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Theorems on the extension of solutions.

Akira Kaneko,

Fac. of Sci. Univ. of Tokyp.

Making Grusin'’s works [47, (2] as a starting point,
we have hitherto‘studied the extendability of (regular) solu-
tions in (31, (41, (5). 1In this report we add something
new in this diréction. The details will be published- in the
forthcoming paper L[[1.

§1. Prelimiharies. The case of hyperfunction solutions.

Take a convex compact set and its convex open neighbor-
hood in the n-dimensional Eﬁélidean space Rn, and denote by
K, U +the intersections of these sets with the open half spa-
ce H={Xn<0} , where x;(xl,...,xn)=(x',xn) are the coordi-
nates of R® and their abbreviations. We put IL=K, the clo-
sure of K in R®. Thus K is a localiy closed badunded sub-
set of R" and I is compact.

Let p(D) Dbe a partial differential operator with const~
ant éoefficients corresponding to the polynomial p(@j, where

D=(D1,...,Dn), Dl:J:i'%%I etc.. We denote by B the sheaf



of germs of hyperfunctions and by Bp the sheaf of germs of
hycerfunction solutions of p(il)u=0. We first note the follow-
ing lemma which.can be proved either by the Fourler transform
and estimetion of entire functions or step by step use of Hol-
mgren's theorem.
Lemma 1.1 HO(U 5.)=0
. K ’ P o
With use of the fundamental exact sequence of relative cohomo-
logy groups
(1) 0 —> 1(u,B) 5°(U,B.) 1°(U-K,B_)
lK 7“:0 —‘>' ( ’ p “%i ( ~ ) p
—> Hl(U,B ) —> Hl(U,B ) > e
K p ~ P
and the flabby resolution
(2) o——->3p——>:5—12>3-——>o,

which permits us the calculation of Hl U.B and another
- ‘_K * 2

D

exact sequence
(3) _;9 HO(U 3.)
) ------ "}.(; "Dp
1 .on Co1l.om o 1,
—_ HL\K(R‘ ’,Bp> —_ HL(R ’*~‘p> —_ B,K(U,.;;p)
e n
—> B x(B",5)) —>
we obltain the following theorem, when we remenber that
1
(

H }U,BO)=O due to the existence theorem of Harvey-Komatsu,

I
BN

2 N - . oo i . .
nL‘K(ﬂ ,Bp)=0 because I_ is of flabby dimension < 1, =vd
the stetement of Lemma 1.1.

Theoremn .2 BD(Jsﬂ}/RD(E)
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The method of arguements is the one freguently used in [SJ,
so we omit here the details.

How we consider the following diagram
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Here we employed the symbol B(L]= H%(RH,B) and BlL-K])=

O n . —~ .
HL\K(R ,B). B[L} etc. denotes the Fourier transform of R[L)
etc.. d denotes a noetherian operator corresponding to p(g)
(we can assume that each irreducible component of the associa-
ted olgebraic variety . ¥(x) is normally nlaced with respect to
;l’ end d° consists of the composition of restriction to
cach irreducible component with the differentiations by él
up to the order egual to the multiplicity of the corresponding
component minus 1). B[LI{d,p} etc. denotes the space of
vectors of holomorphic functions on N(n), which satisfy the

s . .
cme crowth condition as the elements of B[L] ete. and which

[
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X)
are locally in the image of the noetherian operator d. The

first and the second rows aré exact because of the so called
Fundamental rrinciple (which is proved, in our case, in [53).
The last term of each column is defined as the dquetient space
in each sense. Therefore by the 9-lemma the diagram is exact
~when we define the last row in the natural way. We have:

/—\__,./
Proposition 1.4 B, (UsK)/B,(U) ¥ BIL1/B[L-K}{d,py . The

~
igsomorphism & dis given in the following way: For uéB U K),

let [ulé HO(U,B be an extension of u eand let [n(g) [u]]}
IO(Rn,B) be an extension of p(D){u) GHI%(U,B). Then, d~u =
/—\/ L T

[[ (D)Lu]“é B[L) {d,p) mod. B[L K] {a,p‘].

