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LIMITING ABSORPTION METHOD AND ABSOLUTE CONTINUITY
FOR THE SCHRODINGER OPERATOR

by Teruo Ikebe and Yoshimi Saitd

§0. Introduction
The present paper is concerned with a spectral property
of the Schrodinger operator
. n
(0.1) L=-—Z(§-+ib.)2+ '

in mn, where bj and V denote the Eperators of>
multiplication by real-valued functions bj(x) and V(x).

bj(x) is the j-th component of the magnetic vector potential,
while V(x) represents the electric scalar potential. V(x)
is usually assumed to diminish at infinity, which corresponds
to the situation in a two-particle problem that the interaction
between the particles dies off as their mutual distance

beconmes iarge. : , .

The spectral structure of %he operator 1 has been
investigated by many'authors with various degrees of the
smallness assumption on V{x) at infinity. For the sake
of convenience of explanation we consider, for the moment;
the case n = 3 and bj? 0 in (0.l1), so that L =-4+1V,
A being the n-dimensional Laplacian. A most interesting
problem in the spectral theory for 1L is that of absolute

continuity. Namely, 1let H ©be the unique self-adjoint



[RW]

restriction in 32¢R3) of I (the existence of H is guaran-
teed, e.g., by Ikebe-Kato [8]), and E +the associated spectral
measures Ei::f?%dE(K). Then the problem is: Is {(E(A)f,f) l),
f e L2(B3), aﬂgzlutely continuous (with respect to the ordinary‘
Lebesgue measure) on (0,00)? Or, equivalently, is H restrict-
ed to E((O,co))Lg(B3) an absolutely continuous operator?

(Here it should be noted that if the problem is affirmatively
answered, then the absence of the singular spectrum on (0,00)
follows. ) Let us now assume that V(x) = O(lxl—a),ix>(h

The above problem has been solved, to cite a few, by Povzner [14].
for o >3.5, by Ikebe [7] for A2, by Jager [10] for «> 1.5 2),
by Rejto [15] for o >4/3, by Kato [11] for o >5/4, and by

Agmon [2] and Sait® [16] for o >1. TFor the repulsive pdtential
case (2V/3]x1< 0) we note work of Lavine [12] and Arai [3].
Attention should also be paid to the result of Dollard [4] for
Coulomb type potentials (L = 1).

Recently, R.Lavine obtained the following result (lecture
given at éﬁ%i%%erwolfach symposium on Mathematical Theorygof
Scattering): If V = V, + V, with Vl(x) = o(1), 2VW/21x|
= O(]x]wB), f>1 and Vz(x) = O({x}—z),a’>1q then H is abso-~
lutely continuous on (O,oo)°3) His method of proof is similar
to the one employed in [12].

In this paper we shall establish the same result as Lavine's?
by a different method, where the condition Vl(x) = o(l) will
Be replaced by Vl(x)”=10(,x‘-g), d >0, however.

The spectral measure E is, roughly speaking, determined




o

by the boundary values of the resolvent (H - z)—l on the reals,
the resolvent being well-defined for = non-reala ~ This leads
us to the study of the asymptotic behavior of (H - A + 18)7

as £ tends to O through positive values. Wé cannot, however,
expect that the limit of (H ~_Z_i.i£)"1f for €¥ 0 exists in
the I, sense for f€5L2¢B3), and, therefore, we have %0 choose
appropriate classes of functions so that the limiting procedure
in question may be justified. This forms the contents of the

4), . Once

gso-called limiting absorption method br principle
the limitiné absorption method proves appliéable, the absolute
continuity of H on (0,00) readily follows.

The greater part of the present paper will be devoted to
the justification of the limiting absorption method for the
more general Schrodinger operator (0.1l) in which bj £ 0, but
we shall impose on bj ' some asymptotic condition at infinity.

Section 1 states and proves all the theorems related with
the limiting absorption method, while several lemmas needed for
- proving the theorems are stated without proof. These lemmas

are proved in Section 2. Finally in Section 3 the absolute

continuity of the Schrodinger operator is verified.



8l. Limiting absorption method

o .
Consider the inhomogeneous Schgodinger equation

(1.1) Tu - Kzu = —ED.D.u - V(x)u - = f
in R™, where
o . - B

d

bj(x) and V(x) are real-valued functions whose more precise
properties will be specified soon. The complex parameter

K 1is assumed to vary in the closed upper haif—plane. The
inhomogeneous term f is assumed to lie in a suitable

Hilbert space contained in L2(Bn).

Equation (1.1) may be solved rather easily if 1« is
non-real and K2 is not an eigenvalue of L. Denoting. the
solution by u(x, f), the following question arises : Does
there exist a limit in some sense or other of wu(x, f) when
k tends to a real limit (£ 0) 2 If such a limif exists,
then it may be easily imagined that the limit function
satisfies (1.1) also (with it replaced by the real limit).
We want to solve the above prbblem by first establishing some
a priori estimates for solutions of (1.1) witk non-real i,
and then carrying out the limiting procedure preserving the
obtained a priori estimates. This way of constructing solutions

(1.1) for K real is what is called the limiting absorption

method.

Before giving the assumption on V(x) and bj(x) we



shall list the notation which will be employed in the sequel

without further reference.

R real numbers.
€ complex numbers.
. B .
= . -1 . = . . . S =
Dy = 95 + =T by(x) = 9; + ibs(x)  (9; e 1,
2’.00, n).
K) n-1l. e ~
. o= 4o = D. —, - . .= X, cC).
‘03 Aﬁg DJ oy kK | (x:l xalixl, xee)
Du = (DIu, Dyu, **°, Dnu) .
Hu = (..191u,‘<02u, coey ﬁnu).
Du = %Dju'xji (r = |x().

P

r

B

rs

Jgﬁjub’ié. (r\: Ix])e.

Ix/ xiyr}  (r>o0).

§x / xisr} (r>o0).

=lx/ rexigst  (0<rgs).

L, ﬁ(G) (BeR) denotes the class of all functions ' f
¥

on G such that (1 + |x )‘Sf is square integrable
over G. The norm and inner product of L, 4(G)
. 18
are denoted b : ; i
no v ol g and ( , )@,G’ respectively.,
ny, _ . _
We set L2,B(B ) = L2’0} 9. u ”(391Rn _“ ”{3 \ and
(, ){B,Rn ={, )(_4,. When /5 = 0, we shall omit

the subscript 0O as in L,(G), 1 HG etec.
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is 2ll 1, functions with distribution derivatives

2
up to the second order, inclusive.

