Some remarks on the Kirby-Siebenmann class

By S. Morita

§1. Statement of results.

Let $k \in H^4(BTop; \mathbb{Z}_2)$ be the Kirby-Siebenmann class, i.e. the unique obstruction to stable PL reducibility of Top bundles. In this note we remark some elementary properties of k and using them we construct a few non-triangulable manifolds of dimension 5 and 6.

First we show

Proposition 1. k is primitive, i.e. if μ : BTop × BTop → BTop is the natural H-space structure on BTop, then

$$\mu^*(k) = k \times 1 + 1 \times k.$$

For a topological manifold M, we define the Kirby-Siebenmann class of M, k(M), to be that of the tangent micro-bundle of M. Then we have

Corollary 2. (i) $k(M) = k(\nu(M))$, where $\nu(M)$ is the stable normal bundle of M.

(ii)
$$k(M \times N) = k(M) \times 1 + 1 \times k(N)$$
.

Next we consider the following commutative diagram.

And we show

Proposition 3. $m = k_2^2 + x \mod 2 \in H^4(G/Top; \mathbb{Z}_2)$, where k_2

is the first Kervaire obstruction and x mod 2 is the mod 2 of the fundamental class of $K(Z_{(2)},4)$. (Recall that G/Top localized at $2 = \sum_{i \ge 0} K(Z_2,4i+2) \times \prod_{i \ge 1} K(Z_{(2)},4i)$, Sullivan [1] and Kirby-Siebenmann.)

As a corollary, we obtain

Corollary 4. Let $I_j = (i_{n_j}^j, \dots, i_1^j)$ be admissible $(j = 1, \dots, m)$ such that, $e(I_j) < 4$ and $i_1^j \ne 1$, then $P(Sq^I 1(k), \dots, Sq^I m(k)) \ne 0$

for any polynomial $P(x_1, \dots, x_m) \neq 0$.

On the other hand, it is easy to show Proposition 5. $Sq^{1}(k) \neq 0$.

By using Proposition 3. and the surgery theory in Top category (C.T.C. Wall [2]), we obtain

Theorem 6. Let M^5 be an oriented closed PL manifold with $\pi_1(M) = Z_2$, then there is a non-triangulable topological manifold N^5 having the same homotopy type as M.

Theorem 7. Let M^5 be a non-orientable closed topological manifold with $\pi_1(M) = \mathbb{Z}_2$. Then for any homotopy equivalence $f: N^5 \to M^5$

we have

$$k(N) = f^*(k(M)).$$

Theorem 8. There is a non-triangulable closed topological manifold M^6 having the same homotopy type as PR^6 .

§2. Proofs.

Proof of Proposition 1. Consider the following commutative diagram.

BPL
$$\times$$
 BPL $\xrightarrow{\mu}$ BPL \downarrow p BTop \times BTop $\xrightarrow{\mu}$ BTop

Clearly $p^*(k) = 0$, hence $(p \times p)^* \mu^*(k) = 0$. But since $H^i(BTop; \mathbb{Z}_2) \cong H^i(BPL; \mathbb{Z}_2)$ for $i \leq 3$, we have the result.

Q.E.D.

Proof of Proposition 3. By Sullivan [4] and Kirby-Siebenmann G/PL localized at 2 = $K(Z_2,2) \times_{\delta Sq^2} K(Z_{(2)},4)$ $\times \prod_{i\geq 1} K(Z_2,4i+2) \times \prod_{i\geq 2} K(Z_{(2)},4i)$

G/Top localized at
$$2 = \prod_{i \geq 0} K(Z_2, 4i+2) \times \prod_{i \geq 1} K(Z_{(2)}, 4i)$$
.

Therefore $H^4(G/Top; \mathbb{Z}_2) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$ generated by k_2^2 and x mod 2. The Serre exact sequence of the fibering $Top/PL \to G/PL \to G/Top$ yields

$$0 \rightarrow H^{3}(\text{Top/PL}; \mathbb{Z}_{2}) \stackrel{\mathfrak{T}}{\rightarrow} H^{4}(\text{G/Top}; \mathbb{Z}_{2}) \stackrel{p^{*}}{\rightarrow} H^{4}(\text{G/PL}; \mathbb{Z}_{2}) \rightarrow \cdots$$

Thus m = T(u) is the non-zero element of Ker p^* ($u \in H^3(Top/PL; \mathbb{Z}_2)$) is the fundamental class).