Theorem 1.5 B (U K)/B (U)=0 if and only if for any €>0,
there exists some Cg>0 such that the following inequality
holds:

(4)  Bp(Q) < €101 + Hy 2 (§) + C, G e n(p).

rroof. The sufficiency follows directly from Proposition
1.4. 1In fact assuming the above inecuality we have the inclu-

P e
sion B[L}{d,p}(B[LK](d,p‘,. To prove the necessity choose

a point a€L arbitrarily, and take a solution E €B(R™)

satisfying p(D L~8 X-a Clesarl E€B (UK Therefore
I ).
o~ . . ’Y . 'J:I<a
i\ | {d,p} containg a vector function d-p(D)E =d-e 25>
o o L . - J-1<a,T>
which contains the function e ? in 1its componcnog

4.



Buppose that Bp(U~K)/Bp(U)=O. Then by proposition 1.4 we have
E[L]{d,p}(’E[L~K]{d,p}, so that the following ineguality must
~N-T<a,3>,

hold for the function

(5) 1eTIe5> <o 3L () Yeso, T Ce >0,

The desired inequality (4) follows from this one by the ab-
surdity. Since the arguement is elementary we omit the details.

Remark. From the condition of Theorem 1.5 we can easily

ct

conclude that p dis hyperbvolic (in the sense of hyperfunctipn)

with respect to (0,...,0,1). But mere hyperbolicity is ﬁot

sufficient for Bé(U\K)/Bp(U)=O. For example, assume that

n=2 and p(g)= §12 - §h2’ Then N(p)={§l+ §n50}xj§§l— §n=6} ,

and the condition (4) is satisfied if and only if the pfojec*'

tions of the two sets L, LK +to the planes {Xl+xn=0} and
{xlfxn=0} both agree. Thus for K={(O,t); —15t<0§ we have

a non-trivial élement tzéBp(U¥K)/Bp(U) defined by

for 71+X1+XnZQ, —1<X1<0,

l+Xl+Xn
u(xl,xn) = 1-xy+x for 1-x,+x >0, G<Xl<l,
o otherwise.

§2. Continuation of real znalytic solutions.

Let A denote the sheaf of germs of real analytic func=
tionsy; A_  the sheaf of real analytic solutions of p(D)u=0y

21U, AD(U) the sections of these sheaves on U. We discuss
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when AP(U~K)/AP(U)=O. For this purpose we first quote a res-
ult on propagation of regularities.
Theorem 2.1 (T.Kawai) Bp(U)r‘A(U~K)(:Ap(U).
The proof is carried in a way similar to that of Lemma 1.1
mensioned first, but with a more delicate arguement using the
Fourier hyperfunctions and the rapidly decreasing real analy-
tid functions. See [9'] Theorem 5.1.1. |
Let X €C®(U) be -such that X =1 on & neighborhood of
K, and ‘supp/X AdUCIL-K, where the closure or the boundary
is taken in R™. Take ué{Ap(Uxx) arbitrarily. Then
supp p(D)(Xu) AK=4, so that we can extend p(D)(Au) to K
by zero and obtein an element of HEEE?B((U’CHB' Let u?(D)CXu)“O
be one of its extension %o ﬂ_ﬁﬁﬁaf I
Lemma 2.2 d-u = -d“p(ﬁ)(ﬁ(u)ﬂc mod . éfitii{d,p} .
Proof. ILet [b(ul}éH%Ei§3?(Rn,B) be an extension of X u.

Then we have obviously

p(D)HO(uuggﬁp(D)(O(u)}O + H@(Dj[uﬂg mod. B[LsK].

Hence,

o - dp<§>m ;W]o . a[m{ mod. S(LE3{a,p},

mod . EEE:Ej{d,p)

..G.H;‘;( ;}(’)(U}”o o. /{I\Q/]{u}, q.e.d.

l
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Proposition 2.3 For u.eAp(U~K}, each representative
FG;) of Eﬁu has the following property: for any entire in-
fro—exmonential functicn J(Q} and any E£€>0, we have a decon-
position JG@)F(C):f(§)+g<§), where f, g are ho;omorphic‘
g-functions satisfying the estimates

I£EC) 1 < C7exp(7|§}+£iIm§I+HL‘K(§)), ‘Y7>C,QC7>O, gﬁN(p),

1g@)1

Froof. First remark that J(D)ué;&#U\K) also, where

Cexp(E1Ing 1+-5Ind +8.(0)), GeN(p).

