ON DEFORMATIONS OF HOLOMORPHIC MAPS

by Eiji HORIKAWA (University of Tokyo)

§O. Introduction

The modern deformation theory has started with the splendid work of Kodaira-Spencer [1] followed by [2][3]. Moreover Kodaira has investigated families of submanifolds of a fixed compact complex manifold in [4]. In this paper the author propose to consider deformations of the structure "a compact complex manifold X plus a holomorphic map f into a fixed compact complex manifold Y". The fundamental restriction is that f is non-degenerate at some point or equivalently that the image f(X) has the same dimension as X. For this structure we can find the space of infinitesimal deformations $H^0(X,\mathcal{T})$ (for the definition of \mathcal{T}

see §1), and the obstructions for constructing a universal family (in the sense of Kodaira-Spencer) is in $H^1(X, \mathcal{T})$. The author has proved two fundamental theorems corresponding to the results of [2][3]. When f is an embedding this is nothing but the theory of displacements of Kodaira [4].

In addition, the same method as in the proof of the existence theorem can be applied to give a sufficient condition for the existence of a holomorphic map $\Phi: \mathfrak{X} \longrightarrow \mathfrak{P}$ of families of compact complex manifolds extending $f: X \longrightarrow Y$. As an application of this result, we can prove that any sufficiently small deformation X_t of a monoidal transformation X_t of Y_t with non-singular center Y_t of Y_t with non-singular center Y_t .

Recently the author has succeeded in constructing the Kodaira-Spencer theory for families of holomorphic maps into a fixed family (2), q, S)of compact complex manifolds.

Throughout this paper, the ideas essentially belong to Professor Kodaira.

§1. Infinitesimal deformations

By a family of holomorphic maps into a fixed compact complex manifold Y, we mean a quadruplet $(\mathfrak{X}, \Phi, p, M)$ of complex manifolds \mathfrak{X} , M and holomorphic maps $\Phi: \mathfrak{X} \longrightarrow \mathfrak{Y} = Y \times M$, $p: \mathfrak{X} \longrightarrow M$ with following properties:

- i) p is a surjective smooth proper holomorphic map,
- ii) $q \cdot \Phi = p$, where $q : \eta \longrightarrow M$ is the projection onto the second factor.

We define the concept of completeness (as a family of holomorphic maps into Y) as in the theory of deformations of compact complex manifolds[1].

Let $(\mathfrak{X}, \Phi, p, M)$ be a family of holomorphic maps into Y, $0 \in M$, $X = X_0 = p^{-1}(0)$ and $f = \Phi_0 : X \longrightarrow Y$. With only exception §3, we assume that f is non-degenerate. Then we have an exact sequence of sheaves on X:

$$0 \longrightarrow \bigoplus_{X} \xrightarrow{F} f * \bigoplus_{Y} \xrightarrow{P} \mathcal{I} \longrightarrow 0$$

where $m{\Theta}$ denotes the sheaf of germs of holomorphic vector fields, ${\mathcal T}$ is the cokernel of the canonical homomorphism F and P is the

natural projection.

We investigate only "the germs of deformations". Restricting M on a neighborhood of o if necessary, we may assume that M is an open set in ${\bf C}^r$ with coordinates ${\bf t}=({\bf t}_1,\ldots,{\bf t}_r)$ and that the prescribed point o is $(0,\ldots,0)$. Taking a system of coordinates $({\bf z}^1,\ldots,{\bf z}^n,{\bf t}_1,\ldots,{\bf t}_r)$ (resp. $({\bf w}^1,\ldots,{\bf w}^m)$) on ${\bf \mathfrak E}$ (resp. on Y), we write explicitely ${\bf w}=\Phi({\bf z},{\bf t})$. Now we can define a linear map

$$\tau: \mathbb{T}_{\mathcal{O}}(\mathbb{M}) \longrightarrow \mathbb{H}^{\mathcal{O}}(\mathbb{X}, \mathcal{F})$$

(where $\mathbf{T}_{_{\mathbf{O}}}(\mathbf{M})$ is the tangent space of \mathbf{M} at o) by the formula

$$\tau \left(\frac{\partial t}{\partial t} \right) = P\left(\sum \frac{\partial t}{\partial \Phi_{\mathbf{q}}} \Big|_{t=0} \frac{\partial w_{\mathbf{q}}}{\partial t} \right)$$
.

