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§2. ALGOL®RT-t A VioB&

Formation of Algol-like Statements

Alphabet

Let £,V , %, and R be four disjoint sets whose elements
are called lebel symbols, variable symbols, function symbols, and

predicate symbols, respectively. Tre set & 1is the union of disjoint

50 (0 (x)

sets and the elements of & are called n-ary

function symbols. Similarly, g is the union of disjoint sets
P<O),F<l),... and the elements of P(n) are called n—ar& predicate
symbols. The alphabet of Algol-like statements consié?s of all the

elements of £, V , & ,‘and P , together with the following special

symbols.

In some cases described below the logical symbols: ‘
- AV V¥V O
will be also containedf

Algol-like Statements

Algol-like stétements, or statements, are defined together with a
function denoted by ( )' which senhds each statement onto a finite

subset of £ , by generalized inductive definition as follows.
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- Atomic Statemen’cs

{al) A is an stomic statement. (A)  =¢ .

(a2) TFor each oef , o and a‘l are both atomic statements.

- -1, -
()" =9 . (¢7) ={o}.
(a3) 'For each xe¥ and each ye¥V , X :=y is ai stomic statement.
(x:=y)" =¢.
Statements

An atomic statement is a statement. Any other word on the above
alphabet is a statement if and only if it is defined to be a statement
by a repeated use of the following rules.

(bl) If A and B are two statements such that (A)" N (B) =6,

then A;B is a statement. (A3;B) = (A)'+ ()" .

(p2) If x := Peeer X :'—'"fn aré n statements azid ) “(n)eg(n)_ N

1]
o

Ty ie (B i D) )"
then x :=x/f...f 1is a statement. (x:=x fl_"'fn)

(b3) If x := f5-+5x :=f , A, and B are nt2 statements
such that (A)" N (B)” =$ and p<n)ep(n) , then

(p<n)fl...fn - A,B) is a stetement. v((p(n)fl...fn = A,B)) = (A)+(B)" .

A statement which is defined to be so only by the above rules Wlll be

called a basic statement.

(cl) If (p -~ A,B) is a statement, then (- p — A,B) is a statement.

(42 ~4B) = ((p - A43)" .



(¢2) If (p - A,B) and (q -'A,B) .are two statements, then
(pAq=-A43) and (pVq-A,B) are both statements. The

values of ( )~ are both identical with ((p - A,B))"

(e3) I (p -~ A,B) is a statement such that xeV occurs in b
and neither Vx nor #x occurs in p , then (Vxp - A,B)
and (xp — A,B) are both statements. The values of ( )~

are both identical with ((p - A4,B)) .

Parentneses and commas will be used a;Lso aux111arly to avoid

syntactic ambiguity and to mprove readablllty. Especially n(n) fl...f

and p( )fl""f are written as :r( )(f,...,f) and p(n)(f,...,f) s

respectively. Semicolons will be abbrev:Lated if there is no possz.blln.ty

of ambiguity.

Representation by ALGOL 60

. The statements in the above sense are intended to mean the statements

in the sense of ALGOL 60 (Naur et al., 1960) as follows.

it cori'esponds to e. dummy statement (émp‘cy) .

a cofresponds‘ to goto o . |

| 0"~ corresponds to 0o : (dummy statement labelled by 'cr').

(p -~ A,B) corresponds to 1f p then A else B.

=, 35, = A,and VvV meanthesameas 1nALGO.u6O

The parentheses used to avoid ambiugi'by either cor’respond te‘ begin
and end delimiting comp_dund ’s’b‘atements/ er mean the same as
in ALGOL 60.

()" denotes the set of labels standing in 4 .