¢® is the class of m-times continuously differentiable
functions.

C; is the class of infinitely continuously
differentiable functions with compact support
in R".

2
M (x) = S;x—-y}él AR oy (w>0).
Q« denotes the class of locally L, functions p(x)

such that Mp(x) is uniformly bounded in R™.

Nloc is the class of all loecally N functions.

Now let us make the following assumption on the

coefficients V(x) and bj(x).

(v)

Assumption 1.1.

_ V(x) can be decomposed as V() = Vl(x)
+ Vz(x) such that V,, V, are real-valued
Qo(,loc functions for some >0, and there

exist positive constants C, §, R, such that

2V
the radial derivative 5—5{-‘1- exists for xRy,
P -
]Vl(x)\ <C 1x}8, -igcm § for [x{) Ry,

=i

Ix
and ]Vz(x)\ £C \xls

for X1 Ry



(B) bj(x) is a real-valued €71 function
- satisfying lBjk(x)!*éCthq—s for Ixi3R,, d,k =
1, 2,-°-, n with the same ¢, ¢, Ry as in (V),
where Bjk(x) = gjbk(x? - akbj(x»).
(uc) The unique continuation property holds for

the differential operator I in RY.

The main results of this section are summarized in

the foliowing four theorems.

Theorem 1.2. ILet. K. be an open set in the upper

half-plane of ¢ of the form
(1.3) K ={i= K vigee £ k €(a, b), k,€ (0,0 )},

where 0<a<b<® and O0<d<w, Choose an ¢>0 sufficiently
small (so that £§3/2 and £<1). Then under Assumption I.T
there exists a constsnt € = C(k, &) 5) (which is indépendent
of x, however small it may be) such that the following

a priori inqualities hold for amy usC"a and any XEK :

(1.4) Mufge € 0(T - k)l ,
2. .
(1.5) IBuke £ £ C(L - )ufy,
(1.6) nuuf,_;g £.< coti(L - K2_)uﬂ§;:§ (pz1).

i



O

Theorem 1.3. Let Assumption 1.1 be fulfilled and
let K and € ©be as in Theorem 1.2. Then for any pair
(x, £)€ KXL, ;¢ there exists a unique solution

s 2
u = u(ts, f)el’z,—'-}‘:nHz,loc of
(1.7) (L - )u = £.

Moreover, +the solution u satisfies

(1.8) huilwe < CIFALE ,
(1.9) wuu#ﬁlé Chfiye,
(1.10) il 5 CFEIE e (pr1)

with the same constant C = C(X, €) as given in Theorem 1.2,

For €K, where K is the closure of K in €, we
can construct a solution u = u(k, f) as the limit of a
sequence of solutions ium = u(ic,, )t (I €Ky Y— i)

obtained in the vpreceding theorem.

Theorem 1.4 (limiting absorption principle). Let
Assumption 1.1 be fulfilled and let K and € be as in
Theorem 1.2. Let &K and let fel, 14e . Let {ic }

) m

CK be a sequence tending to K. Let wu, = u([m, ).

Then {ul converges in I, S toa uéLz,-l;—f-“Hz,loc

which solves

(1.11) (L - B)u = 1.




The limit u = u(xk, f) thus obtained is independent of
the choice of the sequence ik} end is determined as a
unique solution of the equation (1 - K2)u = £ with the
boundary condition at infinity nﬁul#’ EI<°°‘ (The last
condition replaces '_bhe_ usual outgoing radiation condition
cf., Sait5[16].) Moreover, u(k, f) is I’2,-—1§? -strongly

continuous in xek.

As is easily checked, the above theorem is an

.

immediate consequence of the following more general

assertion.

Theorem 1.5. Let Assumption 1.1 be fulfilled and
let K and &€ Dbe as in Theorem 1.2, | Then for any pair
(e, f.)éf()(L2 14€ there exists a unique solution u =

» 2 :

u(x, f)éL2 _1:¢NH of
2

2,1oc
2 : '
(1.12) (L - K)u = 1, !l&‘j’un%ti’gl <o,

In this case the estimates (1.8), (1.9) and (1.10)

hold good. The mapping

(1.13) ExL, 1.6 3(K, £) > u(k, £)EL, _is¢
| | 2,55 2=%3

is continuous on XKXL I4E
2 F L =N

Remark 1.6. In Theorems 1.2, 1.3, 1l.4 and 1.5

-9 -
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one may replace K by any of the following :

(1.14) f= 1, +ik€e /¥ e(-b, -a), KE(0, x)},
(1.15) fx= 1y -ikee / K € (a, b), »cze(o,a)},
(1.16) =ty -ik£e / ky&(-b, -a), k,£(0, “)}.

In the latter two cases where one considers in the lower
half-plane, one has to make an obvious change in the

definition of fu, 1i.e., one should put

_ n=1e~ .~
(1.17) £%u.— Dju * o kyu t 1Kxju.

We shall list a series of lemmas which will be used
to show these theorems and will be proved in the following

section.

Lemma 1.7. There exists a constant C = C(K, 2)>0

such that
(1.18) I8l g 5 ofiuizt + (D - w?)ullae }

is valid for any uecg and any xeK.

Lemma 1.8. There exists a constant C = C(K, €)>0

such that

- 10 -



(i.19) nuide 5 € Cp il (L - Pl ] (p21)
237p =

holds for any ueC°8 and any KéK.

The next lemma shows the uniqueness of the solution
of (L - \r&2)u = f with xek satisfyihg some boundary

condition at infinity.

Lemma 1.9. (i) Let weH be a solution of
2,1loc _ N
(L -1%)u =0 with KeK such that uel, _1e. Then
: , 9~ Tq
u is identically zero.
(ii) Let wu€H be a solution of (L - Kz)u = 0
2,1oc _
-with x¢€X such that uGLz’_;;_s and li.{}ug‘]#'Elao.

Then u is identically zero.

The following two lemmas are related to the existence
of the solution u(x, f) of (L - Kz)u = £ and the

continuity of u(K, f) in wW and f.

