On Realization of Kirby-Siebenmann's

Obstructions by 6-manifolds

Shigeo ICHIRAKU

1. Introduction

Let M^n be a closed topological manifold. By Kirby-Siebenmann ([5], [6]), an obstruction to triangulate M^n is defined as an element of $H^4(M^n\colon Z_2)$, provided $n\geqslant 5$. We will denote this obstruction by k(M). In this paper, we will consider the following problem.

Problem. Let M_0^n be a closed PL manifold. For a given non-zero element $\gamma \in H^4(M_0^n; Z_2)$, do there exist a non-triangulable manifold M^n and a homotopy equivalence $f: M_0^n \longrightarrow M^n$ such that $f^*k(M^n) = \gamma$? Here, $f^*: H^4(M^n; Z_2) \longrightarrow H^4(M_0^n; Z_2)$ is the isomorphism induced by f.

Since there exists a non-triangulable manifold M^6 which is homotopy equivalent to $S^4 \times S^2$ ([5], Introduction p.v), this problem for $M^n_0 = S^4 \times S^2$ has an affirmative answer. In some cases, however, the problem has a negative answer. For example, Dr. S. Fukuhara has proved the following ([3]); let M^5 be a closed (possibly non-triangulable) topological

manifold which is homotopy equivalent to $S^4 \times S^1$, then M^5 is really homeomorphic to $S^4 \times S^1$.

When M_0^6 is a closed manifold with $\mathcal{T}_1(M_0^6)$ is free and $H^3(M_0^6\colon Z_2)=0$, the problem will be answered affirmatively. And the problem for $M_0^n=S^4\times S^{n-4}$ will be solved, provided $n\geqslant 9$. (See Corollary 2.)

The method of this paper can be found in [5] and [9]. The author wishes to express his hearty thanks to Professor K. Kawakubo who showed him a construction of non-triangulable manifold having the homotopy type of CP³.

2. Six-dimensional case

In dimension six, our results are as follow.

Theorem 1. Let M_0^6 be a closed PL 6-manifold with $\mathrm{H}^3(\mathrm{M}_0^6\colon \mathrm{Z}_2)=0$ and γ a non-zero element of $\mathrm{H}^4(\mathrm{M}_0^6\colon \mathrm{Z}_2)$ whose Poincare dual γ is spherical. Then there exist a non-triangulable manifold M^6 and a homotopy equivalence $\mathrm{f}:\mathrm{M}_0^6\longrightarrow\mathrm{M}^6$ such that $\mathrm{f}^*\mathrm{k}(\mathrm{M})=\gamma$, where $\mathrm{f}^*:\mathrm{H}^4(\mathrm{M}^6\colon \mathrm{Z}_2)\longrightarrow\mathrm{H}^4(\mathrm{M}_0^6\colon \mathrm{Z}_2)$ is the isomorphism induced by $\mathrm{f}.$

Corollary 1. Let M_0^6 be a closed PL 6-manifold. Suppose $H_2(\mathcal{R}_1(M_0^6)\colon Z_2)=0$ and $H^3(M_0^6\colon Z_2)=0$. Then, for any non-zero element γ in $H^4(M_0^6\colon Z_2)$, there exist a non-

triangulable manifold M^6 and a homotopy equivalence $f: M_0^6 \longrightarrow M^6$ such that $f*k(M) = \gamma$, where $f*: H^4(M^6: Z_2) \longrightarrow H^4(M_0^6: Z_2)$ is the isomorphism induced by f.

In Theorem 1, we cannot drop the assumption that the Poincare dual $\overline{\gamma}$ of γ is spherical. Hence, in Corollary 1, we cannot drop the assumption about the fundamental group of M_0^6 . The following proposition shows both.

Proposition 1. Let M^6 be a closed topological manifold. Suppose M^6 has the same homotopy type of $S^4\times S^1\times S^1$, then M^6 is triangulable.

First, we prove Corollary 1 assuming Theorem 1.

Proof of Corollary 1. By the theorem of Hopf (see [1], p.356), the fact that $H_2(\mathcal{R}_1(M_0^6)\colon Z_2)=0$ implies that any element of $H_2(M_0^6\colon Z_2)$ is spherical. This reduces Corollary 1 to Theorem 1.

To prove Theorem 1, we need some lemmas. The following is proved in [5].

