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Abstract

The series representation of the lattice Green's

function for the simple cubic lattice

I(a) = L IZI ___dx dy dz

3 a - 1€ = COS X = CO8 y =~ €OS 2

around the singularityka‘= 1 is obtained in fractional
powers of a°-1 (convergent for Iaz;lf < 1), by the method
of the analytic continuation using Melliﬁ—Barnes type
integral and alsq by use of the analytic continuation
of 3F2( s 5 3 s 3 1) as a function of the parameter.
It gives leading ané full expanslons near the singularity

a = 1.



1. INTRODUCTION

In the previous paperl lattice Green's function

of the simple cubilc lattice at the origin

T
Ia) = 35 []] dx dy dz (1. 1)
T 0 g - 1€ - CcOoOsS X — CcO8 §J - COS Z

whick has the singularities at a =1 aﬁd a = 3, was
evaluated in series representation for a > 3 in powers’
of l/ag, for 0 < a £ 1 in powers of a2, and for
1 < a £ 3in powers of (a® - 5)/4 by the method of
analytic continuation using Mellin-Barnes type integral.
The exact values of I(0), I(1l), I(V/5) were also given
in terms of the product of the complete eliiptic
integrals. The method was successfully applied for
the bee 1atticé2, the rectangular and the square 1attices3
and the tetragonal latticen. In this paper the expansion
of the lattice Green's function of the simple cubic lattice
around the singularity a = 1, which Were not given in the
previous paper, is presented.

Pirst I(a) is expressed as a Mellin-Barnes type
integral with the argument a2 -~ 1. 'The integrand is
a sum of two series expressed in the generaiized
hypergeometric function 3F2( s s 3 s 3 1)
which include the integration variable as a parameter.
In order to obtain the expansion in powers of a2 - 1,
it is necessary to know the behavlior of the integrand

in the left-half plane of the integration variable.
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The difficulty is that those series in the integrand

are divergent in the.left-half parameter plane while they are
convergent in the'right-half parameter-plane. We'have
succeeded in finding‘ﬁhe behavior of the integrand in

the left-half parameter-plane by éonsfrudting thé

analytic continuation of 3ﬁ2 in the parameter plane.

Then the series representation of I(a) around a® = 1,

which is con#érgent for }az;l! < 1, is obtained by residue

calculations in fractional powers of agml'



2. SERIES REPRESENTATION AROUND a2 =1
For large absolute values of a (a > 3), the
following integral expression using a hypergeometric

function has been derived in the previous paper.l

~§+i 1,42
11 T(—S)[I’(S""é'):] . s
I(a) = e oni ds ("'2‘)
' e I'(s+1l) a
X 2Fl(s+%, s+l; 1; l/a?) s ' (2. 1)
larg(-u/az)l < 7, (2. 1)

where &6 1is a small positive number and the path of

the integration is taken as a straight line parallel

to the imaginary axis, The restriction (2. 1') ensures
the convergence of the integration, and -4 1s to be taken
e~y since we consider a in the lower half plane.5

Applying a formula

oF- (o, B3 v; 2) = (1-2)7°,F,(a, y-B5 v; 2/2-1)

to the hypergeometric function in the r.h.s. of the Eq.

(2. 1) with a = s+%, we obtain:

Loq S reerepPE D L,
I(a) = T m ds g 2 )
—S—ioo r(s+1) a“-1
x P (545, -s3 15 1/(1-a°)) - (2. 2)

Here we take the branch where (a2)1/2 B g

Using the representation of the hypergeometric

function by Mellin-Barnes type integral, we have
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i =8 1 Hie
I(a)=%—~(-—1—2 [ as [ at

T (s+3)T(=6)T (st+3)T (~s+t) (e75T4) "
211 o
Smioo 61 i

T(s+1)T(t+1)

1 )S+t+l/2’- (2. 3)