Lemma 1.10. Let keX. Then the set {(L - mz)u /
oo

e . . e .
u CO} is dense in L2,5—2§-

Lemma 1.11. Let 3Yul be a sequence in L, _1+f ¢

m 2, N

H2,loc -and let ikmi be a convergent sequence in X :
KmﬁK‘E'_K_ (m—e). Assume that

2yu €1

(1.20) £, = (T - xD)wel, 1

m

- 11 =



(1.21) fp = £ 0 Iy 1 (moed,

and there exists a constant Co such that

Qum“,xii é Co)

: < .
(1.22) gw(‘m)umu 1,8, € Cor
=
2 2 ¢

for all m = 1, 2,+ce, Then {um} has a strong limit u

in 'L2’_%§_. u satisfies

(1.23) we L, 1t NHy 100

(1.24) (L - ¥)u = £,

(1.25) !(,(Suﬂ:%i ,E1<°°’

(1.26) dg(ﬁﬁ)um‘—94311 in L2(El,)100 (m—~ o),

Using these lemmas we can now prove Theorems 1.2,

1.3, 1.4 and 1.5.
Proof of Theorem 1.2. Since (1.5) and (1.6)

follow from (1.4) and Lemmas 1.7 and 1.8, it is

sufficient to show (1.4) =zlone. Let us assume that

- 12 -



(1.4) is false. Then for each positive integer m we

can find (€K, umec‘g such that

{ oyl ze = 1,

(1.27)
B(L = kK u il 1eg. <1/m.

Since ikm} is a bounded set in €, we may assume,
with no loss of generality, that km-ﬂ( with KEK
as m tends to o. It follows from (1.27) and Lemmas

1.7 and 1.8 that we have for all m =1, 2, <°«

2 > 72y . ~¢
‘fumﬂ_%_g_,Efi. Cf’(l + 1/m%) g 2Cp (pz1),

(1.28) I\ |
C(1 + 1/m) £2cC.

TTAN

I ﬁ( Km)um“"lrﬁ E
. it !

Therfore, we can apply Lemma 1.11 with f = (L - k;)um

and £ = lim f = 0, which follows from (1.27), to see

C Me~poo
that there exists a limit u = lim u in L, 1:¢ which
‘ ' M- I <977 _
is a solution of (L - Kz)u = 0 satisfying Joul,,, <%
AT ""1
EX

—_—

2
contradiction, Dbecause we have, on the other hand, u = 0

Since Nuy . 1e = 1, Jul_1#e= 1. But this is a
2
by Lemma 1.9, (ii). Thus we have shown (1.4) . Q. E. D.

Proof of Theorem 1.3. Let féL2 IxE_ . Since
L

i(L - y@)u / ueC°8§ is dense in I, i by Lemma 1.10,
4

there exists a sequence {un‘GCCeOo such that

(1.29) (L - Kz)um =f,—f in I, 1

-13 -
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as m-0, Apprlying Theorem 1.2, we obtain

WUp | gsg S CHE lipe
2 2

(1.30) ﬂb‘lmll:_lf_g’Elﬁ_ C"fmﬂﬁ_g
. 2

~€
Wty 12 0ee, 5, € CP I e (p21)
2

for all m =1, 2, +-- , Since it follows from (1.29)
that {ﬂfmﬁ;::_e} is a bounded sequence, we can see that
(1.22) is satisfied with Co = (C +J"C-)‘s]%p i fm[h%_-g and
X, =K Hence we can apply Lemma 1.11 to obtain a

: oy
solution ue€ L2,—3§§-[\H2,loc of (L-yx)u=1Ff by
taking u to be the strong limit in L, _1s¢ of {um}.

| I Y ’

By Lemma 1.9, (i) the u is a unique solution of

2. . .
(L - xX)u = £, ueLg’_l%e_(\Hz,loc. vBy. letting m—e in
the first and third inequalities of (1.30), (1.8) and
(1.10) of the theorem follow directly. To show (1.9)
let G Dbe a bounded measurable set in El" Then we

have from the second inequality of (1.30)
(1.31) (P 2t LG ECIE e .
Letting m to e in (1.31), we obtain
(1.32) fOu I -1t Gé Clfjre,

9 ’ 2

since @(Km)um—aﬁu in LZ(El)loc by (1.26) of Lemma

- 14 -
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1.11. Since GC El is arbitrary, and the right side of
(1.32) is independent of G, we obtain (1.9). Q. E. D.

Remark 1l.12. Under the assumption of Theorem 1.3
the unique existence of 1;“he solution in Lz’_g_-_%g_ nHZ,loc
of (L - xcg)u = f, fel, 13¢ follows rather easily if one
" 2 .
notes that I determines a unique self-adjoint restriction

w g
Mee, e.g., Ikebe-Kato [81 ), and that 2

is not

resl. In fact, for any feL, 1e (C L)) u = (H - K2)"1f
2 .

€L, is seen to be a unique solution of equation (1.1)

satisfying uE,IfZ;l_;&-nH&loc’ But in the above proof

we have had no recourse to the self-adjointness that does

not seem powerful enough to derive the uniform estimates

(1.8)~(1.10) for ¥eK.

Proof of Theorem 1.5. Let xéX and f¢ Ly 1ie .

. . y 2
Take {Rm}CK such that Kk —k as m-. By Theorem
1.3 there exists a unique solution umé L2,~%AH2,loc of

the equation (L - ‘fxi)um" f which satisfies

[[um;]~}¥_$_Cltf Il_!_;_f_

(1.33) s ( Kgy) £ Clf e

up e 2
m=3E By

2 2 .
g 12 228 5 % Cﬁ“fn%i (pz1)

for 811 m =1, 2, ¢ , Then one can see from Lemma 1.11

- 15 -
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with f = f that {w} has a strong limit uw in L, _Lt£,
. 1T T2

\151@’_%?J1H2,10C, which is a solution of equation (1.1).

Arguments similar to those used in the proof of Theorem 1.3

to derive the estimates (1.8)~(1.10) from (1.30) show

that the same estimates follow from‘ (1.33) in the present

case. Since n‘bu“;liﬁ E <w 9 it fO].lOWS by Lemma 1.9, (ii)
2 7T

that the u obtained above is a unique solution of equation
1.1 tLul_,, % .
( )9 :%_%_,E]-(

Finally let us prove the asserted continuity of the
mapping (1.13). Now that the unique existence has been
established, one can apply Lemma 1.11 again to the solutions
w, = uli, f), whe;e fi,t  and {fm} are assumed to be
convergent sequences in K and L2 14¢ ¢ Trespectively.

L _
The required continuity follows from the fact that fum}

is a Cauchy sequence in L2 _i1+e, which is a conclusion
* 2

of Lemma 1.11. , Q. E. D.

