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\S 0. Introduction

Professor Sato initiatea $a_{--}^{\eta}d$ developed the theory

of sheaf $C$ in 1969 (Sato $\llcorner 2]$ , $[5J$ $)$ , and this theory

has turned out to be a very powerful tool in analysis,

especially in the study of linear (pseudo-)differential

equations. (Cf. Kashivrara and Kawai [1] , $[$ 2] ,
Kawai $[1]\sim[5]$ , Sato $[2]\sim[6]$ . See also

Hormander $[$2 $]$ ; $[$ 5 $]$ $)$ . $n_{\underline{|}he}$ present speaker gave a survey

lecture $0_{\overline{1}\hat{1}}$ these subjects at the symposium last $1-.\overline{i}arch$

on the $\perp h\ominus$ ory $o^{\underline{T^{\cap}}}hype\iota^{\neg}functions$ and differential equations

( $TX$-awai $[5J$ $)$ , and listed $\tau here$ four problems to be

solved. pthey were:
$(i,!$ the $treat_{\grave{1}^{-}i_{A}^{\urcorner}}ento\iota^{\neg}-\lceil^{-}he$ case $k=c>\circ$ , where $k$ is the

number appearing in Ugorov $[$ I $]$ $a_{\grave{\dot{t}}}^{r}\sim.d$ Nirenberg and

$\perp^{\urcorner}reves[1]$ $concer1\urcorner_{arrow}ir_{\perp}\circ\dot{\mathfrak{Q}}$ the lccal solvability of

linear (pseudo-)differential equations,

(ii) to extend $-t\iota r$ theory tc $\overline{b}$ he case $\tau_{V1_{A}1ere}^{1}$ the

assumption of simple eharacteristics is omitted,

(iii) to extend our theory to overdetermined systems,
$a1_{i}^{\neg}d$
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(iv) to give global existence theorems.

$\sim!^{\urcorner}f\lrcorner$ specially he placed $er_{1}iphasis$ on pro $\urcorner$o\S \S ms (m) and

(iv) at that occasion.

A complete result is given by Sato $[$ 6] , concerning

problem (iii) and $a$ result is given by the presenl speaker

concerning problem (iv) $(KaNai [4] 2 [5] )$ .
Now in this lecture we will explain how problem (iv)

is deduced from the local theory of linear differential

equations.

$\iota_{s}ore$ cox-plete $argue\Gamma\mu ents$ should be given in our

forthcoming papers (Kawai E6] ) and khis lecture should

be regarded as a survey one.

\S 1. Global existence of real analytic solutions of

single linear diIferential equation with constant

coefficients.

As is well known the topological structure of the

space of real analytic furctions on an open set is rather

$cor_{1}iplicated$ , hence even Professor Ehrenpreis, who

initiated and completed the general theory of linear

diifereatial equations with $constan+$ coefficients in the

framework of distribulions with $\underline{1}^{\overline{\dot{I}}}rofe_{\mathbb{C}}^{r}$ sors $1^{\vee}\backslash \pi 1a1\circ \mathfrak{Q}^{\backslash }range$ ,

Hormander and Palamodov, seerc $s$ at present to have

abandoned tc attack the problem of global existence of

real analytic solutions. (Cf. Ehrenpreis [2] , [5] ).

But we can treat this $proble\ddagger\Gamma_{-}$ without $\eta A$uch difficulty

by the aid of the theory of $hyperfu^{r}\star\perp cticns$ and that of

sheaf $C$ ,
$\iota^{\tau\cdot rhe_{\perp 4’}^{\eta}}t$.

at le $a st\int Werest_{-}^{\gamma\backslash }ict$ ourselves to the

$-”–$
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consideration of the operators satisfying suitable

regularity conditions Nhich allow us to consider the problems

geometric$a11y*$ In $a$ sense our method $c$ an be regarded as

$tlmethod$ of algebraic airalysis’\ddagger contrary to tlmethod of

functional analysi $s^{}$ , which is developed, for $example\sim$ ’ in

$H\ddot{o}rm_{\overline{cL}}nder$ $[1]$ , Palamodov [1 $J$ , Ehrenpre is $[$5 $]$ , etc.

(Whe Nord ${}^{t}algebraic$ analysis11 seems to go back to $L^{\dashv}\neg,uler$

but it has recentiy been endcpted wi$\yen$h positive meanings by

Professor @ato, who aims at the Renaissance of classical

analysis).

We first examine in the special case Nhether the

theory of hyperfunctions is useful to investigate the

problem of global existence of real analytic solutions.

In fact we ea’sily $understa\overline{n}d$ that. it is very powerful in

the following special case, i.e. , the case when the operatoi$\cdot$

$P(D)$ is elliptic.

Of course in this case there is a decisive result

due to Malgrange $[1J$ , $i.e$ . ,

$\perp heorem$ ( $Ma1_{\dot{b}}^{\circ}range[1J$ $)$ . For any open set $\Omega$ in
$\ulcorner^{n}$ , $\Re D)u=f$ has a solution $u(x)$ in $\alpha(\Omega)$ for any datum

$f(x)$ in $-\alpha(\Omega)$ . Here $\alpha(\Omega)$ denotes the space of real

analytic functions defined on $\Omega$ .

$I\overline{\not\in}ow$ we show how we $/c$ an prove this deep theorem with

ease if we $aSsu\mathfrak{B}e$ that $\Omega$ is relatively compact. “he

essence of tne proof is, as described below, $tY_{1}ef1abbine_{-}ss$
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of $i\neg\supset heaf$ of hyperfunctions, which we denote b.v $\parallel\ni$ in the

sequel.

