43

Unitary representations of p-adic division algebras

By Hiroaki Hijikata Tetsuo Mizuno

Let; p = a prime, k = a y-adic field or $F_q((t))$ such that y divides p or q is a power of p, E = a central simple algebra over k, E^{\times} = the multiplicative group of E, $E^{(1)} = \left\{ \chi \in E^{\times} \mid \text{ reduced norm of } x = 1 \right\}$ and $n^2 = \left[E : k \right]$. Then, by the natural topology from k, E is a locally compact (totally disconnected) topological group, and its center is exactly k^{\times} .

Problem (I): Find all the unitary representations of E^{\times} , $E^{(1)}$ and E^{\times}/k^{\times} .

Note that E^{\times} (resp. $E^{(1)}$; resp. E^{\times}/k^{\times}) is the group of k-rational points of a k-form of GL_n (resp. SL_n ; resp. PGL_n). The problem (I) is solved so far only when n=2, p odd and $E=M_2(k)$ [by Kirillov]. Suppose E to be a division algebra, then E has a unique maximal compact subring R=R(E), and for any subring L of E, $R(L)=R(E)\cap L$ is a unique maximal compact subring of L. Then since we have $E^{(1)}\subset R(E)$ (hence $E^{(1)}=R^{\times}\cap E^{(1)}$), and since $R^{\times}/R(k)^{\times}$ is of finite index in E^{\times}/k^{\times} , the solution of (I) is not very far from that of the following.

Problem (I'): Find all the unitary representations of R(E)X/R(k)X.

Again under the assumption that n=2, (i.e. E is a quaternion) and p odd, (I') is solved by Gelfond-Graev. Now we have solved (I') and (I) under the following

Assumption: (1) E is a division algebra, (2) n is an odd prime different from p, (3) k contains a primitive n-th root of unity.

Our result is surprisingly simple, for instance simpler than the

Gelfond-Graev case of n=2. Indeed every representation of $R^{\times}/R(k)^{\times}$ can be obtained as a monomial representation. We start with a maximal subfield L, take a character χ of $R(L)^{\times}/R(k)^{\times}$, extend χ to a linear character χ of a certain open subgroup A which we choose as big as possible, then induce χ from A to whole $R^{\times}/R(k)^{\times}$. Then we get all the representations.

Severe as our assumptions are, our result provides the first example of a solution of (I) for groups with (absolute) rank greater than 2.