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Oscillatory Property for Second Order Differential Equations
Taro Yoshizawa

There arc many results on oscillatory property of solutions of differential equations. In this
article, we shall discuss oscillatory property of solutions and the existence of a bounded nonoscil-
Jatory solution of second order differential equations by applying Lizpunov second method.

Consider an equation
(N GMx)" + f(t,x,x)=20 | ¢ =Et_):

where 1(t)> 0 iscontinuouson I=[0,%) and f(t, x,u) iscontinuouson I XRXR,
R= (-0, ). To discuss oscillatory property of solutions of (1), we consider an equivalent

system

R A 4
(2) x' = X0’ y (1, x, D

A solution x(t) of (1) which exists in the future is said to be oscillatory if forevery T> 0 there
isa t,>T suchthat x(t,)=0. Moreover, the equation (1) is said to be oscillatory if every

solution of (1) which exists in the future is oscillatory.

Theorem 1. Assume that there exist two continuous scalar function V{1, x,y) and
W(t,x,y) definedon t=>T, 0<x<K, jyi<e andon t=T, -K<x<0, [y <,
respectively, where T can be large and K> 0 or K=o, and assume that. V{1,%,y) and
W(t, X, y) satisfy the following conditions;

() V{t,x,y)—~>o uniformly for 0<x<K and —eo<y<oo a5 t—+co, ana

W(t, x, y) = o uniformly for —K<x<0 and —o<y<oo 25 1—> oo,
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i) V(z)(t, x(t), y()) <0 for all sufficiently large t, where {x(t), y(t)} is « solution of

(2) such that 0<x(t) <K foralllarge t and
lim - [V, %+ B, y(+ ) = VG, 2@, (),

Vi, (6 % (D), (1)) =
n=>o*

(i) W 2)(t, x(1), y(1)) <0 f{orall sufficiently large t, where {x(t), y{t)} isa solution

of (2) such that —K <x(t)<0 foralllarge t and
{WCe+ D, x(t+ 1), v+ ) = WG, X8, y(0))

+
o |-

W (6, %(0), ¥(B) = Lim
h=>0
Then the solution x(t) of (1) such that | x(t)]| <K foralllarge t isoscillatory. Moreover,

if K=o, the equation (1) is oscillatory,
Let x(t) be a solution of (1) which is defined on [ty, e ) and bounded by X for
Then x(t) iseither positive or negative

£
i

2roof.
all large t, and suppose that x(t) is not oscillatory.
Now assume that 0<x(t) <X forall t>0 where ¢=T. Byihe

for aillarge t.
condition (i), if t issufficiently large, say t=>t;, wehave
V(o, x(0), y(0)) < V(,%,¥)

However, by the condition (ii), we have

jyl<ee,
V(t, x(1), y{©)) < V{(g, x{0), y(0))

forall 0<x<XK,
T, weaave aisoz

i

is osciilatory.

forail t=o, if necessary, choosingalarge o. Thiscontradicts V(t;, x(1;), y{t;)) >
for all larg
e

Wihen we assume that —K <x(1) <0
Thus we see that x(

V(a, x(4), y(o)).
contradiction by using W(t, x(t), y(t))




e €Al

To apply this theorem, the following lemmas play an impertant role.  In the following, a
scalar function v(t , x,y) will be called a Liapunov function for (2), if v(t,x,y) is coniinuous

in (t, %, y) in the domain of definition and is locally Lipschitzianin (x,y). Moreover, we

define V(6 X, ¥) by

. 1, y y
(& 5 = N = s _h¥ LS —vlt v
V(z)\‘-y)‘: Y) 13§l+ h iV(t'*'h, X+hr(t)s y hl(t; X, r(t))) VAL, X, y}} .
Lemmal. For (2T* x>0, [yl<oo, where T# can be largs, we assume that there
exists a Liapunov function v(t, x, y) which satisfies the following conditions;
G yvt,x,y)>0 for t=T% x>0, y+0,

(i) {'(2)(‘:, X, y) < —A(t), where A(t) isa continuous function defined on  t>T* and

lim _[t A(s)ds= 0 foralllarge T.