87
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§3. TO7540NT Y~

Cetzgory of Progranms

Programs in the General Sense

It seems to be convenient for us to consider more»geherql programs

as the backgroand for the treatments of the properties of Algol~like

statements. By a program, let us mean a partial function from an )
arbitrary set to another set together with its'denotation.' This
definition does not exclude those partial functions which cannot be
defined effectively. Instead, we shall describe‘it explicitly whenever
the definabiiity or constructiveness matters. »

' Programs will be denoted by A,B,C,... . For each A , J[A]
denotés the partial function corresponding to A , and G[A] the graph
of J[A] . Let D bve an Algol-like statement such that Deq; »
and (U,K,R,T°,J) be an interpretation. ‘Then the pair (D, (U,K,R,FO,J))
is a program, for a unique partial function J[D]., namely Pﬁ , is
detgrmined by it. Therefore we shall assume the interpretation is
fixed hereafter,’so that each Deab represeg%sva unique progrém. Thus
we identify an Algol-like statement with the program represented by it,
and the set of éuch programs will be denotea by i - |

What we shall do firstly is almost the same as considering a sub-

- category of é€ns (the category of sets) whose objects are graphs of

partial functions. The only difference lies in that the denotations
are distinguished in our treatments. For instance, we do not say A

and B are identical nor A = B., even if J[A] = J[B] , while we may

say A and B are iso@erphic.



Category pr

Each program will be called an object of category fr . The class
of all the objects, namely programs, is denoted by Ob Pr. For each
"pair A and B belonging to ObPr, Honipr(A,B) denotes the set of

triples of the form (A,§,B) such that
¢ :clA] - G[B]

and that { is a total function. The elements of H%T(A,B) are

‘ called mgs_r_n_f»_ of ®r . If there is no possibility of confusion

the morphism (A;§,B) wili be abbreviated by «§ . "We fregquently

write £ :A=B or A §, B instead of QeHomPr'(lA,B) . If A £3l¢,

then (4,ME,C) eHomor(A,C) is defined as the composition of morphisms
1] 4 B

(A,€,B) and (B,M,C) ; where T¢ in (A4,ME,C) denotes the composition !

of functions £ and 'n in the usual sense. Let id,,{ Al denote the
identity function of G[A] onto itself. The morphism (4, idG [A] »A) s
called the identity morphism of A and is denoted by 1, -

We shall see that Pr ‘satisfies the axioms of category as follows:

1. Associativity of Composition. If

7

A-E:'B—-Cg

D ,

then §("ﬂg) = ({N)¢ as morphisms.

. o & : N . :
- 2. Identity. If A -'B ; then ¢ = glA," If.C =~ A, thgn M= 1AT] .
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3. If the pairs (A Blj and (A,,B,) are distinct, then

l)
Homs, .(A;,By) N Hom, (4,,B,) =6 .

Category pr¥
Let pPr% denote the full subcategory of Pr such that Ob pPr®

cohsis‘cs of only those programs A such that
Dom(J[A]) < lﬁz'l s
where
5] = {alacis] and a, = ¢} . (See the below modification of J.) "

For each AeObPr® and BeOBPr® ,

Hea L(A,B) ;Homm(A,B) s

o

W

by definition (of full subcategory).

We conszider be. map:
Ob #r - Ob pr¥
which sends eich AeObPr onto Z,AeOb Pr® such that
J{LA] = Jla] |5

That is to say we shall forget computational processes starting from
any entry different from the normal one, namely the leftmost point, if

A is an Algol-like program modifying J[A] into J[A] LDZ'I .

[0
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Hereafter we shall be concerned with Prz' , so that A,B,C,...
will be understood as LA, z/B, LC, ... if the former do not belong to
ob PrY . Apparently the morphism (A,f,B) is a monomorphism,

¥

epinorphism, or isomorphism, according as the function ¢ is univalent
epluus et e N S iy

(1-1)s onto, or univalent and onto. We shall write { : A= B or

g

A =B to express that { : A =B is an isomorphism, and A =B +to

express that there i1s an isomorphism from A to B , namely A and

Velue-Preserving Monomorphisms

»

We pay special attention to such a monomorphism ¢ that has the
following property:
Suppose ¢ : A - B, and the function € : G[A] - G[B] sends

(a,b) eG[A] onto (c,d) €G[B] such that

a =2¢
and
bu = du for each ueX+ (X1 ,

for a subset X of U, for any ac 5

In such a case, { (as a morphism and as a function) will be said to
oreserve the values of X , or to preserve X , and we shall frequently

write (. instead of { in order to indicate that { opreserves X .