In

J(D) is the local operator corresponding to J(g) (see [4]
§2). Thus by Lemma 2.2 we have d-J(D)u = —dH?(D)(O(J(D)QﬂL
—~—— oo
mod. B[L~K3{d,p}. By a C cut—-off function we decompose
“p(D)(OCJ(D)uﬂL = Vv + w, where supp vw:{xn>—£§, and supp W
£ 00
C {Xn<— 2}, w € CO(Rn). Thus we have
d-J(du = -&-v - d-w  mod. B[L-KI{a,p} ,

and by the Paley-Wiener theorem the two terms in the right

and side satisfies the desired estimates. Adjusting by ele-

I

N—— . .
ments of B[L~K]{d,p} , we hsve obtained the desired decompo-—

sition for 4 J(D)u. But we have

%ﬁ&(@)u = dﬁ;z;;ESEﬁiiﬁﬁ mod. Eﬁi;iﬁ{dqp}
-/ . ~——
- d“J(D)p(}})[u]n mod. F{LE1{d,p}
T Ter———
- d'J(D)Hp(D)[u]B mod. B(IKl{d,p}
T —~—— —

oy

d'J(Z;)‘Hp(D)Lu]H mod. BIL EI{a,n} .

dl
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Recall that the last element can be expressed by J(C)dﬂ?(D)[uﬂ]
as the multiplication with a matrix whose elements are deriva-
tives of J(C) with Cl. See [Z}] p.57%. Therefore just
in the same way as there, we obbain the desired property for
J(gla-u.
Now we are ready to present our main result.
Theorem 2.4 Assume that each irreducible component Pa
of p satisfies either of the following two conditions:
1) Do is hyperbolic with respect to (0,...,0,1),
' . . . 1/4/ n-1 s . -
2) there is a vector &R for which the polynomial
/ . s . .o
pXOquifc, §n) on ‘T satisfies the following conditions
a) the coefflcwent of the highest term on “T 1is a constant

.. L / . -1
independent of or C b) for any fixed é’Jl the
© J Y,

iIm Cni ig bounded and qg —_— 60,
Then Ap(UxK)/Ap(U)&@L

;

Proof. Due to Proposition 1.4 and Theorem 2.1 we only

o~ . 3 .
have to show that every element in B[LE{@,pS having the Tro-
perty stated in Proposition 2.5 necegssrily belongs b« g(L~a}{d, }

For each hyperbolic factor, we have nig]{d},b '}C AL K}{u},

by Theorem 1.5. (If U, K are not in

*) See the Errata st +the end.
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Theorem 1.5 can be appiied directly, we can replace U by
Uf\{xn<c} for a suitable ¢, and replace X by.another sui-
table set similar to K, and apply this theorem little by little
to obtain IléAp(U>, since there is a unique Way.oﬁ conting—
ation for a real analytic solution.)

Next, suppose that the irreducible component Py satis-
fies the condition 2) of the theorem. Hereafter, we denote
p for Py for simplicity. By a sﬁitable coordinate transform
for x -varlaoles, we can assume that the polynomlal p(cl,;, C )
for Z; has the highest term with the coefficient 1ndependent
of Q, §n, and the roots "§1= Tj(cn) of p(Cl,§'~,Cn)=0
for fixed ;" satisfy the condition stated in 2)-b) of the
theorem, where we put §— (?; C) (; ,§ g ) Now fix E"
arbitrarily. The variety N(p)f\{g"zconstant} is covered by
the ‘following epesm sets:

{img 1 < c}u{§l= T3, im{nzc}y B [ va(.?n), ™l <-c},

Choosing. C large enough, we can assume that each ’T& can

be expressed in the puiseux series

'g k/q

Ta(gn,) = — ak ;n .

"o

On lIm§5i<C the estimation is easy. We are going to study

on each of the remaining sets. Therefore, from now on we con-

sider & fixed “Iﬁ end omit the suffix j. ILet ué{Ap(U«K) and
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let F(C) =‘aiu(C). Then F satisfies the conditicn in Pro-

1}

position 2.3. Thus the holormcrphic function G(Cﬁ)
1
FCT(Ch),C,,Cn) of one variable Cn satisfies, for any choice
of the branch of T and the domain of definition Im§£>0 (or
similarly Im§;<—C}, the following condition: for any ¢ >C,
and for any entire infra-exponential function J(gﬁ), we have
a decomposition J(Eﬁ)G(;ﬁ) = f(gh) + g(@h?, where f, g are
holomorzhic in Im§£>0 and satisfy
1
1£(§ )1 < Cexp(etG 1 + By (@& ),5 .80,
1