- 1.5"?



§2. Proof of the lemmas

This section is.devoted to giving the proofkof Lemmas
1.7~1.11. 7

First we shall prepare g lemma which is a well-known
elliptic estimate for the case that 1L has smooth
coefficients. ..In our case where the coefficients -are
allowed to have certain singularities, an additional
consideration will be required.

Lemma 2.1. Assume that V&Q with some >0

“%,1l0¢C
1

and bj are real-valued C functions on R, Let KX Dbe
a bounded set in C. Then for each R0 there exists

a constant C = C(K, R) such that the estimate

17

(2.1) S. i\gju(x)]z‘dxﬁc g ilu(x)l2 + (L - Kz)u(x)"?}dx

J©
BR BR+1

holds for any uéHZ,loc and  any keK.

Proof. Let {¢Ch such that Osp4l and

| 1 ( 1xI%R),
(2.2) ¢(x) =
0 ( |xIZR+1/2).

Since ueHZ,loc satisfies
M .
(2.3) (L= ) = WD - E)u - fueab + 27D 0,
J:

we obtain

- 17 -
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(2.4) (T - ) (yu), gu) = (V(T - x2)y, yu) - ((aP)y, yu)
“ N
- 2% ((QJY)DJu’ Yu),

whence follows by integration by parts

(2.5  IDGIF= (&2 - Vv, du) = (BT - 1D)u, yu)
- (ad)u, w) - 22 ((339)D5u, yu)

= (€ - Vyu, gu) + (P - D)u, Ju)

- (ap)u, o) - zJ%(njm), (3;9)%)

+ 2ll(aj¢)u1ﬁ

H
Bence we obtain the estimate
L vRe 2 2 12
(2.6)  ID@wIE ¢ S Fivea w2 + 11 - ucal
BR+1/2

r lu(x))2} ax

with a constant Cy = Cl(K, R). Since Dj'= Qj + 1bj(x)

and bj are locally bounded on En, it follows from (2.6)
that

A

c, g ~§)V(x)nu(x)\2 1T = D)ulx))?

(2.7 Zhaw)?
I ‘ BR+1/2

+ ‘u(x)]z} dx

- 18 -
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with C, = C,(K, R). Si{lce VE Qot,loc' we can make use
of Lemma 2 of Ikebe-kato [8] to show

(2.8) § () u(x)| 2 ax
-BR+1/2

= 7§B é_'gju(x)i 2dx + 03 g 4!11(1)\2@3{9
=1 ‘ B
R+l B+l

where 7 is an arbitrary positive number and 03(’? , R) is
a positive constant. (2.1) theﬁ follows from (2.7)

and (2.8). : Q. E. D.

For later purpose let us rewrite equation (l.l)

(2.9) (L - )tg)u = —%D.D.u + Vu - )(2u = f
= J d
in the form
(2.10) - 3506 -1l o - ixBu "__') = f
. Z;'_}jju+2r 0 1br + V(x)u = £,
where
(2.11) T(x) = v(x) + 5(n-1)(n-3).
. 4r
<k

Let us proceed to the proof Lemma 1.7. To this end we

need two lemmas.,

- 19 -



Lemma 2.2. Let u€Cy and let f = (L — 1¥)u  with
ReC. FPurther, let Y(r) %be a ¢! function on [RO, o)
such that C?(RO) = 0, and let us put

(2,12) Volx) = Vy(x) + 4—1§(n-1)(n-3).
r .

Then we have

(2.13) g{( k9 + 3-22ew? + (£ - 2 (ewi® - ou12)] ax
o |

. CARY )
S T N

i
-
B8
—
e N
M;s
S
[vs}
(]

w
vy
g

hi

PTN
<}
o))
"

—

where k, = Imk, r = |x| and Bjk(x) = i)jbk(x) - kaj(x).

Proof. First note that (2.10) holds with our u
and f. Multiply both sides of (2.10) Dby F LSt

integrate over EB , and take the real part. Then we have
0

- 20 -~



(2.14) Re [f Pf&u dx]= - Re [ g %?Djﬁju-ﬁru dx |
E E
o ®o
+ Re [

S ?(%“F”"ik) 1,0 ZdX]
E
Ry

+ Re [g ¢V,u-Su ax |

=Il+12+13+14.

Let us compute I. (s = 1,2,3) by (repeated, if necessary)

application of integration by parts as follows : Noting that
- n"'l N ~ o~ . .
(2.15) Dj-@ku - DkJ\}J.u = (?z'-r" - 1K)(xka(93.u - qucu) + 1Bjku’

we have

n — :
(2.16) I, = Re [g ziﬁju’qucu"?xk dx ]
B J,K’l :
Ry

+ Re | i@-u°(9-"§7).m dx]
EJ=1 d dJ r

Ry

n
+ Re [ Zﬁju-(gj'ik)g’ﬁku dx]
E j,k=1 »
By

- 21 -



f o]
i)

-1 2
B gE (%—g- - E2—1"' - %59 &l
o
+ g (€ - 3-22 » w9 boui® ax
e

Ry

+Im [ S ZC}’B k(,@;‘u)xku dx]

E k=1
Ry
(2.27) I, = ilw CP(n-l + Kz)'IoBru‘z ax.
' 0
-1-
(2.18) I3 = Re {g gvqu izz(x (3 u) - 1xab ) + I-l-f,—u + 1Ku}dx]
ERO J

- Re [ Z9 (Pvug;)-u dx ]

E_J*!
)

N fcyvl(’-l% + Ky) (ul?

E
Ro
V n-1
==1I3- f (~-°fv1 <,°-—-+<fvl = B2y uf? dx
E
Bo
R 2§ v, (52 + ) Tul?
"By
< L - 358 rogfin? ax
By

Thus (2.13) follows from (2.14), (2.16), (2.17) and
(2.18). Q. E. D.

- 22 -



" Lemma 2.3. Let X be as in Theorem 1.2 and let £20.

Then there exists a constant C = C(K, €) such that
- +€
(2.19) Ellull%ggcguult__x_;:g+ uauz;_lgg JBy + (L K2)u“‘—1—}

holds for any uéc?; and any K = Kl + itzeK.