X
' Moreover, if the choice of { itself does not matter, we write A % B
instead of ., : A - B . Similarly we shall frequently write

e

A):(»B or A;—{B instead of QX:A"';B,and A =3B instead of

QU:A—oB, that is AﬁB .

[/
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Axiom 1.(a)

(0)

Axiom 2.(a)
(b)

Axiom 3.(a)
(%)
Axiom k.

Axionm 5.

Axiom 6.

Axiom 7.(a)

(v)

INLE

Axioms and Inference Rules

(AB)C = A(EC)

o((4B)C) = o(A(EC))

#

A
A

n

AN
AA

b'd :=?;A;x =g = Ax[f]p;x :=gx[f]°\ .

4L

A =g .
Lialn (VIfluU (x}) =9 .

X:=fA;y :=g = x :=f;AX[f];y :=gx{f] .

b4 and‘ y are distinct.
LAl N (VI£1U {x}) = ¢ .
xgV[F] .

[2

(Ie)

(1e")

(1)

(%)
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Axiom 8. AZ A o | , T - (zd)
L@A)nx=¢.
A++=;é '
AT =

Every function or predicate symbol occurring in A represents

a total function or predicate, by the interpretation.

Axiom 9. (1 -4,B) A . |  (IIIm)
' » ) . +
Axiom 10. (p »4A,B) 2 (~p~BA) . - - (I1I0)

L3

Axiom 11.(a) (p - (2 = A,B),C) = (pAqg~A(PA=q=B,C)) « (IIIp)

()  (p - (a~4,B),C) = (p~4C) -
| pova.
Axiom R:(a) (p = A,B)C = (p ~ AC,BC*) . | o N (IiI}zﬂ
| (b)  6(p - A,B)é Z o(p - A,C,EC":) .

cfc' .

- Axiom 13. b'e ;=f;(p - A,B) = (.px[f] ~ X :=T3A,X :=T3B). (IIIt+)

i | ) |
1f xevlf] , then p [f]. is restricted to be p [£]° .

piow b (p-A,B) = (p~Al(p ~C,D)1,3) .

LAl nvipl =9 .



ut

Axiom 15.(a) (p = x:=£,4) = (p ~x:=g,4) .

22f =g
(b) (p-x:=5A) = (p~0,4) .
pD> VL.
Axiom 16.(a) A= Af[g]
f=g.
() A= Apiq]
P=Eq .
Inference Rule 1.
A e B . o
EZA ) (13 )
X
Inference Rule 2.
A e B B X C +
~ * (Ix')
A X C -
Inference Rule 3.
A 5 B A ¥ B
A Z B
ZcXUyY.

[+
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Inference Rule k.

(r - A,E) 3 (r - B,E)

rspvag .

Inference Rule 5. (a)
oA = 1B
C = CO_[T]
A and B end with go-tos.
A and B occur in C .
(v)
CA = B
C =C _[B]
B ends with a go-to.
A occurs in C, or, A is
CA LA [A,+.e5A] , where Al""’An
1 n
are preceded by go-tos in C .
Inference Rule 6.
A T B
2 witter ¥
R[C]cXx .

A==

/5
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Inference Rule 7.

B GiA i ciB

CA e CB

=

Q
o]
=3
it
Q

D
w
|

= {cl,...,an} .

£ ne =8"ne =g

If C ends with a go-to, or A and B both begin with
labellings, then the upper left formula may be omitted,

provided that n >1 .

Inference Rule 8.

(1vg')

P r o - .
c, ol na =C,[a] NB -{Gl,...,c_xn

Same as gbove.