Our proof is divided into two parts. $F^{s}$ irst we remember

the following lemma due to John $[1J$ .

$I_{t}emma1$ . If the linear differential operator $P(D)$

is elliptic, then we $c$ an find a hyperfunction 2(x) defined

on $IR^{n}s$atisfying

(i) $P(D)E(x)=s_{(x)}$

$a$nd

(ii) $\overline{n}(x)$ is real analytic outside the $origi_{l_{-}^{\wedge}}$ .

ihis lemma can be proved by many methods: for example,

one can use the fact that the non$-characteristic$ Cauchy problem

in the complex domain has the entire solution as far as all the

data given are $er\backslash \perp tire$ functions, the linear differential

$operato^{\underline{\gamma}}$. under $co^{\gamma}$-isideration is of constant coefficients and

the init-al hypersurface is a hyperplane. (Cf. Leray $[2I$

$I_{\lrcorner}en\mathfrak{B}a9\cdot 1)$ . Then one $\wedge$ an use $t_{11}^{1}e$ celebrated reasonings of

$0^{\tau}oh_{\perp 1}^{Y}$ $[1J$ $C_{11}^{1}apte\perp\neg 5\perp|.0$ constrv,ct $E(x)$ . (Cf. John $[\iota J$

pp.66 – 72). Another proof is given by the following way:

First construct the elementary solution $E_{o}(x)$ of $\overline{\nu}_{m}(D)$ , the

principal part of $P(D)$ , in the $foi^{5}m$

$\frac{1}{/,\vee^{-2\mathcal{R}i}}\backslash i\overline{n}$

$\int$
$\frac{1}{(P_{n}(\zeta}\overline{)+iO})\oplus m-m(\backslash ’x, \zeta\rangle\star it^{})$

ru $(\zeta)$ ,

$|\xi|=1$

where
$(-1)^{d}(\dot{a}-1)\neg-1\mathfrak{t}\sim\iota\dot{3}$ $(\tilde{J} C)$

$\not\in_{\dot{o}^{(T}})=$ $\{$

$\zeta d\frac{\tau^{\dot{j}}}{-!}$ lcg
$r-\underline{1}:-\cdot’(1+ ---+\frac{1}{b\urcorner})\ell T^{\dot{\partial}}$

$(\dot{j}\leqq\dot{c}^{1})$

and $\omega(\zeta)$ denoi$\breve$ es the volume ele $\perp\eta_{A}$e–$t$ of the unit sohere-,

$-4–G$
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$i.e$ . , $\omega(\in)=\sum_{\dot{s}=1}^{n}(-1)^{\dot{j}-1\epsilon_{\dot{3}^{d}}\epsilon_{I}}1\wedge--arrow\wedge d\xi\urcorner-1\Lambda$

$d\xi_{\dot{3}\{\cdot 1}l\uparrow$ – A $d\epsilon_{n}$ . Next construct the required $E(x)$ by

the successive approximation starting from $E_{o}(x)$ , or more

precisely from

$\overline{(-}2\sim\frac{1}{r_{\downarrow ri)^{\Gamma\perp}P_{m}(\zeta)}}\Phi-n-m(\langle z, \zeta\rangle)$
,

where $z$ and
$C_{r}$

denote the complexifications of $x$ and
$\in$

respectively. Note that $P_{m}(\zeta)$ never vanishes as far as $\angle$

is sufficiently near to the real unit ball $\{\in\in|R^{n}||\xi|=1$;
by the assumption of ellipticity. nhe convergence of the

successive approxination is easy to check, and it is also

easy to verify that $E(x)$ has all the re.qukred properties.

Secondly we use the flabbiness of sheaf 6 to obtain

a hyperfunction $\tilde{f}(x),$ vJhich is defined on $IR^{n}$ and satisfies

the following conditions:

(i) Its support $is$ contained in $\overline{\Omega}$ , the $clos\iota ire$ of $\Omega$

(ii) It coincides with $f(x)$ in $\Omega$ .
$\}\urcorner\perp hen$ using $\tilde{f}(x)$ we define $u(x)$ by the integration

$\int E(x-y)f(y)\sim$dy. This integration is well defined as an

integration along fibei$\cdot$ (Sato $[$ 1 $J$ $)$ , since the support of

$f(y)\sim$ is compact by the $d_{\vee}^{\wedge}$finition. On the other hand by

property (i) of $\tilde{\Lambda}(X)$ we have $P(D)u(x)=f(x)\sim$ and by property

(ii) of $\cup(x)$ and the property of $\tilde{f}(x)$ we see that $u(x)$ is

real analytic in $\Omega$ . Olhus if we consider the restriction

$arrow$
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of $u(x)$ to $\Omega$ , which we denote by $u(x)$ again, $u(x)$ is a

real analytic solution of the equation P(D)u $=f$ .

Mhis proof of the existence theorem in the elliptic

case teaches us the following facts:

(i) Flabbiness of she$af6$ allows us to pass the

technical difficulties by, especially it reduces

all the problems to the $bo^{1}mdary$ .
and

(ii) The informations which the $1$ ’goodl elementary

solutions have (property (ii) in the above case)

are used in the course of integrations and give us

$a$ good solution of P(D)u$=f$ .
lhese observations oblige us to want to consider more

$genei^{*}a1$ differential operators, not necessarily elliptic:

in fact we have $\uparrow t$ goodt1 elementary solutions for the

differential operator $P(x,D_{x})$ satisfying the following

conditions (1) and (2), which exist globally if the

operator $P(x, \negarrow l)x$ is of constant coefficients. $(KaNai[1] )$ .
$|fe$ also remark that we can treat more $\hat{O}^{\backslash }\circ enera1$ class of

operators first considereCt in Andersson $[$ 1 $]$ (see also

Kawai $[;\rfloor$ , $[5J$ $)$ , since in this secticn $\tau_{\wedge;e}$ restrict

ourselves to the case $i_{f}\prime here$ the differential operators are

with constant $coe^{\underline{\tau}}$ ficients,which is a easy case from the

view-point of construction of elementary solutions.