Lemma 1. Let E^{n-1} be a closed simply-connected PL manifold such that $H^3(E^{n-1}\colon Z_2)\neq 0$ and that the Bockstein

homomorphism $\beta: H^3(E^{n-1}: Z_2) \longrightarrow H^4(E^{n-1}: Z)$ is trivial. If $n \geqslant 6$, then there exists a homeomorphism $h_0: E^{n-1} \longrightarrow E^{n-1}$ which is homotopic to the identity but never isotopic to a PL homeomorphism.

For completeness, we supply the proof of Lemma 1.

Proof of Lemma 1. Since $H^3(E^{n-1}:Z_2) \neq 0$ and $n \geqslant 6$, there exists a PL structure $\mathscr B$ on E^{n-1} which is not isotopic to the original PL structure on E^{n-1} ([5], [6]). Since E^{n-1} is simply-connected and the Bockstein homomorphism $\mathcal B: H^3(E^{n-1}:Z_2) \longrightarrow H^4(E^{n-1}:Z)$ is trivial, there exists a PL homeomorphism $g:E^{n-1} \longrightarrow E^{n-1}_{\mathscr B}$ which is homotopic to the identity by D. Sullivan ([7], [10]). Put $h_0 = 1$ "identity" $\mathfrak B$, where "identity" $\mathfrak B$ is a homeomorphism defined by "identity" $\mathfrak B$ is isotopic to a PL homeomorphism, then "identity" $\mathfrak B$ is isotopic to a PL homeomorphism, then "identity" $\mathfrak B$ is a PL homeomorphism. This is a contradiction to the choice of $\mathfrak B$. Therefore h_0 is never isotopic to a PL homeomorphism. This proves the lemma.

Lemma 2. Let \mathbf{E}^{n-1} be a PL manifold which is a fibration

with fibre S^3 over a simply-connected closed manifold N^{n-4} such that $H^4(N^{n-4}:Z)=H^4(N^{n-4}:Z_2)=0$. If $n\geqslant 6$, then there exists a homeomorphism $h_0:E^{n-1}\longrightarrow E^{n-1}$ which is homotopic to the identity but never isotopic to a PL homeomorphism.

Remark. If we put $h = h_0 \times id$. : $E^{n-1} \times R \longrightarrow E^{n-1} \times R$, then h is also never isotopic to a PL homeomorphism by stability $\mathcal{T}_3(\text{TOP}_m, \text{PL}_m) = \mathcal{T}_3(\text{TOP/PL})$ ([5], [6]).

Proof of Lemma 2. Note that E^{n-1} is simply-connected. By Lemma 1, we need only prove that $H^3(E^{n-1}:Z_2)$ is non-trivial and that the Bockstein homomorphism $\beta:H^3(E^{n-1}:Z_2) \longrightarrow H^4(E^{n-1}:Z)$ is trivial.

Applying the generalized Gysin cohomology exact sequence to the fibration $E^{n-1} \longrightarrow N^{n-4}$ with fibre S³, we obtain the following exact sequence:

$$H^{3}(E^{n-1}:G) \longrightarrow H^{0}(N^{n-4}:G) \longrightarrow H^{4}(N^{n-4}:G)$$

$$\longrightarrow H^{4}(E^{n-1}:G) \longrightarrow H^{1}(N^{n-4}:G)$$

where the coefficient group G is Z or Z_2 . By hypothesis, $H^4(N^{n-4}:Z)=H^4(N^{n-4}:Z_2)=0$ and $H^1(N^{n-4}:Z)=Hom(H_1(N^{n-4}:Z),Z)=0$.

Therefore, $H^3(E^{n-1}:Z_2)$ is non-trivial and $H^4(E^{n-1}:Z)$ is trivial. This proves the lemma.

Proof of Theorem 1. Since $\overline{\gamma}$ is spherical, there exists a continuous map $S^2 \longrightarrow M_0^6$ representing $\overline{\gamma} \in H_2(M_0^6 : Z_2)$. By general position, we can assume that this S^2 is PL embedded in M_0^6 . By Haefliger-Wall [4], S^2 has a normal PL disk bundle $D(\overline{\gamma})$ in M_0^6 .

Clearly, Int $D(\mathcal{I}) - S^2$ is PL homeomorphic to $\mathfrak{I}(\mathcal{I}) \times R$. Put $\mathfrak{I}(\mathcal{I}) = E^5$, then by Lemma 2 and Remark we can find a homeomorphism $h: E^5 \times R \longrightarrow E^5 \times R$ which is homotopic to the identity but never isotopic to a PL homeomorphism. Clearly $M_0^6 - S^2$ contains $E^5 \times R$ as an open PL collar of the end at S^2 . Then M_0^6 can be written obviously as $(M_0^6 - S^2) \longrightarrow_{id_{E\times R}} Int D(\mathcal{I})$.