15(5, )1 < Cexp(€1Ing | + €1 InT(T )1 + gL(ft(;n),(_ 2300

we prepare a few lemmas. l

Lemma 2.5 Assume that the function u(x) of x>0 satis-

fies the following estimate

.

fu(xz) 1 < C?éxp(ax— §%§30

where ‘?(x) is an arbitrafiy chosen function so as to satisfy

1
Q(x &  vihan e and C is a pogitive constont denen-
- ° 7) X k
. . N N ’ S .
ding on 3’. Then, there is a corctant a <a for which the
following inecuality holds
4
fu(x)! < Cexr(a x).
Thig lemma con be proved in - eleorontary way using the

technique which is often used in Eé], so we owmit it.

. R T s T ] O e i N T AT A e P e
sjronosition 2.0 LECUme CLOT TN 0.0 OXLAOLe Lunaltion (@
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of one variable for Im z>0 satisfies the following condition:
for ony entire infra-exponential function J(z), we have a
decomposition JG=f+g, where f, g are holomorphic in

Im z>0 and satisfy

1£€z)1

In

Cexp(glzl),
lg(z)1 < Cexp(aliRe z1%01In z1),
where ¢<1 and all the constants except b and ¢ may depend
on J. Then G satisfies
1G(z)1 < Cexp(Elzl).
This is, so to speak, & relative form of‘the'tﬁeorems
of Phragmén-Lindeldf type and the outline of the proof is the
following. ©Put z=X+J:iy. Choosing J=1, we have for y>0
1G(N—1y) ! < Cexp(MaX{iy, by}).
ow choose J so that 1J{=-1y)t > CeXp(yﬁ?(y)) for y>0
for given ? which increases monotonely to infinity. (For
the construction of such J see EL}], Lemma 6.) Assume thet
§<b. Dividing the both sides by J we have for y>0,
te{=1y)t < C?eXp(by—‘§%§7)-
Thus vy Lemm& .5 we have for some b <b
IGW=1y) < Cexn(b'y).
herefore, for any J, The function g arxpearing irn the de-

comroasition JG=f+ has the folloving two estimntes
. L)

i1
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ig(z)l < Cexp(alRe z194b 1 Tm zD,

lg(N-1y)1 < 1T{A1)6W=1y) 1 + 12W=1y)1

IA

< C7exp(b'y+7y), v?:%), 3C,]>O.

Hence we can apply‘the usual Phragmén-Lindeléf theorem to the -
function h(z) = g(z)exp(dlz -a"((=12)%) with a’-= a/cos%EK;
and conclude that g satisfies the estimate in our proposition
with b replaced by b. In this way, Wwe can replace b by
a decreasing sequence of numbers bk' »fo assure that we can
finally replace by & , assumé that bk converge to some bo'
Then, aﬁother use of the usual Phragmén-Lindeldf theorem shows
that we can replace by bo' Thus, by the absurdity; we can
prove the assertion.

¥ow continue the prcof of our theorem. 1y our assumption,

we have !Im’f((ﬁ)t < alRe§£!q+ blImgﬁl + C for some &>0,

b>0, g, where g<l due to Seidenberg's theorem, and b is
independent of J since 1t is determined by K. 7Thus PI'roposi-

tion 2.6 can be aoplied to the function G(zh) and we obtain
16($.)1 < Cexn(€1€ 1),
where we can take §£>0 arbitrorily snall. Thus we hnave
(11) ‘CLUCU‘S Cgﬂ;z eXp(Q‘g,)) V€>D’ <,. 3 Cg",f >0,
(12) [T w@)| < Ceexp(£131 + H,(§)), Yevo, TC7o0, TEN()
1 < ue b 1, e ’ € ’ .

By the caluculstion of plurisubhcermonic minorant, we can obtain

12
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from these two estimates the desired one for Ce&but)
(1) w1 < Cpexp(€1T1 + B (Q)), Ye»>0,3Ce>o0,
which proves the theorem. The last s{ep is tedious, sorwe
omit i¥.

§%. Examples.