(1) The principal symbol $P_{rn}(x, \backslash ’-- )$ oi $P(x, v_{x}^{\backslash })$ is real.

(2) $P_{m}(x, \zeta)$ is of simple characteristics, i.e. ,

-6-
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$grad_{\xi}P_{m}(x, \xi)$ does not vanish whenever $P_{m}(x, \zeta)=O$

for any point $(x, \zeta)$ in the real cotangential

sphere bundle.

Now, what is the good property presented by the’ elementary

solutions constructed in $\sim Kawai$ $[11?$ It is described

in the following lemma.

Lemma 2. Let $P(D)$ be $a$ linear differential operator

Nith constant coefficients satisfying conditions (1) and (2).

Mhen there exist two hyperfunctions $E+(x)$ and $E_{-}(x)$ such

that

(i) P(D)E $f(x)=\epsilon(x)$ holds

and

(ii) S.S. $E\pm(x)$ is contained in $f(x, \zeta)\in S^{*}\mathbb{R}^{n}|x=0$ or
$x=\pm$ tgrad $e^{P_{m}(}\xi$ ) with $t\geqq 0$ and $P_{m}(\in)=O$ ;
respectively, where $S^{*}\mathbb{R}^{n}$ denotes the cotangential

sphere bundle of $\mathbb{R}^{n}$ and S.S. $E\pm(x)$ denotes the

support of $E\pm(x)$ regarded as sections of sheaf $C$ .

Mhe proof of this lemma $i_{\check{V}}as$ rather implicit in Kawai $[$ 1 $]$ ,

approximation method as is sketched in the proof of Lemma 1,

since the operator $P(D)$ has constant coefficients.

-7-
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We believe that such $m$ elementary solution as is

given by Lemma 2 is very good and that all the informations

$\overline{cx}bout$ the operator $P(D)$ should be deduced from it, and the

belief in the good elementary solution has its reward as is

described in this report.

$1^{\backslash }le$ first consider the solvability in $a(X)$ for

compact set $K$ in $\mathbb{R}^{n}$ . Here $a(K)$ denotes the space of

real analytic functions on $K$ , $i.e$ . , $arrow^{\lim}\otimes V$ ), ivhere
$V\supset K$

V denotes a complex neighbourhood of $K$ and $\otimes(V)$ denotes

the space of holomorphic functions on $’\{J^{\wedge}$ . Whis problem

has its own interests as well as it plays a role as a

lemma to our final object of solving the equation P(D)u$=f$

in $a(\Omega)$ for an open set $\Omega$ .

Mheorem 5. Assume that $K$ is the closure of relatively

$co_{A}\urcorner_{A}$pact open set $\Omega$ $=\{x|$ $y(x)<0j$ , where 9 (x) is a

real valued real analytic function defined near $Ksatis\iota^{\neg}ying$

$\tilde{5^{}}rad_{x}\varphi\neq C$ on $\partial\Omega$ , the boundary of $\Omega$
$*$ Suppose that the

compact set $K$ satisfies the fo Llowing geometrical condition

(5) and that the differential operator $P(D)$ satisfies

conditions (1) and $(.. -)$ . $\mathfrak{B}hen$ for any $f(x)$ in $a(K)$ we

can find $u(x)$ in $a(\Omega)$ such $t_{-\wedge}^{f_{\backslash }}atP(L\neg)u=f$ holds in $\Omega$ .
$($ ; $)$ For ar-y $x_{o}i_{1}\eta$

$\partial\Omega$
$\overline{\vee}hebich_{\overline{c}_{\backslash }}racteristic$ curve of $\underline{\vdash}$

) $(D)$

$b_{(x_{O}},$
$g_{-ad_{x}}^{\neg}\varphi|$ x–$x_{o})$

is $suir\perp g\tilde{\perp}$rom

$(x_{o} , \approx\circ rad_{x}?|x=x_{o})-\eta eve\underline{\uparrow}\cdot i_{\sim^{1}}^{\backslash \neg}tersects\Omega_{-}$ .

$-t,$ $-$
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$\underline{i^{\rceil}}he$ proof of this theorem is given $\dot{3}ust$ in the same
way as in the second part of our proof of the existence

theorem in elliptic case by the use of either one of the

good elementary solutions given in Lemma 2. $ln$ fact the

smcothne $ss$ of the boundary md the regularity of. $f(x)$

permit us to extend $f(x)$ to $\mathbb{R}^{n}$ by $f(x)\ominus(-\varphi(x))$ , where $\ominus$

denotes the 1-dimensional Heaviside function. Note that

$S.S$ . $(f(x)\Theta(-\varphi(x)))$ is contained in $\{(x, \xi)\in S^{*}R^{n}|x\in 9\Omega$ ,
$\xi=\pm r\supset rad_{X}\varphi(x)\}$ . Then we can apply Sa$o’s leinma on the

regularity of the integration along fiber (Sato $[arrow 4]$

Corollary 6.5.5) to the integration

$JE(x-y)f(y)\theta(-\varphi(y))dy$ and obtain the required result.

nhis proof of bheorem 5 needs only one of good

elementaPy solutions given in Lenima 2, but this contradicts

our sense of syrmetry: We must use both good elementary

solutions, because -neither one is better than the other.

