On mod 3 characteristic classes for F_4 -bundles.

by Hirosi Toda (Kyoto Univ.)

Let \mathbf{F}_4 be simply connected exceptional Lie group of rank 4. The mod p characteristic classes for \mathbf{F}_4 -bundles are in one-to-one correspondence with the elements of the mod p cohomology ring $\mathbf{H}^*(\mathbf{BF}_4;\ \mathbf{Z}_p)$ of the classifying space \mathbf{BF}_4 of \mathbf{F}_4 .

For p \neq 3, the structure of H*(BF₄; Z_p) is determined from that of H*(F₄; Z_p) by use of Borel's theorems:

$$H*(BF_4; Z_2) = Z_2[x_4, x_6, x_7, x_{16}, x_{24}]$$
,

$$H*(BF_4; Z_p) = Z_p[x_4, x_{12}, x_{16}, x_{24}]$$
 for $p \neq 2, 3$,

where $x_{i} \in H^{i}$, $x_{6} = g_{q}^{2} x_{4}$, $x_{7} = g_{q}^{3} x_{4}$, $x_{24} = g_{q}^{8} x_{16}$ for p = 2, and $(x_{i}^{2} = x_{j}^{2})$ if j = i + 2p - 2 and $p \ge 5$.

For p = 3, however, it seems very difficult to determine $H*(BF_4;\ Z_3) \ \ directly \ from \ the \ result$

(1)
$$H*(F_4; Z_3) = Z_3[x_8]/(x_8^3) \otimes \bigwedge(x_3, x_7, x_{11}, x_{15}),$$

where $x_7 = \int_0^1 x_3$, $x_8 = \Delta x_7$ and $x_{15} = \int_0^1 x_{11}$.

In fact, S. Araki $\begin{bmatrix} 1 \end{bmatrix}$ showed that the elements x_{11} and x_{15}

are not transgressime, hence we cannot apply Borel's method to the case $\ddot{p}=3$.

The purpose of the present speech is to determine the structure of $H*(BF_4; Z_3)$ by use of the fibering

(2)
$$\iint \to BSpin(9) \xrightarrow{\rho} BF_4$$
,

where $\prod = F_4/\mathrm{Spin}(9)$ is Cayley plane. Since the natural map $\mathrm{BSpin}(9) \longrightarrow \mathrm{BSO}(9)$ has mod 3 trivial fibre BZ_2 , the map induces an isomorphism of $\mathrm{H}^*(\ ; \ Z_3)$. Thus we identify $\mathrm{H}^*(\mathrm{BSpin}(9); \ Z_3)$ with $\mathrm{H}^*(\mathrm{BSO}(9): \ Z_3)$, which is the polynomial algebra of Pontrjagin classe $\mathrm{P}_i \in \mathrm{H}^{4i}$;

$$H*(BSpin(9); z_3) = z_3 [p_1, p_2, p_3, p_4].$$

First we prepare the following

Lemma 1. The image of

is contained in the subalgebra A generated by

$$p_1, \overline{p}_2 = p_2 - p_1^2, \overline{p}_5 = p_4 p_1 + p_3 \overline{p}_2,$$

$$\overline{p}_9 = (p_3^2 - p_4 p_1^2)(p_3 + \overline{p}_2 p_1) \quad \underline{\text{and}} \quad \overline{p}_{12} = p_4^3 + p_4^2 \overline{p}_2^2 + p_4^2 \overline{p}_2^4,$$

thus A is isomorphic to $Z_3[p_1, \overline{p}_2, \overline{p}_5, \overline{p}_9, \overline{p}_{12}]/(r_{15})$ for $r_{15} = \overline{p}_5^3 + \overline{p}_5^2 p_1^2 - \overline{p}_{12} p_1^3 - \overline{p}_9 \overline{p}_2^3$.

This lemma is proved as follows. Let BT be the classifying space of a maximal torus T of Spin(9). The Weyl group ${ar \Phi}'=$ Φ (Spin(9)) of Spin(9) operates on H*(BT; z_3) = z_3 [t_1 , t_2 , t_3 , t_4] as parmutations and the changment of signs. As is well known, under the homomorphism ρ^{-1} * induced by the natural map ρ^{-1} :BT \longrightarrow B Spin(9), H*(B Spin(9); Z₃) is mapped isomorphically onto the subalgebra $H^*(BT; Z_3)^{\bigoplus'}$ invariant under \bigoplus' which is a polynomial algebra of the variables $\int_{0}^{\infty} t^{-1} (p_i) (t_i) (t_i) (t_i) (t_i)$ function on t_1^2 , t_2^2 , t_3^2 , t_4^2). For the Weyle group $\Phi = \Phi(F_4)$ of F_4 , the image of $(\rho \rho')^* = \rho'^* \rho^*$ is contained in the invariant subalgebra $H^*(BT; Z_3) = \rho'^*A$. Φ is generated by Φ' and an element which operates on $Z_3[t_1, t_2, t_3, t_4]$ as the neflection with respect to the plane t_1^+ t_2^+ t_3^+ t_4^- 0 (cf. [2]). Then the lemma is proved by purely algebraic computations.

