Smooth S¹-action and bordism

Akio Hattori

This talk is based on a work which is done in part jointly with H. Taniguchi. Details will appear elsewhere.

Let G be a compact Lie group and \mathcal{F} and \mathcal{F}' be families of subgroups of G such that $\mathcal{F}' \subset \mathcal{F}$. Following Conner-Floyd I call an effective action of G on a manifold M $(\mathcal{F}, \mathcal{F}')$ -free if $G_X \in \mathcal{F}$ for all $X \in M$ and $G_X \in \mathcal{F}'$ for all $X \in M$. When $F' = \emptyset$ then ∂M must be empty. The bordism group $\Omega_n(G; \mathcal{F}, \mathcal{F}')$ of all orientation preserving $(\mathcal{F}, \mathcal{F}')$ -free smooth G-actions on compact smooth manifolds is defined as follows. (M, Ψ) and (M', Ψ') are bordant iff there is (W, Ψ) such that

 ∂ W \supset M \cup -M, Ψ | M = ψ , Ψ | M' = ψ ', Ψ is \mathcal{F} -free and Ψ ∂ W - (M \cup M') is \mathcal{F} '-free. There is an

 Ψ is \mathcal{F} -free and $\Psi \ni W - (M \cup M')$ is \mathcal{F}' -free. There is an exact sequence

 $\cdots \longrightarrow \mathfrak{A}_n(G; \ \mathcal{F}') \xrightarrow{i_*} \mathfrak{A}_n(G; \ \mathcal{F}) \xrightarrow{j_*} \mathfrak{A}_n(G; \ \mathcal{F}, \ \mathcal{F}') \xrightarrow{\partial_*} \cdots.$ Similarly the U-bordism group $\mathfrak{A}_n^U(G; \ \mathcal{F}, \ \mathcal{F}')$ is defined where we consider U-manifolds and U-structure preserving actions.

Now consider the case $G = S^1$. We set $\mathcal{F}_{\boldsymbol{\ell}}^+ = \left\{ \boldsymbol{z}_k \mid k \leq \boldsymbol{\ell} \right\} \quad \text{and} \quad \mathcal{F}_{\boldsymbol{\ell}}^+ = \mathcal{F}_{\boldsymbol{\ell}} \cup \left\{ S^1 \right\}.$

Theorem. The sequences

$$0 \to \Omega_{n}^{U}(S^{1}; \mathcal{J}_{\ell-1}^{+}) \xrightarrow{i_{*}} \Omega_{n}^{U}(S^{1}; \mathcal{J}_{\ell}^{+}) \xrightarrow{j_{*}} \Omega_{n}^{U}(S^{1}; \mathcal{J}_{\ell}^{+}, \mathcal{J}_{\ell-1}^{+}) \to 0$$

$$0 \to \Omega_{n}(S^{1}; \mathcal{J}_{\ell-1}^{+}) \to \Omega_{n}(S^{1}; \mathcal{J}_{\ell}^{+}) \to \Omega_{n}(S^{1}; \mathcal{J}_{\ell}^{+}, \mathcal{J}_{\ell-1}^{+}) \to 0$$
are split exact (1< \ell).

Geometrical contents of the theorem are as follows. For the sake of simplicity hereafter I restrict myself only to U-cases. Consider a triple (X, V, ψ) where

X is a compact U-manifolds,

V is a complex vector bundle over X,

 ψ is an effective S¹-action on V by isomorphisms.

Let

$$H = \{g \mid g \in S^1, \quad \psi(g)x = x \quad \forall x \in X\}.$$

If $H \neq S^1$ then $H = \mathbf{Z}_{\boldsymbol{\ell}}$ for some $\boldsymbol{\ell}$. We say that the action ψ is of order $\boldsymbol{\ell}$. In that case there is a unique S^1 -action $\boldsymbol{\varphi}$ on X such that

$$\psi(g)x = \varphi(g)^{\ell}x.$$

Definition. ψ is strictly \mathcal{J}_{ℓ}^{+} -free ($\ell > 1$), iff

- 1) ψ is of order ℓ ,
- 2) the action φ (as above) is \mathcal{F}_1^+ -free,
- 3) ψ restricted on V-X is $\mathcal{F}_{\ell-1}$ -free.