$\cap\perp his$ belief in both good elementary solutions is rewarded

again, i.e. , we can improve $iEheorem5$ as follows.

Theorem 4. In lheorem 5 the eondition (5) on $\Omega$ can

be vieakened to the follcwing.

(4) For any $x_{o}$ in $\partial\Omega$ the bicharacterestic curve of $P(D)$

$b_{(x_{o}},$ $grad_{x}\varphi t_{x=x_{o}})$
issuing from $(x_{o}, grad_{x}\varphi|x=x_{o})$

intersects $\Omega$ in an open intervaI.

$-0-$
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Proof of Theorem 4. We denote $f(x)\Theta$ $(- \varphi(x))$ by $\tilde{f}(x)$ .

half of the bicharacteristic curve $tgrad_{\xi}P_{m}(\in)(t\approx<0)$

does not intersect $\Omega:$ . Since sheaf $C$ is flabby

(Kashiwara $[1J$ $)$ , we can $f$ ind hyperfunctions $\sim_{f+(x)}$ and $\tilde{f}_{-}(x)$

such that S.S. $(\tilde{f}(x)-\tilde{f}_{+}(x)-\tilde{f}_{-}(x)\}_{\overline{\sim}}\beta$ , S. S. $\tilde{f}_{+}(x)_{\cap}NCN_{i}$. and

$S.S.f_{-}(x)\sim\cap^{N}CN_{-}$ . $\cap\perp hen$ applying Sato $\iota_{S}$ lemma on the

regularity of the $ir$-tegral along fiber to

$v(x)=\int E_{+}(x-y)\tilde{f}_{+}(y)dy+\int_{g}E_{-}(x-y)^{\sim}f_{-}(y)dy$ ,

we find S.S. $v(x)_{\cap}s*\Omega=\beta$ . Note that the abeve integration

is well defined as that of the section of sheaf $C$ .
$\Gamma l\perp herefore$ we have $P(D)v(x)=\tilde{f}(x)+g(x)$ , where $g(x)$ is real

$a_{A}^{\eta}$-alytic $i_{A}^{\tau}1R^{\overline{\hat{\downarrow}}A}$. Here we have used the fact that $H^{1}(R^{n}, a)$

vanishes. Olhen restricting $g(x)$ to a closed ball $B$ contaiiiing

$K$ in its i.nterior, we can apply [Dheorem 5 to find $w(x)$ which

$is$ real anaiytic i.n the interior of $B$ and satisfies $P(D)w(x)=g(x)$

there. Thus subtracting $w(x)$ from $v(x)$ , we find the required

$u(x)$ , wiiich $is$ real analytic in $\Omega$ and satisfies $\overline{P}(D)u(x)=f(x)$

there. $\int\eta\perp his$ completes the proof of $n\perp heorem4$ .

In an obvious way we can $\urcorner u$odify the form of Mheorem 4

-10-
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to obtain the results which assures the existence of the

solution $u(x)$ in $a(K)$ . We refer the reader to Kawai $[4J$

$\cap\perp heorem1$ ’ about the modifications.

Remark. Since the space $a(X)$ has a natural structre
as a topological vector space, i.e. , $a(K)$ is a DFS-space,

Serre’s duality theorem holds for the pair $( a(K), 6_{K})$ ,
where a $K$

denotes the space ot hyperfunctions with support

in K. Then Serre’s duality theorem shows that the $ex:Lstence$
’

of solutions in $a(K)$ can be deduced by the unique

continuation theorem concerning hyperfunction solutions.

On the other hand the unique continuation theorem $fo_{\wedge}11ows$

easily from flheorem $5\cdot 5$ in Kawai $[$ 1 $]$ in a precise foru

using the notion of bicharacteristics. Mhus we have the

following theorem.

Mheorem 5. Let $K$ be a compact set in $\mathbb{R}^{n}$ and the

operator $P(D)$ satisfy conditions $(1J$ and (2). Suppose

that condition (5) below holds. “hen $P(D)\alpha K)=\alpha(K)$

holds.

$(\overline{p})$ For any $(x_{2}\zeta)$ in $S^{*}R^{n}$ such that $x$ belongs to
$ChK$ , the convex hull of $K$ , but not to $K$ , and

such that $\xi$ satisfies $P_{m}(\xi)=O$ , theoe is a point

$y$ outside $ChX$ for which the segment $\overline{xy}$ does not inte$r\simeq$

sect $K$ and is contained in the bicharacteristic
curve of $P(D)$ issuing frova $(x,$ $\xi)$ .

-11-
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We omit the proof of this theorem in this lecture

si-nce it essentially uses ft functional analysis $t1$ . We only

remark the following two facts which are related to

$pheorem5$ .
(A) Analogue of Theorem 4 $c$ an be proved even if $K$ is

a closure of an open set $\Omega$ , whose regularity at

the boundary is not necessarily assumed. In fact it

is sufficient in this case to assume the follewing

condition (6) instead of coscdition (4):

(6) Any bivharacteristic curve of $P(D)$ intersects
$-\Omega$ in an open interval.