Let M^6 be a topological manifold $(M_0^6 - S^2) \underset{h}{\vee} Int D(?)$ obtained by pasting Int D(?) to $M_0^6 - S^2$ by the above homeomorphism $h: E^5 \times R \longrightarrow E^5 \times R$. Let $H_0: E^5 \times I \longrightarrow E^5$ be a homotopy connecting h_0 to the identity. Put $H=H_0\times id: (E^5\times R)\times I \longrightarrow E^5\times R$. Consider the adjunction space $\mathcal{M}\mathcal{C}=((M_0^6 - S^2)\times I) \underset{H}{\vee} Int D(?)$ obtained by pasting $(M_0^6 - S^2)\times I$ to Int D(?) by the continuous map $H:(E^5\times R)\times I \longrightarrow E^5\times R$. Then, clearly, $\mathcal{M}\mathcal{C}$ is homeomorphic to the adjunction space $(M_0^6 - Int D(?))\times I \underset{H_0}{\vee} D(?)$ obtained

by pasting together $(M_0^6 - \operatorname{Int} D(\mathfrak{d})) \times I$ and $D(\mathfrak{d})$ by the continuous map $H_0 : E^5 \times I \longrightarrow E^5$. Then, we can see that \mathcal{M}_0^6 has both M_0^6 and M^6 as deformation retracts. (see [8], p.21, Adjunction Lemma.) Define a homotopy equivalence $f : M_0^6 \longrightarrow M^6$ to be the composition of the following maps.

$$M_0^6 \xrightarrow{M^6} \text{inclusion} \xrightarrow{\text{deformation retraction}} M^6$$

Next, we will show that M^6 is non-triangulable. Suppose M^6 is triangulable. Both $(M_0^6-S^2)$ and Int $D(\mathfrak{d})$ are open PL submanifolds of M^6 . We denote these submanifolds with induced PL structures from M^6 by $(M_0^6-S^2)_{\mathfrak{d}}$ and $(Int D(\mathfrak{d}))_{\mathfrak{d}}$. Then the composition of

"identity" :
$$(E^5 \times R)_{\alpha \mid E^5 \times R} \longrightarrow E^5 \times R$$
,

h : $E^5 \times R \longrightarrow E^5 \times R$ and

"identity" : $E^5 \times R \longrightarrow (E^5 \times R)_{\beta \mid E^5 \times R}$

is a PL homeomorphism. On the other hand, by the following diagram, we see that $H^3(M_0^6 - S^2 : Z_2) = 0$.

where the holizontal sequence is exact and the vertical maps are Poincare and Alexander dualities. Therefore, \swarrow is concordant to the original PL structure on $M_0^6 - S^2$ and hence $\bowtie | E^5 \times R$ is concordant to the original PL structure on $E^5 \times R$ ([5], [6]). This means that "identity": $(E^5 \times R)_{\swarrow | E^5 \times R} \longrightarrow E^5 \times R$ is isotopic to a PL homeomorphism. In a similar way, we have that "identity": $E^5 \times R \longrightarrow (E^5 \times R)_{\lozenge | E^5 \times R}$ is isotopic to a PL homeomorphism. Then h itself is isotopic to a PL homeomorphism which is a contradiction. Therefore M^6 must be non-triangulable.

Note that $M^6 - S^2 = M_0^6 - S^2$ is triangulable. Then the naturality of Kirby-Siebenmann's obstruction with respect to inclusion maps of open submanifolds and the following commutative diagram imply that S^2 in M^6 represents the Poincare dual of k(M) in $H_2(M^6 : Z_2)$.

where the holizontal sequences are exact and the vertical isomorphisms are Poincare and Alexander dualities. Now, it is clear that $f^* k(M^6) = \gamma$, this proves the theorem.

Proof of Proposition 1. By virtue of a topological version ([8]) of fibering theorem due to F.T. Farrell [2], M^6 is a fibering over a circle, since $Wh(\Pi_1(M^6)) = 0$. Therefore there exists a submanifold N^5 of M^6 and a homeomorphism $g: N^5 \longrightarrow N^5$ such that the mapping torus of g is homeomorphic to M^6 . Since N^5 has the homotopy type of $S^4 \times S^1$, N^5 is really homeomorphic to $S^4 \times S^1$ by S. Fukuhara [3]. Since $H^3(S^4 \times S^1 : Z_2) = 0$, any homeomorphism of $S^4 \times S^1$ onto itself is isotopic to a PL homeomorphism ([5], [6]). Therefore M^6 is triangulable. This proves the proposition.