X (e
a2~l

where §!' 1is a small positive number chosen so as to-
make Re(-s+t) > 0, i.e., &' < &.
Introducing a new variable u = s+t and changing

the order of the integration, we have

~§" 4100
I(a) = %(5%;)2 [ du r(u+%)(a2_1)-u-l/2
' _5(!_1:05 ’
e, I1(84“%-)-1‘(s--u)I'(u--23)(e"i“u)s
* ] as ' —, (2.0W)
$iio I'(s+1)r(1+u-s)

where §" = §+6'. Note that Re s-u = Y ?VO, and
Re u-2s = §'-§ <0,

Now s-integration is carried out by collecting the

residues of the pélesrét 8 = %+q and %+%+q (q=0, 1, 2, «o¢s)

in the right-half s-plane. 'Then we have

: .. u
© I.(U. q+_)1"(q__)
1 .fds,-~'=§ 5 o2 2 2

2mt =0 (2q) 1T (3+q+1)T(1+5-q)

wly .
2 2 (é4mh)u/2+q+l/2.

o r(5+q+1)T(q-
5

hS

2 4= 1) IT (Sqed) T (242
q=0 (2q+1)11‘(-2-+q+§)1‘(-§+2—q) |

(2. 5)
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It is éhéwn,that‘thebsﬁmmations with respect to
q are divergent for Re u £ -1, while the integration
path in the u-plane is to be closed to the 1eft~ha1f
plane where Re u < Orto obtain the series valid for
{azl < 1. 'Therefore it is necessary to transform the.
summations of Eq. (2. 5) and to get other expresslons
which are valid for Re u < 1.

The r.h.s. of the Eq. (2. 5) 1s expressed in terms
of a generalized hypergeometric function 3F ‘with the

2
argument equal to unity, and leads

rG+r -4 12

5%? [dseee = - f;:(uéqm)u/zsin%ﬂ T =
2/ , I (z)T(1+3)
| 2 2
. .
by 4 b
X 3F2
1 u
70 143 .
: ‘A uy 92
gy . T(1+23) [P -=).]
+ —3—(Ué¢ﬂ)u/2605%ﬂ § % u2
/T r(é’)r('z"‘"é‘)
u 1 u 1 u,
43, 53 3775 1
x 3F2
3 3,u
20 %2

(2. 6)

The expansion of a generalized hypergeometric
function in terms of hypergeometric functions of
lower order6 (Eq. (5. ) inref.3) and the value of

2F1 with the argument equal to unity lead to



a formula

T (o). Gy, Gy G335 1

3 2
F(B )F(B )
B1s By

e r(Bl+32~al—a2—03)

r(31+32-dl~a3)r(Bl+82—a2-a3)-

81—03, 62-u3, Bl+B2 1~ 2—a3, i

x 3 .

31+32““1’“3"Bl*szfaz‘“3f

(2. 7)°

Applying the formulé7to the two ‘s in (6)

3F2
with @, = = = and a, = i_u respectivel we have
73 2 3 - 27 20 F SVeLYs

]
rojc
‘ .
rje
[

u
2’

Amya

T (,-,%). _

B | uy 372

. , 1+

-
noje

P
S

I (1+u) 5, 14+u, 14u; 1

= : F (2. 8)
Crashrdddyy 32 3 <
ﬁ“

2

m:s:_
MLU)

F(14+u) 1+, l+u, l+u; 1
= F (2. 9)
3.u 3 372 °
I (s+ -2-)1‘(2+§«u)

L
2
-

n
NIUU
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The two hypergeometric series in the £.h.s. of Eg. (8)
and (9) are convergent for Re u > 1 while those in the
r.h.s. of Egs. (8) and (9) are convergent for Re u < 0
and Re u < 1, respectively. The r.h.s. gives the
analytic continuation of the £.h.s. as a function of u,.
Using the above transformations (8) and (9) and

the series representation of (in the r.h.s.) and

32
changing the order of the summation and the integration,

we obtain

I(a) = - 12L—(1r)’3/2(c12-'1)‘1/2 r

b1 1 1.1 2 1 .
T (z+u)T (= F)T(G+zu+p) [T (1+u+p) 1" sinsun 2 W2

e )
I{1+u)T (L4p+3)T (S+p+3u) a®-1

x s2 [ du

+ 5(m732( P2 g

S
z
p=0 P

0

. 1 1 us., 1 .2 1 .
1 P(§+u)P(§ - E)P(l+p+§u)[r(l+p+u)] COSQU“(ge—uV2 u

X ;
211

du -
/ P(1+u) T (3+p+5)T (2+p+3u) a®-1

(2. 10) .
Closing the integration path to the left-half

u-plane, the evaluation of the integrals is carried

out by summing residues of poles 1ln the left-halfl u-plane.
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The poles of the integrand are located at u == %;-q
(@ =0, 1, 2, +..), and at u = -l-p-q where p+q+l 1is
odd integer for the Tirst integrand of Eq. (10) and
is even integer for the second integrand with q.2 0.
The calculation is tedious but'stréightforward and -