™7 T

Moreover, we assume thatthereisa 7 and a w(t, x, .y) for all largek T such ;hat 72T
and w(t, x,y) is a Liapunov function defined on t=27, x>0, y<O0, which satisfies th
following conditions; \

G y<w(,x,y) and w(r,X,y) <b(y), where b(y) is con@uous, b(0) =0 and
oy)<S (y#0),

{v) v&(z)(t, X, ¥) < —p(t)w(t, x,y), where p(t) >0 iscontinuous and

o ] t
[ —= exp {— s)ds}dt = oo,
. 0 D {P() } .

Then, if {x(1), y(1)} isasolution of (2) such that x(t)>0 foralllarge t, wehave y{t)>0

W2 can obtain a similar lemma for a solution { x(t), y(t)} of (2) such that x(t)<0 for

allarge t. For the proof of Lemma 1 and the details, sce [5].



Pronosition 1. For the equation (1) we assumie that

M = .gt_ - o0
(‘) fO r(:) ’

) for t=20 and x=0, thereexist continuous funcions a(t) and a(x) such that

3) lm S oa)ds >0  foralllarge T
t > T

and that xa(x)>0 x#0), a'x)=0 andforalllarge t, x=20, {uj<e
a{t)a(x) < f(t, x,u),

@iii) for t=20 and x <0, thereexistcontinuous functions b(t) and Z(x) such that

lim S b(s)ds >0  foralllarge T
t=” w T

and that x8(x)>0 (x#0), 8'x)=>0 andforalllarge t, x<0, jul<e
f(t, x, u) < b{HEX).

Then, if [ a(t)dt=o0 and [ b{t)dt=occ, theequation (1)isoscillatory. Moreover, if we
V]

0
have
= . P S SN = oo
4) fo a(t)dt < oo, fo (r(s) j; a(u)dulds
and
< = . oo adD O SR = oo
%) fab(t)d~< , fo(r(s)fs b(u)du)ds

-

then ali bounded solutions of (1) are osciilatory. In addition to the conditicns above, i
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= d == du_ :
6) / EE}UL) < oo, f_e B < o« forsome ¢>0,

€

the equation (1) is oscillatory.

Proof. Under our assumptions, if we consider a function vt x,y) = for large t,

a(x)

this function satisfies the conditions in Lemma 1 with A(t) =a(t) . Since the condition (3)
implics that for all large T, thereisa 7 suchthat 72T and { g a(s)ds =0 for all t=7
a function w(t, X, y) =y + a(x) { ¢ a(s)ds definedon t=7, x>0, y<O satisfies the conditions
in Lemma 1 with p(t)=0. Thus we can see thatif {x(t), y(t)} is asolution of (2) such ths;t
x(t)>0 foralllarge t, then y(t)=>0 foralllarge t. We can also see that for a solution such
that x(t) <0 foralllarge t, y(t)<O0 forallilarge t.

In the case where we assume that .f: a(t)dt=co and f: b(t)dt=<, forlarge t, if we

define V(t,x,y) and W(t, x,y) by

| { o7 * L s (v >0)
Vi, x,y) = {
|
k{a@& (y<0)
and
(1 veas >0
W(t, x,y) =
,B(x) f b(s)ds y<0),

we can see that these functions satisfy the conditions in Theorem 1 for K =, and hence the
equation (1) is oscillatory.