$\perp^{\rceil}he$ validity of this statement is obvious from the

$\Pi:ethod$ of the proof of Theorem 4, if we remark the

fact thal sheaf 6 is flabby. In this case,

however, we need not assume $f(x)$ belongs $te$ $a_{(K)}$ ,
since Ne extend $f(x)$ to $H^{n}$ using the flabbiness of

sheaf 6 . $He_{--C\ominus}^{\eta}$ this $ana1o_{\langle\supset}f\eta 1\ominus O\hat{I}$ Theorem $t\lrcorner_{-}$ should be

regarded as an existence theorem for $\alpha(\Omega)$ rather

than $a^{r}(l_{L}^{-})$ . (Cf. Mheorem 9 in the beloN).

(B) If Ne allow the principal symbol of $\perp^{\lrcorner}-(D)$ to be

complex valued, then we $\overline{n}ave$ the following

$\perp^{1}hecrem6$ . Before $sta_{b}^{\perp}iarrow f-- n\sigma-\dot{|}|\urcorner heorem$ $6$ we prepare a
notion regarding $bicharac_{b}^{\perp}eristics$ of $r(D)$ . In

$or_{\overline{u}}^{r}er$ to define the notion vie assume in the

sequel that the $pri_{\perp}^{r}icipa1$ symbol $P_{m}(\in)$ has the

$\perp orn1BA_{m}(\zeta\rangle+iB_{r_{:}}(\xi)$ , where $A_{m}$ and $B_{m}$ are real

valued, and that

-12-
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(7) gradg $A_{m}$ and $grad_{\xi}B_{m}$ are linearly independent

whenever $P_{m}(\xi)=0$ , $\xi$ $\neq 0$ .
Using these assumptions on $P_{m}(\xi)$ we can define

the bicharacteristic plane $\perp_{(x_{o},\xi^{o})}$ of $P(D)$

though $(x_{O}, \xi^{\Phi})$ by the 2-dimensional linear variety

passing through $x_{o}$ which is spanned by

$grad_{\xi}A_{m}|_{\xi=\xi^{Q}}$ and
$grad_{5}B_{m}|_{\xi=\xi^{o}}$

, where $P_{n}(g^{0})=O$

holds.

Preparing this notion, we have the folloNing

theorem.

Theorem 6. $I_{1}et$ the opeyator $P(D)$ satisfy condition

(7) and let the compact set $K$ in $\mathbb{R}^{n}$ satisfiy the

following condition (8) $r\neg\perp henP(D)a(K)\simeq a(K)$ holds.

(8) For my bicharacteyistic plane
$\Lambda$ of $P(D)$ ,

$\Lambda\cap(ChK-K)$ has no relatitively compact

component.

We have not yet proved this theorem without using

the duality theoreBi. A little Neaker theorem $is$

obtained by a direct method similar to the proof of

Theorem 5 using the elementary solution in

Kawai $[$ 4] Theorem 2.

Now we go on to the problem of global existence of

solutions in $\alpha(\Omega)$ for an open set $\Omega$ . A complete

-15-
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$re$ sult is obtained if $\Omega$ is in $|\ddagger i^{2}$ , hence $\backslash Je$ iirst state the

theorem.

Theorem 7. For any linear differential operator

with constant coefficients ?(D) we have $P(D)a(\Omega)=a(\zeta 2)$

if $a$ relatively compact open set $\Omega$ in $IB^{2}$ satisf $ies$ the

folloNing condition:

(9) Any oeharacteristic line of $P(D)$ intersects $\Omega$ in $m$

open interval.

The proof of this theorem relies on the fact that

explicit construction of elementary solutions of $P(D)$ is

possible for any $P(D)$ in the 2-dimensional case.

We $c$ an also prove that the converse of the theorem

is true at least if $P(D)$ is homogeneous. In fact we have

the following theorem.

nheorem 8. Let $P(D)$ be $a$ homogeneous linear

$di-\perp$ ferential operator with constant coefficients defined

on $\mathbb{R}^{n}$ . Assume that $P(D)a(\Omega)=a(\Omega)$ holds for a domain

$\Omega_{-}=\{x|\varphi(x)<0\}$ , where $\varphi(x)$ is a real valued real analytic

function defined ne $ar\overline{\Omega}_{-}$

satisfying $grad_{x}\varphi(x)\neq 0$ on $a\Omega$ .
Then for any characteristic boundary point $x_{o}$ , i. e. , the

boundary point where $P_{m}(grad_{x}\varphi(x)|_{X=X_{O}})=0$ holds, the

characteristic hyperplane through $x_{o}$ , i.e. ,

$-$ 1-!- $-$
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$\{x|\langle x-x_{O},$ $grad_{x}\varphi(x)|x\supset x_{o}\rangle=0f$ , does not inteyset

$(R^{n}-\Omega.)_{\cap}N$ in a $c^{-}ompact\check{s}$ et for any compact

neighbourhood $N$ of $x_{o}$ .
$\overline{\perp}\backslash he$ existence of a special $nul1-solution$ of $P(D)$

proves this theorem and we omit the details. We hope that

the assumpticn on homogeneity of $P(D)$ will be redundant

and that the characteristics should be replaced by the

bicharacterics, though Ne have not yet proved them because

of some technical difficulties.

On the contrary, we have the following Mheorem 9 as
an affirmative answer to the global existence of real

malytic solutions.

Mheorem 9. Let the operator $P(D)$ satisfy condition

(1) and (2) md let a $re$ latively compact open set $witb_{\wedge}bsmootarrow- qarrow$

satisfy the following condition (10). “hen $P(D)a(\Omega)=a_{(\Omega})$

holds.

(10) Any bicharacteristic curve of $P(D)$ intersects $\Omega$

in $m$ open interval.

$\perp^{\cap}he$ proof of this theorem is just the same as that

of Theorem 4. (Cf. Remark (A) after lheorem 5).