Now clearly $p^*(k_2^2) \neq 0$ and $p^*(x \text{ mod } 2) \neq 0$. Hence we have

$$m = k_2^2 + x \mod 2.$$

Q.E.D.

Corollary 4 is an immediate consequence of Proposition 3.

Proof of Proposition 5. This follows from the Serre exact sequence of the fibering

Top/PL → BSpinPL → BSpinTop.

Proof of Theorem 6. According to Wall [2], the surgery theory is valid in Top category. So we use it.

We first recall that $L_5(\mathbb{Z}_2,+)=0$ ([2]) .

Now there is a fibering sequence

$$\cdots \rightarrow \text{Top/PL} \rightarrow \text{G/PL} \rightarrow \text{G/Top} \stackrel{\text{M}}{\rightarrow} \text{B(Top/PL)}$$
.

Thus we have an exact sequence

$$\cdots \rightarrow [M,G/PL] \rightarrow [M,G/Top] \xrightarrow{m} H4(M;Z_2)$$

Now [M,G/Top] \cong H⁴(M;Z) \oplus H²(M;Z₂) and by Proposition 3, m_{*} is given by

$$m_*(y \oplus z) = y \mod 2 + z^2$$

where $y \in H^4(M; \mathbb{Z})$ and $z \in H^2(M; \mathbb{Z}_2)$. Since M is orientable and $\pi_1(M) = \mathbb{Z}_2$, we have

$$H^4(M;Z) \xrightarrow{\text{mod } 2} H^4(M;Z_2).$$

therefore m_* is epimorphic. Hence the map

$$[M,G/PL] \rightarrow [M,G/Top]$$

is not epimorphic. Since the surgery obstruction is trivial, we obtain

$$\mathcal{G}_{PL}(M) \rightarrow \mathcal{G}_{Top}(M)$$

is not epimorphic. This proves the proposition.

Q.E.D.

Proof of Theorem 7. Let $f: N \to M$ be a homotopy equivalence. It suffices to show that if M is triangulable, then so is N. Thus assume that M is a PL manifold. Since M is non-orientable, the map

$$H^4(M;Z) \xrightarrow{\text{mod } 2} H^4(M;Z_2)$$

is the zero map.

Let $z \in H^2(M; \mathbb{Z}_2)$ be any element and assume $z^2 \neq 0$. Then since $H^4(M; \mathbb{Z}_2) \cong \mathbb{Z}_2$, z^2 is the unique non-zero element of $H^4(M; \mathbb{Z}_2)$. Since M is non-orientable, we have

$$Sq^{1}(z^{2}) \neq 0$$
.

On the other hand $\operatorname{Sq}^1(\mathbf{z}^2) = \operatorname{Sq}^1\operatorname{Sq}^2(\mathbf{z}) = \operatorname{Sq}^3(\mathbf{z}) = 0$. This is a contradiction. Hence $\mathbf{z}^2 = 0$ and we have $m_* = 0$.

Therefore the map [M,G/PL] \rightarrow [M,G/Top] is epimorphic. Since $L_5(\mathbb{Z}_2,-)=0$, it follows that

$$\mathcal{G}_{PL}(M) \rightarrow \mathcal{G}_{Top}(M)$$

is epimorphic. In particular N is triangulable.

Q.E.D.

Proof of Theorem 8. According to Wall [2], $L_7(Z_2,-) = 0$ and $L_6(Z_2,-) = Z_2$ given by the Kervaire invariant. Now we have $[PR^6,G/Top] \cong H^2(PR^6;Z_2) \oplus H^4(PR^6;Z) \oplus H^6(PR^6;Z_2)$

$$\cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$$
.

Let $u \in H^1(PR^6; \mathbb{Z}_2)$ and $x \in H^4(PR^6; \mathbb{Z})$ be the generators, thus $x \mod 2 = u^4$. Then it is easy to show

$$(u^2,0,0), (u^2,0,u^6), (0,x,0), (0,x,u^6)$$

are not in $Im([FR^6,G/PL] \rightarrow [PR^6,G/Top])$.

Now a simple calculation shows that the surgery obstruction of (0,x,0) is zero. Hence the map

$$\mathcal{G}_{PL}(PR^6) \rightarrow \mathcal{G}_{Top}(PR^6)$$

is not epimorphic. This proves the theorem.

Q.E.D.

References

- [1] Sullivan, D., Triangulating and Smoothing Homotopy Equivalences and Homeomorphisms. Geometric Topology seminar notes,

 Princeton University, 1967.
- [2] Wall, C.T.C., Surgery on compact manifolds, Academic Press, 1970.

University of Tokyo