Consider the mod 3 cohomology spectral sequence $(E_r^*, *)$ associated with the fibering (2), where

 $\begin{aligned} \mathbf{E}_{2}^{*,*} &= \mathbf{H}^{*}(\mathbf{BF}_{4}; \ \mathbf{Z}_{3}) \otimes \left\{1, \ \mathbf{w}, \ \mathbf{w}^{2}\right\}, \ \mathbf{w} \in \mathbf{H}^{8}(\Pi; \ \mathbf{Z}_{3}), \quad \text{and} \\ \\ \mathbf{E}_{\infty}^{*,*} &\text{is a graded algebra associated to} \quad \mathbf{Z}_{3} \left[\mathbf{p}_{1}, \ \mathbf{p}_{2}, \ \mathbf{p}_{3}, \ \mathbf{p}_{4}\right]. \end{aligned}$

Thus the differential d_r is trivial unless r=9,17. By the aid of Lemma 1, we have the following

Theorem 1.
$$H^*(BF_4; Z_3) = Z_3[x_{36}, x_{48}] \otimes$$

$$\left[Z_3[x_4, x_8] \otimes \{1, x_{20}, x_{20}^2\} + \bigwedge(x_9) \otimes Z_3[x_{26}] \otimes \{1, x_{20}, x_{21}, x_{25}\} \right].$$
Schetch of the proof. For instance, we compute $H^*(BF_4; Z_3)$

4 3

step by step as follows.

- (i) There exists x_4 such that $\rho^*(x_4) = p_1$. (easy)
- (ii) There exists x_8 such that $p^*(x_8) = p_2$, since $p_2^+ p_1^2 = -p_1^4(p_1) = p^*(-p_1^4x_4)$
- (iii) The transgression image x_9 of w is non-zero, since $d_9(1 \otimes w) = 0$ implies rank $(E_{\infty}^{0,8} + E_{\infty}^{8,0}) = 3 > \text{rank } (H^8(B \text{ Spin}(9)))$ = 2.
 - (iv) The natural map

$$(3) Z_3[x_4, x_8] + \{x_4\} \rightarrow H*(BF_4)$$

is monic and it is epic for $\deg < 12$. The first half follows from

- (i),(ii),(iii) and $Z_3[p_1,p_2] \subset H*(B Spin(9)).$
- (v) The relation $x_4x_9=0$ holds and (3) is epic for $\deg<16$. Assume that $x_4x_9=d_9(x_4\otimes w)\neq 0$, then $E_\infty^{4,8}=0$ and thus $f^*:H^{12}(BF_4)\to H^{12}(B\operatorname{Spin}(9))$ is epic. But this contradicts to the result $p_3\notin \operatorname{Im} f^*$ of Lemma 1. Thus we have the assestion of (v). Remark that $x_4\otimes w\in E_\infty^{4,8}$ represents $p_3\pmod{\operatorname{Im} f^*}$. Similarly we have
- (Vi) The relation $x_8x_9=0$ holds and (3) is epic for $\deg < 20$. $x_8 \otimes W$ is a parmanent cycle and represents $p_4 \pmod{\operatorname{Im} p^* + \{p_3p_1\}}$).
- (vii) There exists an element x_{20} such that $f(x) = \overline{p_5}$ $= p_4 p_1 + p_3 p_2 p_3 p_1^2 .$ The parmanent cycle $x_4 x_8 \otimes w$ represents both of $p_2 (\pm p_3 + 1 \text{ower term})$ and $p_1 (\pm p_4 + 1 \text{ower term})$. This shows that $p_4 p_1 \pm p_3 p_2 + (1 \text{ower term})$ is in $E_{\infty}^{0,20}$, i.e., in the mage of f(x). Such an element should be f(x) mod f(x) by Lemma 1. Thus the existence of f(x) is proved.

(viii) $x_4^2 \otimes w^2$ represents x_{12}^2 since $x_4 \otimes w$ does x_{12} . By the same reason as (iii) we have

(ix)
$$x_{21} = d_{17}(x_4 \otimes W^2) \neq 0$$
, $x_{25} = d_{17}(x_8 \otimes W^2) \neq 0$
and $x_{26} = d_{17}(x_9 \otimes W^2) \neq 0$.