In the case where we assume (4) and (5), letting KX >0 be a constant, se.
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K _du L S .
T Foafuidu)ds
.{) (I‘(S) J \Lydby

VLX) = 2w

for 120, 0<x<XK and jy;<e. Forasolution x(t) of (2) which satisfics C<x{1) <X

llarge t, thereisa ¢>C suchthat 0<x(f}<X and y{r)>20 for i1=g, and honce

B

o~

or &

TP IN vio o=
V(z)(a,x(.),y(L); = r(t)t__—a(x(t)) ‘r~ft a(u/uuj.

y Rl T ; ,
~+ [ a(wdu, wehave lim V*(t, x(1, yt)) <0. On the other
a(x) % Lo

Hweset VH(L, X, y)=—

hand, we have V"‘gﬂ)(t, x,y) =0, and hence V*(t, x{t), y(1)) <0, which implics that

V(v)(t, x(0),yit) <0 for t=20¢. Fort=20, - K<x<0 and |yi<oe, definc W(t, x,yJ oy

-K

WEx,y) = [ oo

W f bluydu)ds .

ft

0 T\S)

Then the conclusion follows from Theorem 1, Dbecause X is arbitra
In addition, when we assume (6), wecanset X =90 in V(, x,y) and W, X, y) shove,

B T N L DU, AT e : L | D

LU ACACe Las equaiion (1) 18 OSCLLAI0TY .

Yoo k]

A s > contain N r A NFa At e e one
Thc result above contains Coles’ result k3] and Maci V-]OLJ Tesult

It is clear that we can combine the conditions on a{t) and b{r). Tie Lizpunov’s

PR R Al 1 - A M AT e e s [
meiincd is also applicable to obtauin Sobisud’s [1] and Opial’s 14 results, sec {5

I .

+1

Now we shall discuss thie existence of a bounded nonosciilatory sciution of (1).

1

tacorems will be applied.  Consider an equatiion of the second order

~

wiere (5, X,Y) iscontinuouson 1 X R X R. Let w(t) and w(f) B¢ wo Junctions delne
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s

rentiable and bounded on 1 with their derivatives. We assume that «{1) < {1},

on I, ‘:\’AC d f

8 w (8 < F(, o), ©'@)
and

&) w (1) 2 Ft, (1), w (W)

Theorcii 2. Suppose that there exist two Liapunov functions VI, x,v) and W{, x, )
efined on 0<<t <o, w(t) Kx<w(t), y=K andon 0<t<eo, w(t) <x<B(), y<-X,
respectively, where K> 0 can be large, and assume that V(i,x,y) and W(%, X, y) satisfy he

following conditions; N

G VI, x,y)<bly) and W(t, x,y)<b(lyl), where b{r)>0 iscontinuous,
() V(E,x,y)=row as y=+oo, W{t,x,y)> > as. y—>-—c  uniformly for t, X,

(ii) in the interior of their domains of definition

V(t,x,y) = m - {V(+h, x+hy, y+BF(E %, 9)) - V5, 9)} > 0

h->o*
and
Wit x,y) = lim - {W(t+h, x+hy, y +hE@, x,¥)) = W(t, x,v)} < 0
h—o"
or

({ii)" in the interior of their domains of definition

Vi, x,y) <0 and W, x,y) = 0. "

e~ i . ,

iacn the equation (7) has a solution x(t) such that w®) <x(H<w{) and x () isbounded

s

o,

orail 120,



Theorem 3. Under the assumptions in Theorem 2, if w(0) = w(0) and

Vi, x,y) <O and W(,x,y)<0

~ln

ition, then the equation (7) has a solution x(t) such that
w® <x<w(t) and x'(t) is bounded forall t=0.

For the proofs, see [6].
In discussing the existence of a bounded nonoscillatory solution of {1), we assume that the

derivative of r(t) is continuous, and consequently the equation (1) can be writien as

v ) x'-‘--—i-f(t,x,x')‘= 0.

i0 X ¢
(10) ) 7

Proposition 2. Suppose that there exist functions b(t) and 3(x) which satisfy the following
conditions;

@ o(t) iscontinuouson I and b(t)=20 for t=T, where T can be large,
() B(x) iscontinuouson x=0,

Gi) for t2T, x>0 andall y,

an f(t, X, y) < 5{0sx).