Proof. First let us show (2.19) for ue Cg’ with
support in El‘ Integration ower E1 after multiplying
both sides of equation (2.9) by P(x)u = (1+ ixi)l_f’ﬁ

yields, on taking the imaginary part,

1 1

< El

where we put f = (L - K‘;)u. The first term on the

Hekt ,
aégiﬁ-hand side of (2.20) being integrated by parts, we

obtain
(2.21) x @lul“ dx = 5%—4{Im Y. D.u.x . ZLu dx
2 2¢C e jar
E 1 g J1
1 1
- Im f pfu dx}
By
= -2-%{1-{ Im Sg-%(d%,u - %;J-‘-u + iku)u dx
Ey



0
Vs

where we should note kl * 0. Since
o oo 99 _ 4 -t 1
(2.22) o = (1-8)(1+1) = TECP’

it follows from (2.21) and Schwarz’ inequality that

(2.23) KZg‘flulz §_2T1__ [y cﬂug dx]

Hence, noting that uw is supported by the set El’ we have

(2.24) xznuu%gﬁ -z-l— %(l—e)ita&uﬂ a8 + (1-8) Iyl Null_pee

Gl 1 “i“

+ 1 f‘ﬂm} .
2
Thus (2.19) follows with

(2.25) C = ?3% { (1-8)(1+T) + 1}

(t = inf lK‘ll T = sup k4! )
xek keEK

for ue Cgo with support in El'
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Next let us proceed to the general case, where no
restriction is made on the support of - uec"g except it is
compact. Let o&(x) be a C® function such that 0s£¢1l

and

v

(1x1
(1xl

3),

1
(2.28) K(x) = 50 2)

WA

Then we can decompose u as u

(1-adu + Ku. For (l-¢&)u

the Aestimate

M

(2.27) (1- o()ull_;ig_§ [ g (1+|x[)1-elu]2 dx]
) .
3

Cﬂllluﬁ
2

is valid with a positive constant C = C(&). Let us
oo

estimate the term gu. gu is a Co

function with support

in El’ .a.r;d we have
2 2 =
(2.28) (T - K (xu) = (D = K)u = (@X)u = 2 37(5;00(Dyu).
J=1
S of + g.

Therefore, by what we have proved for Cg’ functions with

support in E;, 1t follows that

(2.29) kzuoculu:_zg_ < CY hull, e + )l _14¢ 'Ell + ﬂfﬂ_z_gg_q- i 8l 1ee },
2 i "‘2_’ ) 2, R
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5

)

where C is as defined by (2.25). Notice that

(2.30) oﬁj(du) =0<a%u + (Qjoc)u

and the support of g is contained in B2 3° Then, using
» 4

Lemma 2.1, we obtain

<
oK)l -148 = £ul 14 + C.lul) Iee
- ~z 8 2L ,p) T VS
(2.31) <
ug“}_‘g‘ = ngliuu_zg-i— BE 1;6 % »

where Cj = Cj(K, £) (j =1,2). (2.29) together with
(2.31) yields

< A
(2.32) k?“o(uﬂj_-ig_: 035 nun_%g_ +"“3““:§‘—‘=EI + ufnzgs}

with C. =C3(K, £€). Now (2.19) follows from (2.27)

3
“and (2.32). v Q. E. D.

4
Proof of Lemma 1.7. Let us put P(x) =« ([x])(1+1x1),
where ol(r) is a C' function on [Ry, ) such that

0$d<€Y, o’(r)y0 and

0 (r=Ro),

(2.33) & (1) ={ |

1 (r—R6+l),

v

RO being the constant specified in (V) of Assumption 1.1.
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RN
—i

Then we have

(2.34) | - g‘% = _1__::2(1+r)-1+e _ e(ler)"1*E

2 (1-e)(1+0) "> 0 (r 2 Rg+1),
and
) B pamm ™ s e

= g“(r)(1+r)'l+e 2o (r 2 Ry) -

with the @ defined above we can apply Lemma 2.2. Ta.king

note of (2.34), (2.35) and Assumption 1.1, for .uGC‘g

and f = (L - Kz)u (c€eK) we obtain from (2.13)

(2.36) gg «(1+r) "1 ou i 2ax 2 cl§ S 1eul? ax
E | B

RO R +1

: O’R

0

+ S (Ler) 1 01 %ax + Y?S (1+r)_8iu12dx
E ' |

E
Ry R,

+ g o<(1+r)"l’€|aowzue ax
E

Ry

3
+ Sd(hr) Iftioul dx
E

R,
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T3

with a constant C, = Cl(E), whence follows by Schwarz’

inquality
< ) : -
(2.37) lbOuNZ.HE F = 02§ Wlllg + 1"-1“.2;'_*_2.
T3 " TRy+l RO,RO+1 2

)
+ \%ll wil =€ puti_ g4e + N Elizee }
2 2 2

with a constant C, = 02(8). The third term on the

, get
right-hand side of (2.37) 1is estimated by Lemma 2.3 t0 ===
(2.38) Bl & 2 CB%ILDqu + i 1e

“2 ' TRy+l RysRo+l 2

) ‘ 2
+ jjuj_ x+g ouf 4, + Ifli7ee
1 _Ei iﬁg’El 15_}

T
with a constant C, = CB(K’ &), #%hus one can derive from

(2.38)

< .
(2.39) newilue 5 . S Oy jiouid spull e + 012
z ' RO+1 I,Ro+l ) 2=

with a constant Cp = C4(K, 2)., Now Lemma 2.1 can be
applied to estimate the first term on the right-side of

(2.39) as follows :

A

2
Cs(nunB ¥ hfﬂg )

RO+2 RO+2

(2.40)  imwil; ~
1,R0+1

i

C6(in1ug 1+¢ + ilfﬂ%vi )y
N dxg
)

where C; = Cj(K, &) (j =5,6), which together with (2.39)

completes the proof. : Q. E. D.
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Proof of Lemma 1.8. et ué Cog and keX. The

definition of oer enables one to write

IDu(x) + Blu(x) - i(q +ik)u(x)|?

2
(2.41)  1LBu(x)] o

v‘l.

n-1 2 .

I Du(x) + E217’--11(7:) = Gu(x) | +_K21i u(x)l2 |
- ZKJ‘Im [Dru(x)-u(x)},

which, integrated over the sphere S,.» &ives

(2.42) kf g lu(x) 12 as S | g.{&%u(x)iz ds
S 5 '

™ r

+ 2gIn g Dru(;‘c)?ﬁ’(’?) ds.
SI‘

Multiplying equation (2.8) by w(x), integrating over

the ball Br’ and taking the imaginary part yield

(2.43) - Im g Druo'{i ds - 21 IS, g lu)z dx = Im g fu dx.
S B : B
r term r T
(

Employing (2.43) 1in the lamj 2.42), one obtains

(2.44)  «F Stu}z as S Kwrulz as - 46k, S )2 ax

S
r Sr Br

. 2K Im g fu dx

By



g \,ﬁrulz ds + 2“&] )lfﬂ;;_euu;_ig; .