Continuing the computation a little more, we have the existence of the elements x_{36} , x_{48} such that

(x)
$$\rho^{*}(x_{36}) = \overline{p}_{9}$$
 and $\rho^{*}(x_{48}) = \overline{p}_{12}$.

Finally we prove the theorem by the aid of comparison theorem.

Corollary Ker ho * is an ideal generated by x_9 , x_{21} , x_{25} , x_{26} , and ho * maps the subalgebra generated by x_4 , x_8 , x_{20} , x_{36} , x_{48} isomorphically onto Im ho * = A.

Let $\widehat{\mbox{BF}}_4$ be the 4-connective fibre space over \mbox{BF}_4 . we have a fibering

(4)
$$\widehat{BF}_4 \rightarrow BF_4 \xrightarrow{p} K(Z, 4).$$

The loop-space of BF $_4$ is a 3-connective fibre space over F $_4$, say $\overset{\sim}{{\rm F}}_4$. From [3]

$$H*(\widehat{F}_{4}; Z_{3}) = \bigwedge (x_{11}, x_{15}, x_{19}, x_{23}) \otimes Z_{3}[x_{18}]$$

where $x_{15} = x_{11}^{1}$, $x_{19} = \Delta x_{18}$ and $x_{23} = x_{19}^{1}$. By spectral

sequence arguments we have

/

$$\mathtt{H*(\widehat{BF}_4;\ Z_3)} = \bigwedge(\mathtt{y_{19}}) \otimes \mathtt{Z_3} \big[\mathtt{y_{12}}, \mathtt{y_{16}}, \mathtt{y_{20}}, \mathtt{y_{24}} \big]$$

for deg
eq 55. On the others hand

$$\begin{aligned} & \text{H*}(\text{K}(\text{Z},4); \ \text{Z}_3) = \text{Z}_3 \Big[\text{x}_4, \text{x}_8, \text{x}_{20}, \text{x}_{26}, \dots \Big] \otimes \bigwedge (\text{x}_9, \text{x}_{21}, \text{x}_{25}, \dots), \\ & \text{where} \quad \text{x}_8 = \bigwedge^1 \text{x}_4, \quad \text{x}_{20} = \bigwedge^3 \text{x}_8, \quad \text{x}_9 = \Delta \text{x}_8, \quad \text{x}_{21} = \Delta \text{x}_{20}, \quad \text{x}_{25} = \bigwedge^4 \text{x}_9, \\ & \text{x}_{26} = \Delta \text{x}_{25}. \quad \text{Consider the cohomology spectral sequence associated with} \end{aligned}$$

$$\underline{\underline{\underline{\text{Lemma 2.}}}} \ \triangle \ \beta^4 \triangle \ \beta^1 x_4 = \pm \ p*(x_{26}) \neq 0.$$

the fibering, then by dimensional reasons we have

This leads us to the following

Theorem 2. In Theorem 1, we can choose

$$x_{8} = \beta^{1}x_{4}, \qquad x_{9} = \Delta \beta^{1}x_{4},$$

$$x_{20} = \beta^{3}\beta^{1}x_{4}, \qquad x_{21} = \Delta \beta^{3}\beta^{1}x_{4},$$

$$x_{25} = \beta^{4}\Delta \beta^{1}x_{4}, \qquad x_{26} = \Delta \beta^{4}\Delta \beta^{1}x_{4}$$

$$\underline{\text{and}} \quad x_{48} = \beta^3 x_{36}$$

Corollary, For the above choice of generators, the following relations hold:

$$x_4 x_9 = x_8 x_9 = x_4 x_{21} = x_8 x_{25} = x_{20} x_{21} = x_{20} x_{25} = 0,$$
 $x_4 x_{25} = -x_8 x_{21} = x_9 x_{20}, \quad x_4 x_{26} = -x_9 x_{21},$
 $x_8 x_{26} = -x_9 x_{25}, \quad x_{21} x_{25} = -x_{20} x_{26}.$

These relations are obtained from the relation $x_4^x_9 = 0$ by applying cohomology operations.

References

- 1 S. Araki: On the non-commutativity of Pontrjagin rings mod 3 of some compact exceptional groups, Nagoya J. Math., 17(1960), 225-260.
- 2 A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces I, Amer. J. of Math., 80(1958), 458-538.
- 3 M. Mimura: The homotopy groups of Lie groups of low rank,
- J. Math. Kyoto Univ., 6(1967), 131-176