Inference Rule 9.

i~ i, =i i i - ~ 20 . 1 i A i
DA =A"A DB =BB Ad s [ci, . ’Gh] X B B X C
1 n
k~~
s = 5B
keln] .

/6
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The set S = {Ul""" cn} i‘s a non-empty subset of A ,
and a total function
L:8=2
sends each o, omto T, . together with S, satisfies

the following conditions:

S Do 8!
and
(o) =0 for each geS N 8" ,
where
st =y (AH ™ 0T
i
and

i\ ++ o
s' =y (AN na .
i
The following conditions are satisfied for each ie[n] .

. i . - i =1 .
(1) D~ is of the form (p. - 0.,d") and D~ 4is of the
e e
~ i i . .
form (pi - ci,a ) , where ® is either T, or
-1 ot
7,77, such that 'ri,éA UuB .
PPN - . 1 n . .
(ii) A1l the occurrences of Gi in A7,...,A7 are within
. i .
the statements of the form (pi ~ 058 ) , or all the
. ~ . us n s 4
occurrences of ci in B™,...,B" are within the
~ i i .
statements of the form (pi = 055¢ ) where €~ subjects

, . s i
to the same restriction as & above.

(1i1) RlcP1cx .

If A does not begin”v.vith a labelling c;-l such that oeS ,

then all of Al, . ..,An must end with go-tos. If B does not

begin With a labelling o1 such that oet(s) , then all of

Bl, ...,B% must end with go-tos.

/17
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§5. 7077 LONRE

Decomposivion of Statements

Let V be a subset of ¥ such that V-V contains infinite

elements Vo Wysene

infinite elements co,ol,... . By ab is denoted the set of statements

, and L Dbe a subset of £ such that £-L contains

defined by. induction as follows.

(d1) A belongs to ay -
(42) TFor each oef ,7 0 and o7t belong to &, -

(d3) Tor each xeV and a fixed element wy of V-V, x:= W

»

and Wy 1= X belong to &b .

(dl) Tor eamen n(n)e?(n) and  e),...,€,

such that either
n-1 .

(0) : : (n)
~% ¥ A\ £, - = e .
e, ¥ or e;e¥ for each ieln }] s Wy i=milwaes ... g

belongs to dbvu

(as) Tor cach p(n)€§{n) , 0Oef , and CTRRRTL R above,

(p(n>Woe -0,A) Dbelongs to &6 .

17
(el) If A and B belong to ab , then AB belongs to ab .
(A" NB =9 should be satisfied. Otherwise, AB is not

& statement.)

CLet Qi be the set of statements consisting of all - A suck that
VI[Al€ V, A" C L, and that the logical symbols other than — and V
do not occur in A .

We shall establish a function

3 d

174

O 2

which has the following characteristics.

/3



l-‘ Constructiveness:

¢ 1s total and effectively defined.

2, Correctness:

F A z §(A)  for any Aed

In other words, ® 1s an algorithm that carries out a translation
of dl 'into 570 , of which the latter consists of sequenceé of
relatively simple statements. Moreover, we can formally prove that 3§
always gives a statement equivalent to the original one in so far as
the values of variables belonzing to V and the destinations of exits
are concerned. (Actually we prove the above also for each entry. cf.
proof of Theorem 26).

For the convenience of description, we introducé two sets of

statements, as follows:

' d, = {x := flxeV end VIfic V) .
a5 = {{p ~7,A)|Ter and V[plc v}
% e YA
Besides, C{ ’ ae , &nd d; will be used, whose elements differ
~

on dl s 42 , and 03 » respectively, only in that scme suffixes

are added. (Sse Definition of & below.)

Definition of 3

Let ® and ¥ be two functidons as defined below. Then

§(a) = Y(@O(A)) for each AeZ; .