Since Nheorem 9 seems to require too much information

concerning the global shape of $\Omega$ , $s_{!te}$ modify nheorem 9
as $follo_{V}^{v}is$ .
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$-n\perp heorem1C$ . Assume the same conditions on $P(D)$ as

in $\perp^{\iota}heorem9$ . Let $a$ relative $\wedge\urcorner y$ compact open set $\Omega$. have

the iorm $\{x|g(x)\langle O$ : for $a|-\wedge$ eal valued real analytic

function $\varphi(x)$ defined near $\Omega$ satisfying $grad_{x}\varphi(x)\neq 0$

on $\partial\sigma\ell$

$*$ If the $oper_{\wedge}$ set $\Omega$
$s_{\alpha}^{r\neg}tis^{-}\perp\prime ies$ both condition (4)

in $r\eta\perp heo\perp\neg em4$ and condition (11) below, then

$P(D)a(\Omega)=a(\Omega)$ holds.

$(l1)$ nhere exists a family of cpen sets $;_{N_{\dot{3}}}\}$ $ij=1p$

which satisfy the following: For any point $x$

in $\partial\Omega$

$\wedge Jec$an find some $j$ such that for $a_{-\perp}^{\backslash r}y$

bicharacte ristic curve $b_{(x},\xi$ ) of $P(D)$ through

$(x, \in)b_{(x,\xi})\cap(\overline{\Omega}-\x;)_{\cap}N_{\dot{3}}$ is connected,

where $i\not\in_{\dot{3}}\sim$
is $a$ neighbourhood of $X*$

$\cap\perp he$ proof of this theorem is $s$ imilar to that of

$\zeta\neg 4$ , so we omit the details.

\ddagger i6mark. As is remarked before Lerima 2, we $c$ an

generalize $\cap;\perp$heorems 4, 9 and 10 for a wider class

$0\perp$ line $a_{\wedge}^{-\cap}dii^{\tau}fe_{\perp}e_{\sim\wedge}rtia1operatc\underline{\tau}^{\backslash }s\dot{4}’;\underline{\neg}t^{7}r_{\wedge^{\backslash }}co_{\perp 1}S^{arrow-}\vee’ a_{\dot{i}}\wedge\underline{\urcorner}t$

coeSficients $\neq\perp ot\perp\hat{\perp}\backslash ecessarilysa^{\underline{\sim_{f}}}is^{p}\perp yingcondi\rceil jions$

$|’\backslash 1)$ $ar_{\wedge}d$ (2). we cinit the details here $a_{\sim^{l}-}^{\wedge}dre\perp^{4}$ er -o

Kawai $[$ 5 $]$ for it. We however $e1_{-1}^{\overline{}}phasize$ the $i’ act$ $\sim_{l}’$-hat

one of $\tau,\underline{\gamma_{\grave{\perp}e}\neg}advan_{\vee\overline{\Leftrightarrow}\{}^{\neq}\not\subset es$ of $\grave{\perp}\cap\perp yper\perp C_{t}^{\backslash }nction$ theory $a\hat{p}$pears

wher- one $t_{\perprightarrow}^{\urcorner}$ es to $sta^{\ulcorner}.et\underline{-}eth_{\sim}^{--}ore^{YY}1L_{\wedge}s\mathfrak{U}^{\circ i_{\sim^{l}}^{\rho}g}co_{\perp-}-\wedge di_{E_{\wedge}^{\neg}}’$ ns

on $\wedge\vee ne$ princ $\wedge\sim$:pal $pa_{\sim}^{\backslash }t$ of $\lrcorner$ . $(D)$ $0\perp\sim ly$ . ;hus $i_{-\wedge}-\prime_{\gamma}:-awa_{\wedge}\urcorner[r\overline{2}]$

–0 conditicn cn $10^{\iota}\cdot\prime er$ order $terr^{\eta}.s$ is needed. -nis

$fac^{+}$ is $so_{\check{1}_{-\perp}’}etinesren\wedgearrow\perp\urcorner_{\vee}\perp Lably-(xse^{D}\perp\llcorner 11i-\prime treati_{--}g$
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$\sigma verdeter_{\overline{i}_{s}i}ined$ systems with constant coefficients.

\S 2. Global existence of real analytic $\grave{s}$olutions of single

linear differential equations with real malytic coefficient $s$ .
$\cap\perp he$ reasonings of Sl depends on the global existence of

good elementary solutions of the differential operator $P(D)$ .
But if we vrant to treat the operators Nith variab Le coefficient $s$ ,
then there appears a difficulty: the argueiiients of Kawai $[$ 1 $]$

9

$[$ 2 $]$ sbow only loeal exist $en_{\vee}^{\wedge}e$ of elementary sclutions

except some trivial cases, $e.g_{i}$ a linear differential operator

viith its principal part being of constant coefficients and

the coefiicients of lower orde.$Y$ terms being entire functions.

By this reason in the variable coeificient case we must contient

ourselves Nith the semi-global versions of Theorems 4,9 md

10 at present, i.e. , we must consider $aU$ the problems in

subsets of a fixed open set V in $\mathbb{R}^{n}$ , not $\mathbb{R}^{n}$ itself, even

if the coefficients of $P(x,D_{x})$ are real analytic in a larger

set lhan V. Of course the open set V depends on the operator

under consideration. Such results are unsatisfactory,

hence we will not discuss them any more here. However there

is a case where the elementary solutions exist globally,

hence all arguement $s$ in \S 1 succeed: globally hyperbolic

operators in the sense of $+\lrcorner_{\lrcorner}eray[1J$ . (Cf. also Bruhat [1]).