Sp

Now one can multiply (2.44) by (1-1-1')"1"8 and integrate
from P (21) to oo with respect to r to obtain

2|
S (1+r)-1_£ ].'q,ugz dx + :‘L,o llfn_,g_uuﬂ_b_g_
E 2
P _

—2t, . .2 |
e MU g 2 f L] e
2 2

2 2
(2.45) X3 ug S,
11 e 5

from which follows (1.19) by the use of Lemma 1.7 and

Schwarz’ inequality. Q. E. D.

The following lemma Will be used to prove lLemmas 1.9

and 1.10,

Lemma 2.4. (i) Let 1xeC, pB¢R. Let veLZ’{af\Hz’loc

satisfy (L - }g)v 0. Then we have DvETL

2,p°

(ii) Let x=1 + ik, .kjK, ¥ 0 and AER. Tet

. N .
VEHQ,].OC satisfy (L - K°)v =0 and v, DvE LQ'{3 .

Then we have <VE L2’ (5+l/2'

Proof. Let us first show (i). Multiply

(L - lC2)v =0 by ¢v = (1+ [x})z‘s‘\? and integrate over B

with RO< R< ¢o, Then we have by integration by parts
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(2.46) S‘?lDV\Z dx + g %%(Drv)'i? dx
B B
RR RoR

(- ( Ygomvas+ \gw-2)wila
H g]q:n ds V- #) ) %ax

S
R R B
0 ROR
:.-.O,
where
(2.47) [S —S]fds: Sfds—gfds.
| 5§ s
r t r St

Here we should note that the surface integrals in (2.46) make sense

and are continuous in R and RO. This is because, on account of
v being a locally H, function, v and Dv can be regarded as
L2(Sn—l)—valued continuous functions of r = ]x],'where s genotes
the (n-1)-sphere: s"7' = {xe ’R" / |x} = 1}. By
taking the real part of (2.46) we have
' 2 -1 -
(2.48) @IDvi“© dx + Re \ 289(1+r) (Drv)v dx
B B
RoR ROR
- Re {S - g ]tf(Drv)-\? as + gq?(V—lCi-ivé)ivlzdx
S S
R R B
0 ROR
= 0,
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N

whence follows the inequality

(2.49) 3 gqmij dx < Re [g - g ]?(Drv)?r ds

B ‘
ROR - "R 0

where Y}O has been chosen so small that 1-j37>1/2.

Since,

]

[ - [l

ROR SR SR

(2.50) Re S(-S’(Drv)\-f dx
" B

it follows through differentiation in R that

(2.51) Re Sc,o(prv);; as = _12, a@ﬁ[gmﬂz ds}

3

Sp R

§
] o

J

Sr

Since le[z is integrable over Rn,

for R)RO.
(2.52) lim g (c,:%l + g%)avaz as = 0.
R=»w -

Sg
-32 -
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as can be easily verified by partial integration,

((@9—;1 + 20)1v? as

we have



33
Further, we have

(2.53) R_l__%g‘ﬁﬁmvl? éts]5 0,

because if follows from

N4

(2.54) ‘&% [ gcﬂﬂ’z dS} £4%0 (R)R;)

Sp

with some 40 and some R,2R, that

(2.55) &cgnv\Q ds Z a(Rr - Ry) + g:pmz ds  (RZRy),

S 3

R R,

which contradicts the fact that q’lvlz is integrable over

R®. Thus from (2.51), (2.52) and (2.53) we obtain

(2.56) lim Re gc,o(Drv)x‘r as £ o,
Ry
Sr

Therefore, it follows from (2.49) that

(2.57) g‘P[Dvl 2 dx <00 ,

E
Ry

which implies that DvEL, p
) 2

Next we shall show (ii). Put = (l+txl)2a+l

in

(2.46), which is true in the present case, too, and take
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the imaginary part. Then we have

(2.58)  Im g H(p v)V ax ~ In [g - S 19(p,v)v as
B
5

R.R

S
0 R RO

- 2Kk, S- ewi° ax = 0,
B
ROR
Since v, DrvéLz’p and -g—c-’;: = O(]xlgp) (ix}»»), we have

that g—‘f;(])rvﬁ is absolutely integrable over R® and

(2.59) lim (D._v)v ds = 0.
R=oo S ¥ r
Sp

In view of K1K2 ¥ 0 it follows from (2.58)

(2.60) S C?[v\2 dx < o,
E R
)
l.e., VEIL; 01172, Q. E. D.

Proof of Lemma 1.9. Let gg;%iove (i). Since X€K,
(L - t2)u = 0, and u€L2,_%i, we can apply Lemma 2.4, (i)
and (ii) (repeatedly, if necessary) to see that u, Du »
€ L,. Hence, multiplying (L - Kz)‘d: 0 by u and

integrating over IRn, we have

(2.61) F(D.u, Do) + ((V - X2)u, u) = o.
j:l d J
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By teking the imaginary part it follows that -2k Kiu i = o,

i.e., u = 0.
Next let us show (ii). Since (i) has been shown,
we have only to consider the case of Im X = 0. We note

that we have the inequality

| .
(2.62) g {iui? & k2jui?] as £ 2 gﬁmulz » 221002t as,
4r

Sy Sr

In fact, recalling the definition of Du and L£u,~ we

obtain

2
(263 (ga1? = ol & WPpui? + L2
. r

+ 221 ge (D w) @] - weIm (D m) -],

9y 2
2 %\Du\z s cu? - L_____l_n-12 ]u]2
: 4r

- KIm [( Dru) .'ﬁ] ’

where we have made use of

- - < -
(2.64) ‘21-:}- Re L(Dru)-uH = .n212. iu)z + %tDrulz
T
< (n-d Qlulz + l\Du[2
2r2 2

Putting £ = 0 and k2 =0 in (2.43), which is true in

the present case, we have
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(2.65) Im g Druoﬁ ds = 0.
S

r

Integrating (2.63) over S.s with (2.65) in regard, we
obtain (2.62). On the other hand, it follows from

Loull _14eg ’E1<°° and "uu‘%g_ <s that
2

2
(2.66) lim rig-{\dgu(Q + ﬁn—‘lzL-[u;Q} s = o.
T g 4r :
r

Thus (2.62) and (2.66) are combined to give

(2.67) lim rsg §}Du]2 + ;@m\z}ds = 0.
Yoo S.