This is well defined and independent of the choice of local coordinates.

Proposition With notations as above, let ρ be the Kodaira-Spencer map for the deformation (\mathfrak{X} , p, M) of X=X₀, then the diagram $T_{\mathfrak{C}}(\mathbb{X}) \xrightarrow{\mathcal{T}} H^{0}(\mathfrak{X}, \mathcal{T})$

is commutative, where $\pmb{\delta}$ is the coboundary map of cohomology groups.

§2. Fundamental theorems

Following Kodaira-Spencer-Nirenberg we can prove:

Theorem of completeness Let $(\mathcal{X}, \Phi, p, M)$ be a family of non-degenerate holomorphic maps into Y, $o_{\varepsilon}M$, $X=X_{o}$ and $f=\Phi_{o}: X\longrightarrow Y$. If

$$\tau: T_0(M) \longrightarrow H^0(X, \mathcal{T})$$

is surjective, then the family is complete at o.

Existence theorem Let $f:X\longrightarrow Y$ be a non-degenerate holomorphic map. If $H^1(X,\mathcal{F})=0$, then there exists a family $(\mathfrak{X},\Phi,\,p,\,M)$ of holomorphic maps into Y and a point of M such that

- i) $\Phi_0: X_0 \longrightarrow Y$ is equivalent to $f: X \longrightarrow Y$,
- ii) $\tau:T_0(M) \longrightarrow H^0(X,\mathcal{T})$ is bijective.
- §3. Extension of a holomorphic map

As a counterpart to the existence theorem we can prove:

Extension theorem Let $f:X \longrightarrow Y$ be a holomorphic map (not

necessarily non-degenerate). Suppose that

- i) $f^*:H^1(Y, \Theta_Y) \longrightarrow H^1(X, f^*\Theta_Y)$ is surjective,
- ii) $f^*:H^2(Y, \mathbf{\Theta}_Y) \longrightarrow H^2(X, f^*\mathbf{\Theta}_Y)$ is injective.

Then for any family $p:\mathfrak{X}\longrightarrow M$ of deformations of X with $X_0=X$, there exist an open neighborhood N of o in M, a complex analytic family $q:\mathfrak{Y}\longrightarrow N$ with $Y_0=Y$ and a holomorphic map $\Phi\colon\mathfrak{X}_{\mid N}\longrightarrow\mathfrak{Y}$ which satisfies $p=q\circ\Phi$ and coincides with f on fibres over $o\varepsilon M$.

From this follow two theorems:

Stability of fibre structures If $f:X\longrightarrow Y$ is a holomorphic map such that

$$f_*O_X = O_Y$$
 and $R'f_*O_X = 0$

then the fibre structure is stable (cf.[%odaira 5]).

Equiblowing-down Let $f:X\longrightarrow Y$ be a monoidal transformation with non-singular center D, $p:\mathfrak{X}\longrightarrow M$ be a family of deformations of $X=X_0$ with $o\in M$. Then there exist a open neighborhood N of o in M, a complex analytic family $q:\mathfrak{Y}\longrightarrow N$ with $Y=Y_0$, a submanifold $\mathcal{D}\subset \mathcal{Y}$ and a holomorphic map $\Phi:\mathfrak{X}\longrightarrow \mathcal{Y}$ satisfying:

- i) $q \cdot \Phi = p$,
- ii) X_t is the monoidal transformation with non-singular center $D_t = \mathfrak{D} \wedge q^{-1}(t)$.