If (X, V, ψ) is strictly \mathcal{F}_{ℓ}^+ -free then $(D(V), \psi)$ is $(\mathcal{F}_{\ell}^+, \mathcal{F}_{\ell-1})$ -free hence $(\mathcal{F}_{\ell}^+, \mathcal{F}_{\ell-1}^+)$ -free where D(V) is the disk bundle of V. The bordism group $B_n^U(S^1; \mathcal{F}_{\ell}^+) = \{[X, V, \psi]\}$ is defined in an obvious way where ψ is strictly \mathcal{F}_{ℓ}^+ -free and

 $\dim X + 2 \dim_{\mathbb{C}} V = n$.

Proposition.

$$B_n^{U}(S^1; \mathcal{F}_{\ell}^+) \cong \Omega_n^{U}(S^1; \mathcal{F}_{\ell}^+, \mathcal{F}_{\ell-1}^+)$$

in a natural way.

Moreover the homomorphism j_* is transformed into the "fixed point homomorphism for $\mathbf{Z}_{\boldsymbol{\ell}}$ "

$$\Omega_{n}^{U}(s^{1}; \mathcal{F}_{\ell}^{+}) \longrightarrow B_{n}^{U}(s^{1}; \mathcal{F}_{\ell}^{+})$$

in the following sense.

Let (M, ψ) be an \mathcal{F}^+ -free action. Then there are 2 kinds among the components X of the fixed point set of $\psi(\mathbf{Z}_\ell)$.

1st kind: $G_{x} = Z_{\ell}$ for some $x \in X$.

2nd kind: $G_x = S^1$ for all $x \in X$.

Proposition. j* is transformed into the homomorphism given

$$[M, \psi] \longmapsto \sum [X_i, V_i, \psi]$$

where X_i runs over the components of the 1st kind of the fixed point set of $\psi(\mathbf{Z}_{\ell})$ and V_i is the normal bundle of X_i in M.

In the rest of this talk I shall give a splitting

$$B_n^{U}(S^1; \mathcal{F}_{\ell}^+) \longrightarrow \Omega_n^{U}(S^1; \mathcal{F}_{\ell}^+), \quad 2 \leq \ell$$
,

which looks very simple.

First consider the case $\ell=2$. Since ψ is free on V-X, $S(V)/\psi=\mathbb{P}_{\psi}(V)$ is a smooth manifold. Let W_{ψ} be the disk bundle of $S(V)\longrightarrow\mathbb{P}_{\psi}(V)$ and

$$\mathbb{P}_{\psi}(\mathbb{V} \times \mathbb{C}) = \mathbb{D}(\mathbb{V}) \cup \mathbb{W}_{\psi}.$$

Clearly the action ψ extends on $\mathbb{P}_{\psi}(\mathbb{V}\times\mathbb{C})$. The fixed point set of $\psi(\mathbb{Z}_{\bullet})$ equals

$$X \cup \mathbb{P}_{\psi}(V)$$

where X is of the 1st kind and $\mathbb{P}_{\psi}(V)$ is of the 2nd kind. Hence $B_{\star}^{U}(S^{1}; \mathcal{F}_{2}^{+}) \longrightarrow \Omega_{\star}^{U}(S^{1}; \mathcal{F}_{2}^{+})$

$$[X, V, \psi] \longmapsto [\mathbb{P}_{\psi}(V \times \mathbb{C}), \psi]$$

is a splitting for j_* .

