \mathfrak{w} \mathfrak{z}_0 : \mathfrak{w} \mathfrak{z}_0 \mathfrak{z}_0 + \| < \infty \)

(3) \(\mathfrak{z}_0 \in \Theta(\mathfrak{z}_0)^c : \mathfrak{z}_0 \mathfrak{z}_0 = 0 \Rightarrow (\mathfrak{z}_0) \sim (\mathfrak{z}_0) \)
補助定理. \((\mathbf{z}_l) \in C\) と zero reference vector とするとき、すなわち \(\mathbf{z}_l \in \Theta(\mathbf{z}_l)^C\) に対し \((\mathbf{z}_l \mathbf{z}_l)(\mathbf{z}_l \mathbf{z}_l) = \mathbf{z}_l \mathbf{z}_l\) となるような定義域 \(\Theta(\mathbf{z}_l)^C\) を持つ作用素 \(\mathbf{z}_l \mathbf{z}_l\) が存在し、その最小の閉包は \(\mathbf{z}_l \mathbf{z}_l\) である。

\{\(\mathbf{z}_l, (\mathbf{z}_l)\) \} は \(\mathbf{z}_l\) の non zero reference vector とし、
\(\Theta(\mathbf{z}_l)^C\) 上に内積と norm を

\[
(\mathbf{z}_1 \mathbf{z}_1')_{\mathbf{z}_l} = (\mathbf{z}_1 \mathbf{z}_1') + \sum_{j=1}^n \frac{z_j}{\lambda_j} (\mathbf{z}_l \mathbf{z}_l)_{\mathbf{x}_j} (\mathbf{z}_j \mathbf{z}_j')_{\mathbf{z}_l}
\]

\[
\|\mathbf{z}_1\|_{\mathbf{z}_l} = \sqrt{(\mathbf{z}_1 \mathbf{z}_1')_{\mathbf{z}_l}}
\]

で定義する。\(\mathbf{z}_l = \sum_{j=1}^n z_j \mathbf{x}_j, z'_l = \sum_{j=1}^n z'_j \mathbf{x}_j \in \Theta(\mathbf{z}_l)^C\)

\(\Theta(\mathbf{z}_l)^C\) は \(\Theta(\mathbf{z}_l)^C\) と \(\mathbf{z}_l\) の閉包

\(\Theta(\mathbf{z}_l)^C\) は \(\Theta(\mathbf{z}_l)^C\) と \(\mathbf{z}_l\) の閉包

定理 3.1. \{\(\mathbf{z}_l, (\mathbf{z}_l)\) \} と \(\mathbf{z}_l\) が \((\mathbf{z}_l)\) となる \(\mathbf{z}_l\) の non zero reference vector とするとき、下記のような条件を満たす 0 ではない作用素 \(\mathbf{z}_l \mathbf{z}_l\): \(\Theta(\mathbf{z}_l)^C\) \(\mathbf{z}_l\) \(\rightarrow\) \(\mathbf{z}_l\) と \(\mathbf{z}_l \mathbf{z}_l\): \(\mathbf{z}_l \mathbf{z}_l\) \(\rightarrow\) \(\mathbf{z}_l\) とが存在する：

(i) \(\mathbf{z}_l \mathbf{z}_l\) の定義域は \(\Theta(\mathbf{z}_l)^C\)

\(\mathbf{z}_l \mathbf{z}_l\)

\(\mathbf{z}_l \mathbf{z}_l\)

\(\Theta(\mathbf{z}_l)^C\)
系 3.1. \((\gamma_0, (\gamma_n)) \times (\gamma_n) \) の non zero reference vector
0 < \pi \eta_0 \to +\infty \) とすと、もし \(\eta_0 \in \Theta \) で \(\eta_0 \in \Theta \) に存在して \((\eta_0, (\gamma_n), (\gamma_n)) \in \Theta \) なら \(\gamma_0 \) は
(i) \((\Theta^{\gamma_0} \gamma_0)(\Theta^{\gamma_0} \gamma_0) = \Theta^{\gamma_0} \gamma_0 \gamma_0 \)
(ii) \(R(\eta) \in \Theta(\gamma_0) \) なら \((\gamma_0, (\Theta^{\gamma_0} \gamma_0), (\Theta^{\gamma_0} \gamma_0)) = \Theta^{\gamma_0} \gamma_0 \gamma_0 \).

系 3.2. \((\gamma_0, (\gamma_n)) \times (\gamma_n) \) の non zero reference vector
とする。もし \(\eta_0 \in \Theta \) に存在して \((\eta_0, (\gamma_n), (\gamma_n)) \in \Theta \) なら \(\gamma_0 \) は
(ii) \(\Theta^{\gamma_0} = (\Theta^{\gamma_0} \gamma_0)(\Theta^{\gamma_0} \gamma_0) \).