we finally obtain

‘I(a) = Ireg(a) + Iirreg(a) R (2. 11a).
o0 . q
I (q) = L1 3 _1
reg 4y/2w q=0 ql
R 1 q 1 B S
H(E+DT (F+3e) T2 27 z-as
(r{g+3)] 3 q 3
T2 7
3.9
M- phre- +da) | 772
- (1-2) 5> 3Fa
rapd1s |5_¢
- o2 ..
\ (2. 11b)
l :
1 3 1 1+2r, 5, -=r; 1 S
. @) il S {(§)r; ) 2 (g2-1)2r¥l/2
irre em ‘ SR
rreg Tp=0 r}(%)r(g)r 3 14r, lér v
1
.3 3 2+2r, =, «r; 1
el s L7 S PN
‘ir 257 Iy 32 & ’
r=0 [(2) 1% (D

2+r, 2+r .
' (2. 130

where Ireg<“) and I (a) represent regular and irregular

irreg ‘
parts of I(a) at a = 1, and the leading singularity is

/0
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2 1/2 2 '
(a® - 1) - For a” < 1, the irregular part does not

contribute to the imaginary part but to the real part
of i(a). 3F2's in the irregular part are finite series
and give rational numbers.
The generalized hypergeometric function
3F2(al, Gy, 033 Bis Bys 1) converges when ¢ = I8, - Za, > a,

and the convergence becomes faster as ¢ increases, i.e.,
o+1)

(o] .
the degree of the convergenceils of the orderof I (1/n .
' _ n=1
From a point of view of the convergence of 3F2(1), it

is more convenient to transform Ir g(a) into another

e
form, though Eq. (2. 11 ) is a desired expression as

far as it goes. Using a transformationsof 3F2, we have

=) 1 1 ' l‘
I (a) =+ 2L . r(a-5 r |27 4 5 = 4, 55 1 .(a.z__l)q
reg /5 7372 429 Qb 372 g -
d 3 q 5 a
LE~ 2204 7 2
. 1 1 P
‘ > I (5+q) [T (+3) ]
T N S O DL P Bk ik 4
1 q 1 1 q,
T~ T-HrrH Ll 2_;
x JF o (ﬁ_ )Q.
372 ; -
1 q
> Fta »
P =L I [(-1)%1] PG TP 1°
—373 -1)9-¢
3.4, 3_4a9'3,4
* 3F2 (@ =1yq,
: : 2 (2. 11d)

7/
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‘The convergence indices ¢ in 3F2‘s in (2. 114)
are all %*q, while,tho§e in (2. 11b) are %+% and
‘%+%, showing better éonvergence than the ofiginal
3F2 in (2. 11b).
Now we investigate the radius of éhe'convergence
of Eq. (2. 11). Consider the double séries-ziA x3yP

qp
generalized from the first term of (2. 11d), where

\ [T(5 -a+0) 1T (3+0)T G - Dr3 - D
P qip18ir(3 ~)Ir(3 - $p)r@ - Sp)

Put p = Aq, then from

A

% = 14m gtl, p| . 81~ZA -
} »q->°° _Aq, p . (l.fX) ,
A ‘ _ . 2
% = 14m | -92 PHL | _ 5&;:&15 ,
«2A
g Aq, p (1=2))
we have
1. .EﬁE%:,E (2. 12)
r .

by elliminating A. The double series-Zququ? converges
absolutely in the region |x| < r; and |y| < s, where r
and s are determined by Eq. (2. 12). For s.= 1, we have
r =1, That is, the first term in Eq. (2. 11d) converges
for laznl! <l, l.e., 0¢acx Ve for real a. The radii
of convergence of other terms in Egs. (2. 11d) and

(2. 11lc) are also shown to be laz-l[ < 1.