Morcover, we assume that thereisa ¢> 0 such that £(t, ¢, 0) = 0 for

(12) 0<e<r(t) <p forsome ¢,p andall t=20

~
[

3) 1~ th(tydr < oo
4]

orif, thereisan A >0 such that
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(14) [ *(t) | <A for t20

and we have

(15) {:‘( r(ls) J:” b(wdu)ds < oo,

the equation (10) has a bounded nonoscillatory solution.

Proof. Under the conditions (12) and (13), the condition (13) implies that fﬂ b(dt <o,
, ' 0
and consequently f“b(u)du exists and is small if s is sufficiently large, because b(i)>0
s

eventually. Since e<r(t)<p, wehave

f (r() f bu)du)ds < e and (t) _[ bwdu < =,

Thereis an L >0 such that g{¢) < —%— and thereisa § > 0 such that ()<L if [x—cj<§.

Choose t, =T solarge that

0 <Lf ( )f b(uydu)ds < & forall t=t;.

(s
For ty <t<eo, define w(t) and w(t) by

wt)y=c¢ and () = c+L f ( ) [ b(u)du)ds .

Then O<w)<w(t)<c+§ forall t=>ty, and w(t), w(t) are bounded with their

derivatives.
Clearly we have w "'(t) > —z—,g)- w'(t) — (‘) == (1, w(®), w (1)) . On the other hand,
Gl = 5 [ b and BT@=- 5—;%%1. 5 bu)du — (t)b(t) Thus, using (11),
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we have

ey 3 . o :
N v _4 Sl TN TN I oL AN . LN £
e O r("I L w(),w () = —~—*—*2<_\ L7 bludu-— =0 S{1) 8w
\ v) (Y H .
e v
S A T [T
= =T o Ly oluh,au — Y]
T \») T Ny

since c< ()< ¢+8 forall t2t, andhence G <L for t=1,.
Tor t=2t,, w@<x<w() and y=XK, define V(1,x%,y) by
t

<
Y
e
>
<
| ——a
]
r-’(
Sy
o
P
wy
s
[oN
v
-+
"3
N
e
a2
<

and for 121, wH<x<w(t) and y<-K, define WL, x,y) by

W(t, X, )

i
|
t‘(

ety
(o2
Yy
%z
N
o8
w
|
"y
pal
L}
\ .-
<
.

. N e -

Lot RS [ Ty . N A W/ . PP S AL Iy NSy LN A A ST T T e D
hien it is clear thet V(G X, y) and W(t, x,y) satisly the concitions (&) and (i) in Tocomem 2.

Sinel Z()SL for w(t)<x<w(), wehave

e

. RN
fe v Y I PR S R RN I S L9 N LN N
V\") )‘) y) - LV\"/ boa \"/./ ! I‘(»)..— RN [ — /=N l<L: Y‘) s
Y e/
= Lb<:> - f<:: X, Y)
= o) = bOfx) = Loy - Ly = &

~ PR
TS

T e eva ale \‘;;/f <O ol PP B N N . L e PR R \
and we nave also WL, %, y) <. Therefore, it follows from Theorem 2 zhat e coaniics (L3

nas a2 soiution x(t) such that

r,
Y%
b

<

C<es<x(i) €c+s Toral

J L 25 W T A Pare Al e
ang et x(t) isoounwed forall =



Under the conditions (14) and (15), we can use the same w(t) and (1), since (14) and (15}
i K C o . . =N s ) = 5{s )
imoly that 7= J duddu<ee, Moreover, (14) and (15) imply that [ ==~ ds<es, and
& Ty % s
nence it is sufficient t¢ consider
ot bis)
Vit x,y) = y+Ax+L [ ) o
0
and |
: RO
Wt x,y) = —y+Ax—L[ Z5ds.
1, 1)
Remark.  Assuming the existence of functions a(t) and a(x) such that a(t)a(x) <f({t, x, y)

for t=2T, x<0 andall y, we can obtain a resulf similar to Proposition 2.

By appiying Theorem 3, we shall now prove the following propcsition.