For general ℓ we construct a strictly \mathcal{F}_2^+ -free S^1 -action ψ on V which covers φ^2 and commutes with ψ as follows. The group \mathbf{Z}_ℓ acts on V by automorphism (via ψ). Hence it gives a decomposition

$$V = \sum V(\ell_i)$$

where

$$\psi(g)v = g^{\ell_i}v$$
, $g \in \mathbb{Z}_{\ell}$, $v \in V(\ell_i)$.

The integer ℓ_{i} is determined modulo ℓ so that we may assume

$$0 < \ell_i < \ell$$
,

since ψ is strictly \mathcal{F}_{ℓ}^{+} -free. I shall write this as $\psi(g) = \psi'(g)$, $g \in \mathbb{Z}_{\ell}$, on $V(\mathcal{L}_{i})$,

where $\psi'(\mathbf{g})$ is scalar multiplication. Consider the S¹-action on $V(\boldsymbol{\ell}_i)$ given by

$$g \longmapsto \psi(g) \psi'(g)^{-l_i}$$
.

There is a unique ψ'' on $V(\ell_i)$ such that $\psi''(g)^{\ell} = \psi(g) \psi'(g)^{-\ell_i}$

 ψ'' covers φ and hence can be summed up:

$$\psi''(g) \sum v_i = \sum \psi''(g)v_i$$
, $v_i \in V(\ell_i)$.

Define

$$\psi_1(g) = \psi''(g)^2 \psi'(g)$$

 ψ_1 commutes with ψ . Set

$$\left\{ \begin{array}{l} \mathbb{P}_{\psi}(\mathbb{V}) = \mathbb{S}(\mathbb{V})/\psi_1 \\ \mathbb{P}_{\psi}(\mathbb{V} \times \mathbb{C}) = \mathbb{D}(\mathbb{V}) \cup \mathbb{W}_{\psi} \end{array} \right.$$

as before. ψ is extended over $\mathbb{P}_{\psi}(\mathbb{V} \times \mathbb{C})$.

The following lemma can be checked by calculations.

Lemma. The action ψ on $\mathbb{P}_{\psi}(V \times \mathbb{C})$ is $\mathcal{F}_{\ell-1}^+$ -free outside of X.

It follows that

$${}^{t}\mathbb{P}: B_{\star}^{U}(S^{1}; \mathcal{J}_{\ell}^{+}) \longrightarrow \Omega_{\star}^{U}(S^{1}; \mathcal{J}_{\ell}^{+})$$

$$[X, V, \psi] \longmapsto [\mathbb{P}_{\psi}(V \times \mathbb{C}), \psi]$$

is a splitting for j_* .

Corollary.

$$\mathfrak{A}_{*}^{\mathsf{U}}(\mathsf{S}^{1}) = \mathfrak{A}_{*}^{\mathsf{U}}(\mathsf{S}^{1}; \,\,\mathfrak{F}_{1}^{+}) \oplus \sum_{2 \leq \ell} {}^{\mathsf{t}} \mathbb{P}(\mathsf{B}_{*}^{\mathsf{U}}(\mathsf{S}^{1}; \,\,\mathfrak{F}_{\ell}^{+})).$$

I want call $\mathbb{P}_{\psi}(V)$ and $\mathbb{P}_{\psi}(V \times \mathbb{C})$ twisted complex projective space bundle although they are not bundles in the usual sense.

<u>Proposition</u>. <u>Let</u> $\dim_{\mathbf{C}} V = k$. $F = Fix \varphi \subset X$.

There is a map

Let me remark the following:

$$\pi: \mathbb{P}_{\psi}(V) \longrightarrow X/\varphi$$

which is

$$\underline{a} \ \mathbb{C}P^{k-1}$$
-bundle on $F = F/\varphi \subset X/\varphi$,

an $\mathbb{R}P^{2k-1}$ -bundle on X/φ - F.

This construction $\mathbb{P}_{\psi}(V \times \mathbb{C})$ can be used to give an elementary proof of Kooniowski's and Atiyah-Singer's formula.

University of Tokyo