§4. Generalization

Let (γ, q, S) be a fixed family of compact complex manifolds. By a family of holomorphic maps into (γ, q, S) , we mean a quintuplet $(\mathfrak{X}, \Phi, p, M, s)$ of complex manifolds \mathfrak{X} , M and holomorphic maps $\Phi: \mathfrak{X} \longrightarrow \mathfrak{Y}$, s:M \longrightarrow S with following properties:

- i) p is a surjective smooth proper holomorphic map,
- ii) $s \cdot p = q \cdot \Phi$.

We define the concept of completeness (as a family of holomorphic maps into (γ, q, S)) as usual.

Let $o_E M$, o'=s(o), $X=X_o$, $Y=Y_o$, and let $f=\Phi_o:X\longrightarrow Y$ be the holomorphic map induced by Φ . We assume that f is non-degenerate. In order to define the characteristic map we need something C^∞ . For any locally free sheaf E we denote by $\mathbf{A}^{O,q}(E)$ the sheaf of germs of C^∞ -differentiable (O,q)-forms with coefficients in E, and let $A^{O,q}(E)=H^O(\mathbf{A}^{O,q}(E))$. Moreover let

$$a^{O,q}(\mathcal{T}) = a^{O,q}(f*\Theta_{Y})/a^{O,q}(\Theta_{X})$$

$$A^{O,q}(\mathcal{T}) = A^{O,q}(X, a^{O,q}(\mathcal{T})).$$

Then $(A^{0,*}(\mathcal{T}), \bar{\mathfrak{Z}})$ forms a complex and we have "Dolbeault isomorphisms"

$$H_{\mathbf{a}}^{p}(A^{0,*}(\mathcal{T})) \cong H^{p}(X, \mathcal{T}).$$

Now we may assume that M (resp.S) is an open set in ${\bf C}^r$ (resp.in ${\bf C}^{r'}$) with a system of coordinates (${\bf t}^1,\ldots,{\bf t}^r$) (resp. $({\bf s}^1,\ldots,{\bf s}^{r'})$) and o (resp. o') is (0,...,0). We regard ${\bf X}$ (resp. ${\bf Y}$) as a differentiable manifold X×M (resp. Y×S) and suppose that the complex structure ${\bf X}$ (resp. ${\bf Y}$) is given by a vector (0,1)-form ${\bf \varphi}({\bf t})$ (resp. ${\bf \psi}({\bf s})$). First we define a linear map ${\bf \tau}'$ as the composition

$$\tau': T_{o}(S) \xrightarrow{\mathbf{P'}} A^{O,1}(\mathbf{\Theta}_{Y}) \xrightarrow{f^{*}} A^{O,1}(f^{*}\mathbf{\Theta}_{Y}) \xrightarrow{\mathbf{P}} A^{O,1}(\mathcal{F})$$
 where $\mathbf{P'}$ is the Kodaira-Spencer map for the family $(\mathbf{2})$, \mathbf{q} , \mathbf{S}). Taking a system of coordinates $(\mathbf{z}^{1}, \ldots, \mathbf{z}^{n})$ (resp. $(\mathbf{w}^{1}, \ldots, \mathbf{w}^{m})$) on X (resp. on Y), we write $\mathbf{\Phi}$ explicitely

$$w = \Phi(z, t), s = s(t)$$

as a differentiable map from $X \times M$ to $Y \times S$. Then

$$\tau_{t} = \sum \frac{\partial \Phi^{\sigma}}{\partial t} \Big|_{t=0} \frac{\partial}{\partial w^{\sigma}}$$

defines an element in $A^{O,O}(f^*\bigoplus_Y)$ and satisfies the equality

(*)
$$\overline{\partial} \tau_{t} - F(\rho(\frac{\partial}{\partial t})) + f*(\frac{\partial s^{\omega}}{\partial t}|_{t=0} \rho'(\frac{\partial}{\partial s^{\omega}})) = 0,$$

where ρ is the Kodaira-Spencer map for the family (\mathfrak{X} , p, M).