/9
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1. Definition of @

We define the function

*
where the elements of (7, are statements whose symbols are possibly

" puffixed. For each A and each VEN » Cb(A) denotes the image

of (4,v) . Actually, however, @ is extended so that, for each

arithmetic expression f such that V[f]g; V and for each Boolean
expressien p such that V[plc Vv, ®v(f) and @,(p) are

defined. Besides, two auxiliary functions

AU {plvipl e vl -7

g {2Vl v} -7

are defined.

;. N o . [N -
- Practical meaning of these functions &re as follows.

() ¢ The number of required working storages to compute £ .
. E" S

® (£f) : Tre result of suffixing function symbols occurring in f
v
S0 as to specify the allocation of working storages.

(v. is irrelevant.)

Np) The number of auxiliary labels to compute P , which is-the

AN

number of occurrences of symbol — in p .

u(p) : The number of required working storages to compute p .

20



®‘(P) : The result of suffixing p to specify all the
v

auxiliary labels using index greater than v

and Similar to A(p) and @v(p)

Functions ® , AN, and p are defined simulbaneously by

-nduction on statements as follows.

tomic Statements

(al) C =AM 0, Or O
. and
(a2) ®V(C) =C for each v .
aC) =0
(a3) C =x:=7%, where £ =1y :

=
~~
Hy
~—~
0
(@]

e .(f) = £ for each v .

i

x‘:= ®v(f)

)
a
S~

n

Statements (non-atomic)
(v1) © = £B :
@v(u) = @V(A)(@w}\(A) (B)

MC) = MA) FA(B) -

S

b "



102

(b2) ' C =x :=1f, waere f =
u(f) = Mm ,
where

0<i<n-1

[
=
It

and m 1s the number of f, such that fiﬁv .

(n) . |
9 (f) = f oee .
Ov<‘) ﬂM+l,...,M%m Cb< O) ®v(fn—l)

@v(C) and M(C) are defined by (1) and (2) above.

<

N v a3 n ol
(b3, C = (p - 4,B) , where D = p( >*O"'*n-l :

where M and wm are defined by (3) and (L) above.

P .
e 3 = h\n) G (
U\J"*‘}> = Pl .o, MEm OV(fO)'..@V\fn—l) .

(ii) If A is not of the form =t

22

or B is not A, then

(3)

()

(5)

(6)

0,(C) = (®v+K(A)4K(B)(P) WL, 2 ®V(A)’®v+K(A)(B>).’

(7)



vwhere
N =v+A(4) +NB) +N(p) .,
and

AC) = W2 . | 8)

(¢1) C = (—~p —A,B) :

®\) ('"l p) = —1\‘;,_1 ®\)(P) .

.@V(C) and M(C) are defined by (5)-(8) above. (Substitute -—p

in place of p .)

(c2) C = (pvVva~—AB) :

Mo v =Mp)tMa) -

GV(C) and A(C) are defined by (5)-(8) above. (Subsitute p Vg

in place of D .)

2. Definition of v

We definé the function
) ; % U * *
Y a5 u 45 -4,

* ¥ * v . '
By A , f , and p will be denocted @v(A) 5 @Q(f) , and

®v(P) , respectively, for certain values of v . Thus, for instance,

23
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(bl) below, i.e.,
: * ¥, ¥* +*
¥(AB) = ¥(4)¥(B")
ieads as follows:

L % %
Since .C = AB , e, (C) is of the form A B . Defin

y(A)¥(E") es ¥(8, (C)) -

vy plays the role of an accumulator.

Y is defined by induction as follows.

Atomic Statements

(al) ¥(A) = A .
(82) ¥(0) =0 .
‘ ‘l’(d_l) = 0“1 .
Ay
(i1) If x £ Wy » then ¥(x :=y) is defined by (1) below.
(Substitute y in place of ¥ .)
Statements (non-atomic)

¥* ¥ * L3
(b1) ¥(AB ) =v(A)¥B) .