/2
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The expression (2. 11) includes only a2, while the
original form (1. 1) depends on a such that I(a-ie)
= -I(-a+ie). This suggests that the expression (2. 1)
has a branch point at a2 = 0. That is the reason why
Eq. (2. 11) is convergent for |a°-1] < 1.

For o° = 1, only the terms of ¢ = 0 in Eq. (2. 11lb)
do not vanish, aﬁd,3F2(1) for q = 0 can be expressed in
gamma functionsgand the exact value of I(1l) announced
in the previous paper (Eq. (33) in ref. 1) 1is derived.

The leading term is given by .

-2_ 31 1/2;

I(a) = % (1+/‘z)[r(g)r(g)] 5-(a a®-1) +O(a -1).

(2. 13)

The third term gives a real part for a® < 1.

Equations (2. 1la), (2. 1llc) and (2., 11d) are
the series representation of I(a) around q = 1,

convergent for |a2m1} < 1.

/73
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3. CONCLUSION

The lattice Green's function of the simple cubic
lattice—is expanded at the singularity a = 1 by the
method of the analyﬁic continuation in terms of Mellin-
Barnes typevintegral, ~In the process of calculation
it is shown that the analytic continuation of a
generalized hypergeometric function JF,( , , ; j-i)
in a complex-parameter plane allows us to obtain the
series'represéntation of I(a) in fractidﬁal powers of
a2—l. The result is given in Eq. (2. 11) and the
series 1s convergent for |a2—ll < 1. It gives insights
of the nature of fhe singularitj and simple and rapid
subroutines for numerical calculations near the
singularity.

The numerlcal calculation of Eq. (2. 11) reproduces
the values in the table by Morita and Hcriguch%o, The

values of first several terms of 3F2 used are listed in

Appendix.

/¥
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APPENDIX VALUES OF 3F2
The values of 3F2( s s 3 » 3 1) in Egs. (2, 1lc)
and (2. 11d) are calculated by a subroutine based on

the definition of _F Those in I (a) are. finite

372° irreg™™ .
series and give rational numbers. Those in Eq. (2. 11d)
are infinite series with ¢ = % + q and the convergence
becomes faster as q increases. Here we list the values

of 3F2's in Eq. (2. 11d ) for the first several terms

of q. The values of them for large q can be calculated

rapidly.
1 1 1.
7~ 49 3 -Q 55 1
Fa(q)=3F2
3 a5 .4
T=2:772
1 1 1, q. ;]
T-5Hr-H gt
Fb(q)=3F2
1 3,4
Tt 2 N
3 _a 3.4 3.4 1
TS ar-h el
Fc(q)=3F2
3 5 q
> Tt i
q F_(a) Fy,(a) F,(q)

o 2732x3xlirg)1? “[P(%‘)Jefr(g”-q "[P(%')JZEP(%)T”

/5



o

w o N O WU

10
11

12

13-

= W

Fa(q)

.1764390572
. 2086411047
1823835244
.1518523862
.1241300083
1006733423
.8130444869
.6549578345
.5267460718
.4231589025
3396715097
. 2724952366
.2185065481

E+01
E+01
E+02

E+03

E+04

E+05
E+06
E+06
E+0O7
E+08
E+09
E+10

E+11

E+l2-

Fb(q)

.1114018565
.1095404897
.1821375868
3477117659
.68325963614
.1353545539
.2690471748
.5357641342

-.1068076513

.2130836520
.4253236238

.8492762411

.1696281019
.3388737728

/6

2732200 (@172 AP
.1428125286

E+01

E+01

E+01

E+01

"E+01

E+02

E+02

"E+02

E+Q3

E+03

E+03
E+03
E+04
E+04

F,(a)

.1830796988
.1046372292

.1036961125

.1310778150
.1891707243

.2948617543
.4824681185

.8159238967
.1413060823
.2491485647
. 4454815485

.8055058548

1469922940
.2702993008

189

n[r(%>12[r(§)];n

E+01
E+01
E+Q1
E+01
E+01
E+0lL.
'E+Ol
E+01
E+02
E+02
E+02
E+02
E+03
- E+03
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