If we conbine our construction of local elementary solutions

and investigations of their properties developed in

Kawai $[$1 $]$ with Leray’s penetrating study of emissions,

which are closely $rela_{\backslash }^{--}$ed to bicharacteristics, then

$7_{f}fe$ have the $i^{\Gamma}$ cllowing Lemma 11. (Concerning the def$ini-$

$-$ ion of global hyperbolicity and the related $topi\sim s$

-17-
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we refer $\tau o$ Leray $[$1 $]$ ano Sruhat $[$ 1 $]$ . See also $\Lambda awai$ $(\mathfrak{h}]$ $)$ .

Lemma 11. $Assurl\iota e$ that the linear differential operator

$P(x,D_{x})$ is globally hyperbolic on re $a1$ analytic complete

Riemanian manifold V. Pthen we have an elementary solution

il(x,y) for $(x,y)\in V\cross Vsa\tau$ isfying the following conditions:

$(12_{/}^{\backslash }$. $supp$ lr $(x,y)\subset$ Ei; (y), where $\epsilon(y)$ denotes the

emission of $y$ .
(15) $0$ . $S$ . $E$ ( $x$ , $y$ ) $\subset\{(x,y_{2}\in, ?)\in S^{*}(V^{X}V)|x=y$ , $\xi=-?I\cup$

$\{(x,y_{9}\in, ?)C\sim S^{*}(VXV)|(x, \xi)$ and $(y, -?)$

are on the same bicharacteristic strip of

$\perp-(x,D_{x})$ wilh $x\in \mathcal{E}(y)\}$ .

Thus we have a global elementary solution in this

case. Therefore we can prove analogues $0\overline{\iota}$ Theorems 4,9

and 10. $-\downarrow’Ie$ omit $rhe$ details and refer to Kawai $[5J$ . Of

course the assumption of hyperbolicity also allows us to

treat the Cauchy problets for such operators both in the

frmework of real analytic $\grave{\check{L}}unctions$ and in that of

hyperfunctions. A remarkable fact which appears in our
$treat_{1}\eta e_{-\underline{i}}\neg\cdot\neg t$ of $C$ auchy problems in $\overline{\underline{t}}^{\urcorner}efrai_{L}^{\eta}ework$ of hyper-

functicns is firstly that bicharactexistics play no part

when we decide the existence dor. ain of solutions and

secondly that they play their ovin essintial role only

when $-.\prime e\mapsto\cap\neg$ecide the domains where -5he uniqueness of

solutions holds. $-P^{-}oout$ the details we also $–arrow efer$ to

awa$i[5\rfloor$ .
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\S 5. Global existence of real analytic solutions of systems

of linear differential equations with constant coefficients.

“he investigations of the problems stated in the

title of this section are still progressing, hence we cannot

give the final theorems but only sketch $tNO$ methods Nhich

are expected to give the $complt\ovalbox{\tt\small REJECT}$results and, in facl, have

given results in some special cases. Since we want to

explain the main ideas md do not try to give complete

arguements in this section, Ne $ass\iota imeso\ddagger ne$ additional

conditions concerning the algebraic structure of the systems

under consideration in order to avoid the technical

difficulties. $\downarrow^{\urcorner}hat$ is, in $|\perp\urcorner heorem12$ we assume that the

system of compatibility conditions has one generator and

in Theorems 15 and 14 we assume that the system under

consideration has only one unlcnown function. We remark

that some trivial cases which can be treated by $\dot{s}ust$ the

$san\underline{|}e$ method as developed in \S 1 may be omitted by these

$ass_{\dot{L}_{i}^{\gamma}}motions$ : the typical example $is$ a system whose adj oint

operator $is$ an (over-)determined system of linear differential

operators. But we hope the most typical features of the

system of linear differential operators appe $ar$ clearly

even if we assume these conditions.
$\perp\urcorner he$ first approach is the one concerning the existence

of solutions in $a(K)$ for compact set $K$ in $\mathbb{R}^{n}$ . This

method $is$ essentially due to Ehrenpreis $[$ 1 $]$ , $[$ 5 $]$ and

is a direct extension of the proof of Theorem 5. Ihat is,

it uses the pairing of $(a(K), \emptyset_{K})$ and Serre’s duality theorem.

“hen it is easy to reduce the existence theorem to the
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problem of support of solutions and we obtain the followir.$g$ :

$T^{b}$.eorem 12. Denote by $i^{\iota_{1}}\neg\tau_{O}$ the system of linear $dif^{p}\perp eren-$

tial operators viith constant coefficients and by $\overline{i}^{c}\iota_{1}$

’ the system

which gives its coiiipatibility conditions. \’Assume that $t_{r.\overline{|},11}1$

’ the

ad$ij$ oint operator of $\Re$ has only one un-known function. Let $K$

1’
be a comact aet in $\mathbb{R}^{n}$ satisfying the following conditions (14)

md (15). $-\perp hen\Lambda\neg xt^{1}(M_{o}, a_{(K)})=0$ holds.

(14) $\underline{rp}here$ exists a real valued re $a1$ analytic function

$?(x)$ which is defined in a $nei_{\frac{\iota x}{arrow}}hbou\underline{\urcorner^{\neg}}hood$ of $ChK$ , the

convex hull of $K$ , and satisfies

( $a$ ) $\{x|\varphi(x)\leqq 1\}=K$ , $\{x|\varphi(x)\leqq 2J=ChK$ ,

and

(b) $g_{\lrcorner}^{\neg}ad_{x}\varphi(x)\neq 0$ in $ChK-’\wedge^{\backslash }-’$ .
(15) The system $t_{\beta r?_{1}}$ is hyperbolic with respect to

$grad_{x}$ $\yen$ $(x)|_{X=X_{O}}$ for $a^{\underline{\gamma}}1yx_{Q}$ satisfying $\varphi(x_{o})=t$

$:_{\vee-}^{\dot{\tau}}$ th $1<t\leq 2$ .