(v2) (i) v(w. := n(o)) =Wy = n(o) .
(11)  ¥(w,y := (gc?:)L)...a(m) VO"'fn-l)

Crey+Cos Wy = Tr(n)woul. By, 4 s (21)

24



where
{ £, £,V
u, = < for ie[n-1] ,
v . £ AV
Vae(s)) %
CO is WO 1= fo 5
and
&~
t A fi€V )
C., =4 : for each iein-1] ,
Todu, = £, LAV
L i i i

B{i) being defined by the following induction:

.

g(0) =0
B(1) f.ev
B(i+l) = -
5(1)_+1 fi,éV
v(x := f*) = Y(WO 1= f-_x-)x =Wy - (x # WO) (L)

w6~ = (69 ~o,n)

Y((Pé?i) o) T el () M) (R 21D

=Cns " Co  (P™wouy Upei—>T, N)

il

. where CO’ ""Cn-l’ UpseeesB, 4 BTE the same as above.

(ef. (b2)(ii).)
* * *
¥ =y e) 473 )

* : 1 5 R N |
=@ )2 S NHE )% @) R (e - @

(A is met of the form T , 0or B isnot A .)

25
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(1) (1) ¥((m » =7,m)

-1
&

*
= ¥((p - Ué)/\-)>76
.(ii) If A 4is not of the form 7 , or B is not A , then

*
k4 - ) i fine bove.
'((—'6 P Y (1)7(2) A,B/) is defined by (2) avove

* *
Substitute - P in place of p .)
(e2) (1) ¥((® va -r,0)

= v((p ~T,A))¥((q ~T,A) .

(ii) If A is not of the form T , or B is not A , then

* * e :
¥((p Vg A,B)) is defined by (2) above.

7 (1)7(2)
*'.
(Substitute p* v ¥ in place of p .)

Exammle

We consider the statement.

if x <0 then x := =X , ' - (D)

which was used as an exemple of compilation in (Igarashi, 1.968).

Here, let us allow only binary - , and see how the statement

if x <0 then x := 0-x , (2)
namely
(x <0 = x := 0-x,A) y (3)

in our notation, is treated.

Let A Dbe (p(“L>x - X 1= n(a)n(o)x,l\) . Then,
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1
:D*
]
—~~
©
—
~
t
i
»
|
3
=~
n
~
b
—
O
N
ta]
=
~

8,(A) =
and

W 1, -
Y(A) = Wy n:x;(p( )wo - cl,A)c‘c * ;

Especially, we define x <0 as p “/x R 0 as n(o) , and xX-y

(0)

as T ’‘Xy , so that A becomes (3).
4—-'.'.(.4— 3 1 . ), * 3 h) L )
For readability's sake, 3(A) i.e., v(A) -will ve written

in AIGOL 60 and listed with corresponding actions, symbols L g,

.

and 0, Dbeing replaced by acc, L1, and 12, respectively.

2
ace = X; ‘ load x
if acc < O then go to Ll; jump on minus Ll
£0 to 12; Jump 12
Ll: .insert lebel L1
acc := O} load O
aCC 1= ale - X subtract x
X := acc; store x
L2: insert label L2

()

Statement (4) is different only in trivial points from program /8

(in the above paper) for which

27
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Q@ =8
“ fx}
is proved as an example of derivation; That proof, for this particular
pair of statements, needed two pages of derivation (20 steps) preceded
. by one page (10 steps) for an auxiliary formula, being derived directly
from the previous formai system. In the present paper, however, we,

shall prove, also formally, that

AZ @(A)

is valid for every Aed, , which implies that (2) = ().
: - y-{ace}

E U
: M%TIT%E@%XK%UTU 3,

' S. Igarashi, Semantics of Algol-like Statements,

Semantics of Algorithmic Languages, (E. Engeler, ed.),

Lecture Note in Mathematics, vol. 188, Springer Verlag

Berlin-heidelberg-New York, (1971), pp. 117-177. Also,

Stanford Artificial Intelligence Project Memo AIM-129,

or Computer Science Department Report No.:C8167,

Stanford University, (1970) .

Z VOO XBRIDR N — v“rAT ntHY.
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