Now we can apply Lemma 2.5 to be stated below to see that
(2.67) implies that the solution u vanishes identically
in EH1 with some Rl> O. Hence by the unique
continuation property (UC) w =0 on R . Q. E. D.

Lemma 2.5. If u6H2 1 is a solution of the
s1oc
equation (L - 1C2)u = 0 with ¥ real non-zero, and if
u does not vanish identically in a neighborhood of the

point at infinity, then for any €570

(2.68) lim r¢ Hlmu? : ;czmz} as = oa.
Voo 4 | |
r

Remark on the proof. If we assume that V(x)
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= o((xl-l), which case occurs, for instance, when V, = O,
then the lemma reduces to Theorem 1.1 of Tkebe-Uchiyama [9].
Efen in the present case, however, we can carry oﬁt the
proof without essentially modifying the argument‘given in
c9l. A remedy comes from techniﬁues used by Odeh (133,
gimon [17) or Agmon [1] utilizing the differentiability of

‘vl(x). Namely, when one encounters an integral of the

form
n o o
(2.69) ZS v, (x) Ixi u(X)xj(Dju) dx,
o) !
J Bsr
o . . o=, 2
this is estimated by the integrals B ixi lul” dx

7

9

g 5 . sr _ _
{x} fpu] © dx if one assumes only that Vl(x) = 0( Ix]
sr
but not the differentiability of Vl(x). However, if it

is assumed that 'Vl(x) = O(!xllwq) and %%% = 0((x1-7),
by carrying out integration by parts one ma§¥%onvinced that
the real part of (2.69) can be still estimated by
jg !xsd-qiuiz dx and additional surface integrais. (Here
onzrshould note that whét is actually needed is not the5
estimation of the integral (2.69) itself but the one of
its real part.) Roughly in this manner one can follow the
line laid in (9] without drastic alteration.

‘"We also remark that recently K. Masuda obtained a
result (not yet published) of which our lemma is &

consequence.,
Proof of Lemma 1.10. Let K= kl + ikzéK and let

- 3T =



[}

[ 8]

Vo€ Lz’_lTﬁ‘ satisfy

(2.70) (Vos (3= K2)9) = 0

for all ?EC‘g. It suffices to show v, = 0.

Let X'= L, 4t , end note that the adjoint spaces
(X can be identified with X* by taking as the pairing
between them the usual L2 inner product. Define an

operator A from X to X' vy
(2.71) D(a) =Cg, Ag= (L -15)F  for ¢ eD(a).

A is densely defined in ¥ , and its adjoint AF is
an operator from X~ =(x+)* to x+=(i')* - By
definition v &D(A*) if and only if

(2.72) (v, A9) = (w, @)

for all P €D(A) and for some w€ xt Thus looking at
(2.70) one can see that v, E D(A*).

Now it is possible to imitate the argument in
Ikebe-Kato [8], which has been used for proving lLemma 3
of (8], to show that Vo€ H2,1oc‘ Then it follows from -

S
(2.70) that v_ satisfied the equation (L - ¥¥)v, = O.
Therefore, with the aid of Lemma 2.4 one can show
Vo€ H2,locn L2. Hence, proceeding as in the proof of

Lemma 1.9, (i), we have v, = 0. Q. E. D.
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""Pinally we shall prove Lemmsa 1.11.

Proof of Lemma 1.11. Apply Lemma 2.1 with u = wo.

Then we have

(2.73) fBng}inajum(x)tz ax $c S;;ﬁum(x)zz v |256012 fax,

7 R+1
which, together with the condition (1.21), and the first
relation of (1.22), implies_that -%Eﬂgjum‘lBR + ﬂumj]BR}
is a bounded sequence for each R>» 0. Therefore, . {umﬁ is
relatively compact in L s and hence there is a
2,1oc

subsequence Ju | of {ul such that
my m

i“mpﬁ uodn Ly,

(2.74)

— ¥ in KX
kmp

as pow with ué€l, ; .. It follows from (2.74) and
, .
(1.21) +that

(2.75) (w, (L -%)9) = (£, §) (g ¢g).

Therefore, as we have remarked in the proof of Lemma 1.10,

u is seen to be an H function and satisfy (L - K2)u

2,loc
= f, the conv ce of u } to u in L
From nvergen i m 2,loc

D
and the third relation of (1.22) we have
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(2.76) u, —u in L, _ 1:¢ (p — o).
p T2

Thus we have shown that wu satisfies (1.23) and (1.24).

Let us show that fﬁ(‘c"’P)umz converges to Bu in

L,(Ey)qoc- To this end we havée only to verify gjump-—> P4
in I’é,loc‘ Since we have :
(2.77) g, = (L= ¥)(u - uy )
p
= (& -Gl +(f-f ) =0 in L, e
P D P 2
as P— ooy applying lLemma 2.1 with u = u = w, and
Y

f= 8ps e obtain for R >0

n 2 < N 2 L2
(2.78) S pa(u - u M2 3 c§uu - v e
3%‘,",“ ! "p PR mg Bpyy * pﬂBRu}

with C = C(K, R), which implies that gjum — gju in
. Pk
L2,1oc for each j = 1,2,°.+,n, and hence 3,@( "‘P)ump}
converges to Hu in L2(El)loc‘ Now let us show (1.25) :
£Lu€L, -+£(B;). By the use of the third relation of
)
(1.22) it follows that

N

(2.79) 167, e o % O
p 27

for any bounded measurable set G in El" Letting p-—¥» 1in

(2.79) we have {i&Su i 44¢ S ¢ , and hence Bu€l, -1+g (E ).
22,6 7 Yo 2, ALt

Finally we shall show that the sequence f{u } itself
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converges in L2 _1» to the u obtained gbove, which in
$

% oo

turn implies that {& um} converges to Ju in 1,2(Ei)

loc®
In fact, 1let us assume that there exists a subsequence

g mq} of {m} such that
(2.80) hu = uy hwe 2y (g = 1,2,000)
a

with some ¥ 0. Then, proceeding as above, we can find

a subsequence {m;’l} of {mq} which satisfies

(2.81) w . — u’ in L
q

&

u being a solution e H2,locf‘L2,~3§§ qf (L - K?)p = ¥f,
I ARWE e ,E1< o . By Lemma 1.9, (ii), asserting the
uniqueness of the solution for (L = K?)u =T, leull g o

2 -
L ooy u€H2,1oc ﬂL?r%‘g" u and u must coincide.