3. Higher dimensional case

In higher dimensional case, we can only obtain a weaker result.

Theorem 2. Let \mathbb{M}_0^n be a closed PL manifold of dimension $n \geqslant 6$ with $\mathbb{H}^3(\mathbb{M}_0^n:\mathbb{Z}_2)=0$. Suppose γ is a non-zero element of $\mathbb{H}^4(\mathbb{M}_0^n:\mathbb{Z}_2)$ whose Poincare dual $\overline{\gamma}$ in $\mathbb{H}_{n-4}(\mathbb{M}_0^n:\mathbb{Z}_2)$ is represented by a simply-connected (n-4)-submanifold \mathbb{N}^{n-4}

with $H^4(N^{n-4}:Z) = H^4(N^{n-4}:Z_2) = H^3(N^{n-4}:Z_2) = 0$. Then there exist a non-triangulable manifold M^n and a homotopy equivalence $f:M_0^n \longrightarrow M^n$ such that $f^*k(M^n) = \gamma$.

As an application of Theorem 2, we can obtain a number of non-triangulable manifolds which are homotopy equivalent to some PL manifolds.

Corollary 2. Let N^{n-4} be a closed 4-connected PL manifold and L^4 a simply-connected 4-manifold. If $n \ge 9$, then there exists a non-triangulable manifold which has the homotopy type of $L^4 \times N^{n-4}$.

Proof of Theorem 2. By the assumption, there exists a (n-4)-submanifold N^{n-4} of M_0^n representing $\overline{\gamma}$. Let $D(\overline{\gamma})$ be a normal block bundle of N^{n-4} in M_0^n . Put $E^{n-1} = \overline{\gamma} D(\overline{\gamma})$, then by Lemma 2 and Remark, there exists a homeomorphism $h: E^{n-1} \times R \longrightarrow E^{n-1} \times R$ which is homotopic to the identity but never isotopic to a PL homeomorphism. As before, put $M^n = (M_0^n - N^{n-4})_h^{\nu}$ Int $D(\overline{\gamma})$. Then the rest of the proof is exactly same as that of Theorem 1.

Proof of Corollary 2. By the preceeding arguments, we have only to show that $H^3(L^4 \times N^{n-4} : Z_2) = 0$. By the

Kunneth formula and the Poincare duality, we have the following:

$$H^{3}(L^{4} \times N^{n-4} : Z_{2})$$

$$= H^{3}(N^{n-4}:Z_{2}) \oplus [H^{2}(L^{4}:Z) \otimes H^{1}(N^{n-4}:Z_{2})] \oplus [H^{2}(L^{4}:Z) * H^{2}(N^{n-4}:Z_{2})]$$

$$= 0$$

This proves the corollary.

Osaka University

References

- [1] H. Cartan S. Eilenberg: Homological Algebra, Princeton Univ. Press, 1956.
- [2] F.T. Farrell: Ph. D. Thesis, Yale University, New Heaven, U.S.A., 1967.
- [3] S. Fukuhara: On The Hauptvermutung of 5-dimensional Manifolds and s-Cobordisms, to appear.
- [4] A. Haefliger and C.T.C. Wall: Piecewise Linear Bundles in the Stable Range, Topology, 4 (1969), 209-214.
- [5] R.C. Kirby: Lectures on Triangulations of Manifolds, Lecture Notes, UCLA, 1969.
- [6] R.C. Kirby and L.C. Siebenmann: On the Triangulation of Manifolds and Hauptvermutung, Bull. Amer. Math. Soc., 75 (1969), 742-749.
- [7] C. Rourke: The Hauptvermutung according to Sullivan, mimeographed notes, Institute for Advanced Study, Princeton, New Jersey, U.S.A.
- [8] L.C. Siebenmann: A Total Whitehead Torsion Obstruction to Fibering over the Circle, Comment. Math. Helv., 45 (1970), 1-48.
- [9] L.C. Siebenmann: Are Non-triangulable Manifolds
 Triangulable?, Proc. Athens, Georgia Topology Conference,
 August 1969.
- [10] D. Sullivan: Geometric Topology Seminar Notes (Triangulating and smoothing homotopy equivalences and homeomorphisms),
 Princeton University (mimeographed), 1967.