$\perp\urcorner heD\sim$roof of this theorem is obtained by the method

of pie-nibbling due to Ehrenpreis $[1J$ , $[$ 5 $]$ . By the way

cf the proof condition (b) cm be $wea_{-\sim}^{\tau_{\Gamma}}ened$ bvt $\dagger_{\dot{V}}^{\wedge}\tau e-;^{\gamma}il1$

not discuss it any more in thi $s$ lecture.

$\perp\urcorner he$ second approach $is$ concerning $\tau he$ existence of

real analytic scldti$0^{v}1S$ on an cpen $se^{+}\cdot\Omega$
$a\tau_{\perp}d$ it can be

$s\iota$-rmarized $sc$heratically as folloNs; if we can solve the

sysrem cf linear differential $ec_{\perp}uations$ in the space of

$-i_{-\backslash \prime}^{J}’-$
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hyperfunctions (or that of distributions or that of $C^{}$

functions etc. ), then using the flabbiness of sheaf 6 and

that of sheaf $C$ we can solve the system in the space of

real analytic functions assuming some additional $t\iota_{Convexity^{\prime:}}$
,

conditions on the boundary of $\Omega$ . We hope that the

solvability in the space of hyperfunctions will be obtained

under the least restrictive corditions on the $\iota:_{CoP_{A}vexity^{\dot{1}}}$

of $\Omega$ and that this method will g\’ive us the complete

result, though we have not arrived there. Note that,

for example, we need no ;local convexity‘l conditions tc

solve the system of lineae differential equations with

constant $coefficien_{\overline{\vee}}s$ if the space $di\eta ensionn$ is equal to 2 $*$

By this method we have the folloNing theorems:

Theorem 15. Consider an overdet $er\iota nined$ system $M_{o}fr$;ith

one unknown function. Let $\Omega$ be a relatively compact

convex open set in $\mathbb{R}^{n}$ . Then we have Ex$t^{}$ $(M_{o,\sim}, \alpha(\Omega))=0$ , if

we $ca^{\underline{\gamma}}1$ find a polynomial $P_{O}$ who se $homoge^{\neg}\perp Aeous$ part satisfie s

conditions (1) and (2) in \S 1 in the generators of the

ideal in the polynomial ring $A=C[\xi_{1},$ $—,$ $\zeta n)-\vee$orre sponding

to the system $M_{o}$ under consideration, $i.e$ . , assume that,

representing $M_{o}$ as $A/g$ , where il is $m$ ideal in $A$ , we

can $f$ ind polynomials $P_{o}$ , $—$ , $P_{k}$ so that the ideal

generated by them coincides with il and that $\overline{x}_{C}^{}$ satisfies

$c$ onditions (1) and (2).

$\cap\perp heo^{v}em14$ . For any $o^{-}\tau er\det erninedsyster_{A\iota}^{\backslash }M_{o}$ of

$-$ $-1-$
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linea: diferential oper$a^{J}\overline{\circ}ors$ with constant coefficients

and one $un_{arrow\wedge}^{\varphi}notJn\sim\cdot f_{\backslash }^{7}inction$ , we can find a no$1:Jhere$ dense subset

$S$ ef $S^{n-1}$ , the (n-l)-dimensional co-sphere, such that the

following holds:, If $a$ relatively compact open set $\Omega$ in $\mathbb{R}^{\underline{\tilde{;}’\ddagger}}$

has the form $\urcorner\bigcap_{=1}^{-}\{x|\langle x,$
$\xi^{\dot{3}}\rangle<c_{\dot{3}}$ , $\xi^{\dot{0}}\in S^{n-1}-S$ , $c_{\dot{3}}>0$

;

for some positive integer $N$ , then $–\backslash xt^{1}(M_{o}, a(\Omega))=0$ holds.

nhe proof of these theorems is given by the method

analogous to that employed in the proof of Theorem 4, if we
$ta_{1}^{\rceil}ee$ into account of Komatsu’s $i^{*}esult$ that $h^{\neg}xt^{1}(1\backslash \tau\iota_{O}, G(\Omega))=0$

holds for any $M_{o}$ and for any convex open set $\Omega$ in $\mathbb{R}^{n}$ .
$(Cf. \overline{\wedge 1}^{\overline{\prime}}\searrow omatsu\lfloor 1] , [2] )$ . Of course these forms of

presentations of the theorems are very unsatisfactory from

the aethetical viewpoint. In fact we have some recipes for

generalizing these results using the notion of the

bicharacteristics concerning the overdetermined systems,

but we cannot make them applicable at present since we

$ha^{-}re$ al.most no $res^{\rceil 1}1_{b}^{A}s$ concerning the global existence of

hyperfunction solutions except for $I\{omatsu$ ’s one or those

waich can be easily deduced from it only by the algebraic

arguemens. Hence the $pre$ sent $spes_{-}ker$ wi she $s$ to return to

these probleiiis at the occasion of the $r_{\perp}ext$ symposium,

which $-t\cdot.\cdot ill$ be held in next $1’\underline{1}$ arch. Please give him tiwe

enough until then.

$-\hat{c}_{-}’--$
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