FEAR
L

Proposition 3. Suppose that there exist two functions b(t) and §{x,y) which satisfy

foliowing conditions;

i  b(t) iscontinuouson I and b(t)=0 for t>T, where T can be laree;

{) 8ky) iscontinuouson x20 and y=0,

Gi) for t>T, x>0 and y>0,

(16) f{(t, %, y) < BO8K, ¥ .
r, we assume that thereisa ¢> 0 such that

17) f(t,c,0; = 0 for t=>7

¢ that forsome M > 0 such that c<M

o]
“asla

(18 {,x,y) 20 for t=2T, M>2x>c and y>X,
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{(i19) ft,x,y) 0 for 2T, M>2x2c and y<-=-K,
where K canbelarge. If 0<e<r(t)<p forsome ¢,p andall 10 and
(20) {: th(t)dt < oo
orif thereisan A >0 such that
21 -A < _rr_(%) forall 120

and we have
P S o
22) 7 j; (r(s){ bu)du)ds < R

then the equation (10) has a bounded nonoscillatory solution.

Proof. In both cases, we have (22) and the fact that _r%t_\ f” blu)du—+0 as t—oo,
. )

Forthe ¢, B(c, 0) < iz“- forsome L. Since f(x,y) is continuous, thereisa & > 0 such that

if jx=ci<dé and O0<y<$§, wehave f(x,y)<L. Choose ty;=T solarge that

L[ (7(1_5 £ b)du)ds < min(M—c,8) for t3t
to 4 5

1

)

{"’ bwdu < 8 for t>t,.

Then, in the same way as in the proof of Proposition 2, we can see that

wt) =¢ and W) = c+Lfi( —
to

(2
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satisfy the conditions (8) and (9) for t=1,.
In the casec where we have e<r(t)<p, for t=1t;, wt)<x<w(t) and vy > K,

define V(t,x,y) by V(t,x,y)=1(t)y. Then we have

. i _ 1 ] :
Ve xy) = 5@y - T8y - Setex, 9}

[}

- f(t) X, Y)

< 0.

For t=>tp, <AJ(‘l) x<@(t) and y<-K, W(t, x,y)= -s-r(t)y satisfies W(t, x,y) <O
In the case where we have the condition (2]), Vi, X, y) = v - Ax and \/(t X, y) =~y + Ax
are Liapunov functions that we desire. Therefore, 1t follows from Theorem 3 that the equation

(10) has a bounded nonoscinatoryr solution.

Remark. Assuming the existence of functions a(t) and a(x y) such that a(t)a(*c y) <
f(t,x,y) for t=T, x<0 and y<O0, wecan obtainaz esult s:.mﬂar to Dropoutxon 3.

Now consider the equation (1). We assume that there ex1st continuous functxons a(t), b(t),
a(x) and B(x) which satisfy the followirnig conditions; |

(i) a(t) and b(t) are nonne,atwe for t > T, where T can be Iaroe

(i) xa(x)>0 and xB(x)>0 for x#0, ard a (x)>0 ﬁ (x)>>0

(i) a(tax) <, x,u) <b(t)sx) for t=2T, !Al_<°° and fuj<eo,
. Moreover, we assume that the derivative of r(t) is continuousand that 0<e< r(t)\<\b v fof
some €,5 and all t>0.

Under the assumptions above, the following results follow im:nedia‘tely‘ from Propositions 1

and 2 with the remark,

|3
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and
] b(s)ds = o0
4]
(24} y Of
! bis)d f (== [ blu)dw)ds = o
L[ pGs < [ (g [ btands = =,
20 hounded solutions of (1) are oscillatory.  On the other hand, if we have the condition T ihat
) - o ] = >
25) Joa@s)ds < e and [ (Z= [ alu)du)ds < oo
Q Q ‘(S) s .
or
(26) S o(s)ds < oo and f (== f bludu)ds < oo,
o o T(b)
the equation (1) hasa bounded nonoscillatory solution. Therefore the condition A is a necessary

$O.LLIGH.
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