Hence we have from (2.81)

(2082) v s ""?u ln L 1
mg 2,-4~5

which contradicts (2.80). Thus we have shown that {um}

which completes the proof.

G §

converges to u in L2-1+2
Y

Q. E. D.
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§3. Absolute cohtinuity
Pirst let us define a symmetric operator Ho acting

in the Hilbert space L2 by

(3.1) D(H,) = C, Hu =Lu for ueD(H))..

o’ 0

According to Theorem 1 of Ikebe-Kato [85 ’ Ho admits a
unique self-édjoint extension H. Let E(B) be the
spectral measure associated with H, where B varies over
all Borel sets of the reals. In the present section we
shall study a typical spectral property of H, that is,
we shall show that E((0,))H is an absolutely continuous
operator.

A characterization of D(H), the domain of H, follows

directly from Lemma 4 of [8} . Summarizing, we have the

next

Lemma 3.1. Ho is essentially self-adjoint, and
thus possesses a unique self-adjoint extension H. We

have
(3.2) D(H) = {ue:.L2 / u€Hy 1,, and LuéLz} .

Let R(z) = (H - z)_l denotes the resolvent of H,
and recall that for i =K, +il, with K; # 0 and K, >0, |
and for féZL2 e , there can be determined by Theorem 1.5

L)

and Remark 1.6 a unique solution u(k, f)e:L2 we (H, 4
y TS s LOC
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of the equation (L - Kz)u = f.

lemma 3.2. Let f¢ L2 i1+¢ 5 and let z€&€¢ - R.
LY

Then

~ 7
(3.3) R(z)f(x) = u(yz, £)(x) a.e.

Proof. Since f necessarily belongs to L., R(z)f

makes sense as an element of I’2’ and u = R(z)f satisfies
(3.4) (L - z)u = f.

Moreover, the fact that R(z)f €D(H) implies by Lemma 3.1
that R(z)f€L2{\H2’loc, and hence R(z)féLz,_%g./\Hz,loc.
On the other hand, since (Z 1lies in some K, where K
is an open set of € of the type cosidered in Theorem 1.2
or Remark 1.6, it follows by Theorem 1.3 that equafion
(3.4) with fELzy;x_;_e_ has a uixi-uue solution u(yz, f)

2

€L, 1eNH . By the uniqueness, therefore, R(z)f
2,5 2,1loc

must coincide with wu(yz, f) as an element of L, - L,
?

which implies that they are equal to each other almost

everywhere. Q. E. D.

Now let AYO0. It follows from Theorem 1.4 (cf. also
Theorem 1.5) that for any fé€ L, 1#&¢ a unique solution
y 2 :

fu(yja, f) of the egquation
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(3.5) (L -2Mu=1f

can be constructed as the limit

(3.6) ux , £) = lim ur+iu, f) in 1L a+g.
Mo ’ 2y"73

Similarly, if Remark 1.6 is taken into consideration,
another unique solution u(-4j\, f) of the same equation

cean be obtained :
(3.7) u(=x, ) =)]4_:'in°1 u(\/h.-iy, ) in L2’_g;_&.

(It may be also noted that u(:t{{, f) can be determined

as unique solutions of (L - A)u = £ satisfying

Wl

uu-l'ff B < 0 -)
271
Let A= (g, np)s where 0L < A, <02,

Employing the well-known relation 8)

)-2"2

(3.8) (5(a), £) = im ji%"z‘nl“fg (fROwip-RO-LE, ) an
0

7\.3"”2

we can represent E(4)f in terms of wu(fj, f) (11<=1<=7\2)

as follows.

Lemma 3,3, Let A = (),1, ,12) be as above. Then

for any fEL2 1+¢
' 2

(3.9)  (B(a)E, £) = opp g (uyx, D-u(~{X, £), 1) a.
Q
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Proof. Since by Lemma 3.2

(3.10) RA+iu)f(x) = u(fAxin , f)(x)  a.e.

for ¥ 0, B0, (3.8) can be rewritten in the form
' k ALY .
(3.11)  (E(a)f, £) = lim lim 5%;% (T , £)-ul@=Th, 1), f)a,
Tho pbe
YA
By the use of the continuity of wu(k, f), which has been

™~

(wyAFid, f)-ulyR -iJ_u‘, f), f) is uniformly bounded for

o) €[4, X% [0, 1] ana

stated in Theorem 1.4 or 1.5, it follows that

(3.12) 1%%1 (uw+R¥E, f) - ub/d-i¥, ), £)
_ # : A
= (ulyn, ) - ueya, ), f)

for 2e[A, A,].  With the aid of the Lebesgue dominated
convergence theorem, therefore, (3.9) can be obtained

fl‘om (3.11) and. (3-12)o Q. Eo Do ’

Noting that L, 1i¢ is dense in L2 and
12
(u(yA, f) = w(-4yA, ), £) is a continuous function of

A€(0, @), we obtain from Lemma 3.3 the following

Theorem 3.4. et Assumption 1.1 be fulfilled.

Then E((0, ©0))H is an absolutely continuous operator.

Department of Mathematies, Kyoto University
and

Department of Mathematics, Osaka City University
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Footnotes

« , ) denotes the usual L, inner product.

He has not directly treated the Schrodinger operator
in a?, however.

Agmon remarked in [2] that this would be the case.
For a general survey of the limiting absorption method
see, €.8., Eidus [6).

Here and in the sequel we agree to mean by

¢ =C(A, B, **+ ) that C 1is a positive constant
depending on A, B, °-°. But very often symbols
indicating obvious dependence will be left out. for
instance, € =C(K, &), here, obviously depends on
the differential operator L, but we do not insert

I in the parentheses.

Lemma 3 of (8] assertsthat D(T;)C:Hz,loc, where T

is the Schrodinger operator restricted to Cg, but

is regarded as acting in L2.
B

JZ 1is meant the branch of

the square roct of 2z with 1Im Ji'g 0.

See, for example, Dunford-Schwartz [5}, p. 1602.
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