定理 3.2. \(\prod \{ \lambda \in \Theta \to +oo \} \) なる \(\lambda \in \Theta(\gamma_n) \) に集合
\(\{ \lambda \in \Theta \cap \Theta(1) \} \) に可算ならば
(i) \(\lambda_0 \in \Theta(\gamma_n), \Sigma_{1=1}^{\lambda_0} \lambda_0^{\gamma_0} \to +oo \) なる \(\lambda_0 \) の reference
vector \((\lambda_0, (\gamma_n)) \) が存在する；
(ii) \(\lambda_0 \in \Theta(\gamma_n) \) に対し
\((\Theta^{\gamma_0} \gamma_0 \lambda_0) \lambda_0 = \lim_{\gamma_0 \to \lambda_0} \gamma_0 \lambda_0 \).
ただし \(\gamma_0 = \lambda_0 \lambda_0 \lambda_0 \lambda_0 \); \(\gamma_0 = \gamma_0 \), \(\gamma_0 \in J \) かつ \(\gamma_0 = \lambda_0 \lambda_0 \lambda_0 \), \(\gamma_0 \in J \).
第1章

\[y_j = \Theta^\infty \xi \quad (\gamma_n) \sim (\mu_n \xi_n) \in \beta \]

系3.3. \(\{ (\lambda_0), (\xi_0) \} \in (\lambda_0) \) の non zero reference vector
とし \(\lambda \in \mathbb{R} \) とする。\(\Theta^\infty \lambda \xi \in \Theta^\infty \mathbb{R} \).

系3.4. \(\sum \lambda_n \xi_n - \lambda_n \xi_n < +\infty \) なる \((\lambda_n) \) が存在すれば、
\(\{ \xi \in \lambda \xi_0 \} \) が有限、\(\{ \xi \in \lambda \xi \in \mathbb{R} \} \) が可算で
\(0 < \prod \lambda \lambda_0 \xi_n < +\infty \) となるような \(\lambda \) の \(\lambda \xi_0 \) が存在する。

§4. 対称例

\(\lambda \) と normalized identity \(\xi_0 \) を持つ generalized Hilbert algebra \(\mathbb{A} \) の完備化 \((\lambda_0) \) を \(\mathbb{E} \) とする。

定義. Generalized Hilbert algebra \(\mathbb{A} \), \(\mathbb{E} \) の無限テンソル積と \(\xi \in \mathbb{E} \), \(\lambda \in \mathbb{R} \) は有限であるような \((\lambda \xi) \)
と \(\Theta^\infty \xi \in involution\) と積

\((\Theta^\infty \xi \xi) = \Theta^\infty \xi \xi \), \((\Theta^\infty \xi \xi) = \Theta^\infty \xi \xi \)
を導入して得られる involution algebra のこととし、\(\Theta^\infty \xi \xi \)
と示します。
ベクトル autonomorphism \(\Delta_c(x) \) を持つ modular
Hilbert algebra \(\mathcal{B}_c \otimes \mathcal{B}_c \) と modular autonomorphism
\[
\Delta_c(x) \otimes \Delta_c(x) = \otimes_c \Delta_c(x) \otimes_c
\]
とするとき \(\Delta_c(x) \) は \(\mathcal{B}_c \) 上の modular autonomorphism である。

\(x_c \) : Hilbert 空間
\(B(x_c) \) : \(x_c \) 上の有限作用素全体
\(C(x_c) \) : \(x_c \) 上の scalar 作用素全体

\(\delta \in \mathcal{X}(x_c) \) が \(\text{Hilbert algebra} \) に成る "それぞれを \(\mathcal{A} \) とし, \(B(x_c) \otimes C(x_c) \) に対しも \(\mathcal{A} \) の言葉を用ぶ \) ことにより

\[
M_c = B(x_c) \otimes C(x_c), \quad \delta_c = \delta
\]

\[
M(x_c, \delta) = \otimes_c M_c, \quad (\delta_c) \in \mathcal{A}
\]
とすると

命題. \(j = 1, 2 \) に対して \(\Delta_j \) と \(M(x_j, \delta_j) \) の modular
operator とする. とも \(\Delta_1 \) と \(\Delta_2 \) が \(2 \) と同値なら \(\delta \),
\(M(x_j, \delta_j) \) と \(M(x_j, \delta_j) \) は specially に同型である.

§5. 結果例 2.

この節は単なるお話しである.
\[\sigma \text{ と } \tau \text{ を } M_n \text{ 上の faithful normal states としたとき} \]

\[\sigma(x) = \tau(x(x^*x)), \quad x \in M_n \]

となるように選ぶ。 \((\alpha_i)\) の reference vector \(\{(3_i), (7_i)\} \)

とし \((3_i) \in \mathcal{E}, (7_i) \in \mathcal{P}^* \) に対し \((E) = (E_i) \) と仮定する。もしこの \((3_i) \) が \((\alpha_i)\) の quasi characteristic vector ならば \((\alpha_i)\) が存在しない。

\((\alpha_i(\tau_i) \otimes \xi) \tau_i) = (\alpha_i(\tau_i) \otimes \xi) \tau_i \quad (\alpha_i(\tau_i) \otimes \xi) \tau_i \quad (\alpha_i(\tau_i) \otimes \xi) \tau_i)

ゆえに \((\alpha_i) \otimes \xi \) と \(M_n \) に対して成立する。

昨年の講演の中で添言定理3の周辺について考えを荒木先生に指摘していただきました。それを使わずにも定理1の
証明はできませんです。

数理解析研究所の荒木先生のご指導与御好意に対して心から感謝致します。

補遺。 \((3_i) \) は reference vector であるが、どんな \((7_i) \in \mathcal{P} \) を選ぶ
いて \(\{(3_i), (7_i)\} \) が reference vector に成りえない場合には、自然な意味での同作用素 \(\sigma \) の定義は困難である。
参考文献