1). In (&3 M. Kashiwara ihtroduced the notion of (=
hyperbolicity, and gave a characterization for it. An opera-
tor p(D) with constant coefficient is called (Z—hyperbolic
with respect to {T when it has a fundamental solution with
the singular support contained in a cone properiy contained in
{<x,{7>rgpk. Thus assume that L-K has a non-void .interior
in {Xn=0}. Then, for any p(D) which is (C-hyperbolic but not

w.r.t. (0,50,4)
hyperbolicy we can construct a non-trivial element of
AP(U~K)/AP(U) using the fundamental solution.

2). But the above condition is far from necessary, since
we have the following curious ekample. Let p(D) = D22+Dn2‘ (n=3).
Then p(D)u=0 has the following solution |

u(xy,%5,%,) = 108 {(X2-X12)2+(xn+1—-%x12)2}
whose singularity in H:{XD<O} is exbitraridy close to the line
segment {(070,t>; —1§t<0§. This operator is not Czrhypérbolic‘
by the criterion of M. Kashiwara.

3). In the prcceding example, it seems that we cannot

13
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N

construct a solution whose singularity just agrees with the line
segment given there. On this point we have a conjecture that
when ¥ dis the line segment, the second condition in 2)-b)
of "hszorerm 2.4 will be unnecessary. Clearly our opcrator satis-—

fics the first condition but does not the second one in 2)-b).

4), There are no inclusion relations in the two conditions

1), 2) in Theorem 2.4. In fact, p(D) = D12 2

-D, (n=2) sat-
isfies Both 1) and 2). On the otherhand, p(D) = D12—Dn5
(n=2) ssztisfiez 1), but none of the condition 2)-b).

5). Assume that the principal part of p does not con-
tain C;n‘ Then, as is easily scen by an olementary congidera-

. ' . . k -1
tion of algebraic equations, we have for a suitable mfé(R
)T;(§%>/§£s——> C wvhen i§h! —> oo for the roots ’Ts of the
Jd Tn ,

1 -
equation p("tJ+Cl, ;*1):0 with fixed T & ™1, mhus the

n

condition 2) of Theorem 2.4 iz trivially satisfied. Of cour-

ce these operators are not hyperbolic in the direction (C,..,0,1)
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Hotes.
*) a vector of holomorphic functions satiéfying such local

wroverty is called a holomorphic p-function after Palamodov.

Lte.,
* ) HL(Q) etc. denotes the supporting function of If, i.e.

~
u =

sup Re<X,J—lZ;> , sice we use the TFourier transform-
xel:

<, exp(N-10)>.
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Errata (added on July 7, 1972).
The claim mentioned in p.12,1 1~p.13%,¥ 4 does not hold in

general. 1In fact we have a counter-example to Theorem 2.4 it-
2 2 N2
Qxl 3&2 an
ing solution (with O<k<l )
u(xy ,%5,%,)= — )log{(—;rijwjz) +('Z;LZ?"7§ - k"} )
; ’J§1“X?'Xn B EpTES=X X%, )

n

gself: For p(D) = (n=3), we have the follow~

Therefore, for the present we must content ourselves with the
case n=2, where the management with the remaining variables
g” is not necessary. For the general n the corfected re-

sult will be given in a forthcoming paper.



Correction (added on October 5, 1972)

Wé can prove the following result.  Qhé method of pr@of
%is just given in the body of this report, and'the last‘claimﬂg
fmensioned there really holds under our new asSumption;'
i Theorem. Assume that each irreducible component p7\’of
?p satisfies either of the following two conditions.
i-l) P is hyperbolic with respect to a sequence\of directiéns
l%jk, k=1,2,..., converging to (O,...,O,lj.
; 2) There exists a non-characteristic direotioh (1910) Rn"%xR

‘such that KC{<v,x> =0} and that for the roots ( of

P (C'+’I&)§§;)=O, the estimate

" 3
(\’ RS
ITn Tl < zugubmmgnwcg.,e, & >0, Gg' 270,
}holds for Imggzp.
‘Then A_(UNK)/A_(U)=0.
| D P ;
P Hence we hove, instead of Example 5),

‘ Corollary. ’ Assume that the principal part of p :doesuk
;not contain §n and that K= {(O,...,O,xh); —cn§xn<o}. “_;t
%?hen we have AP(U\K)/AP(U)=O. |
» ;For the details and for othervresults see the following
%paper submitted to J. Math. Soc. Japan.
ém;AQOn continuation of regﬁlar éoluéions of partial differén—?

- . tial equations with constant coefficients."

|