Let
$$D_{X/M} = \overline{\partial}^{-1}(\tau'(T_0(S)) \subset A^{0,0}(\mathcal{I}))$$

$$\widetilde{D}_{X/M} = \{(\tau, \theta) \in D_{X/M} \times \mathbf{C}^{r'} | \overline{\partial} \tau = \mathbb{P}f^*(\theta^{\omega} \rho'(\frac{\partial}{\partial S^{\omega}}))\}.$$

Then by the equality (*), we can define a linear map

$$\widetilde{\tau}: \mathbb{T}_{0}(\mathbb{M}) \longrightarrow \widetilde{\mathbb{D}}_{\mathbb{X}/\mathbb{M}}$$

$$\widetilde{\tau}(\frac{\partial}{\partial t}) = (\mathbf{P}\tau_{t}, \frac{\partial \mathbf{s}^{\omega}}{\partial t}).$$

Ъу

With these preparations, we can state the fundamental theorems:

Theorem of completeness Let $(\mathfrak{X}, \Phi, p, M, s)$ be a family of holomorphic maps into a family (\mathfrak{Y}, q, S) . With notations as above, assume that f is non-degenerate. If the map

$$\widetilde{\tau}: T_{O}(M) \longrightarrow \widetilde{D}_{X/M}$$

is surjective, then the family (\mathfrak{X},Φ , p, M, s) is complete at o.

Existence theorem Let $f:X \longrightarrow Y$ be a non-degenerate

holomorphic map and (\mathcal{Y}, q, S) be a family of deformations $Y = Y_0$, with o' ϵS . Assume that the composition

 $\tau': T_{o'}(S) \xrightarrow{\rho'} H^{1}(Y, \bigoplus_{Y}) \xrightarrow{f^{*}} H^{1}(X, f^{*}\bigoplus_{Y}) \xrightarrow{P} H^{1}(X, \mathcal{F})$ is surjective, then there exists a family $(\mathfrak{X}, \Phi, p, M, s)$ of holomorphic maps into (\mathfrak{Y}, q, S) and a point $o \in M$ with s(o) = o' such that

- i) $\Phi_0: X_0 \longrightarrow Y_0$, coincides with $f: X \longrightarrow Y$,
- ii) $\widetilde{\tau}\colon \mathtt{T}_{\mathtt{O}}(\mathtt{M}) \,\longrightarrow\, \widetilde{\mathtt{D}}_{\mathtt{X}/\!2\!\!\!/}$ is bijective.

§5. Remarks

- 1) We can prove two fundamental theorems when f is not necessarily non-degenerate.
- 2) We can prove a extension theorem (or it should be called a theorem of "costability") in the relative case.
- 3) As an application, we can give an example of algebraic manifolds with ample canonical bundle, for which the deformation problem is obstructed.
 - 4) Let X be an algebraic manifold such that
 - i) the canonical bundle is ample, and

ii) the albanese map is an embedding.

Then the deformation problem for X is unobstructed.

For the formulation of theorems mentioned above, see a forthcoming paper [6]. Details will be published elsewhere.

References

- [1] Kodaira, K. and D. C. Spencer, On deformations of complex analytic structures I, II, Ann. of Math., 67 (1958), pp.328-466.
- [2] --- and ---, A theorem of completeness for complex analytic fibre spaces, Acta Math., 100 (1958), pp.281-294.
- [3] ---, L. Nirenberg and D. C. Spencer, On the existence of deformations of complex analytic structures, Ann. of Math., 68 (1958), pp.450-459.
- [4] ---, A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds, Ann. of Math., 75 (1962),

146-162.

- [5] ---, On stability of compact submanifolds of complex manifolds, Amer. Jour. of Math., <u>85</u> (1963), pp.79-84.
- [6] Herikawa, E., On deformations of holomorphic maps, to appear in Proceedings of the Japan Academy.