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§0. Introduction
Professor Sato initiated and developed the thecry

of sheaf C: in 1969 (Sato [2] , [3] ), and this theory

has turned out to be a very powerful tool in analysis,

especially in the study of linear (pseudo~)difféfential

equations. (Cf. Kashiwara and Kawai [1] , [2] ,

Kawai [1T1~ {51 , sato [2) ~[6]. ~See also

Hormander [2] ) {5] ). The present speaker gave a survey

lecture on these subjects at the symposium last March

on the theory of hyperfunctions and differential equations

(Kawei [3] ), and listed fhere four prcblems to be

solved. They were:

(i) the treatment of the case k= ™ , where k is the
number appearing in Egordv [1] and Nirenberg and
Treves [1] concerning the local solvability of
linear (pseudo-)differential equations,

(ii) to extend cur theory to the case where the
assumption of simple characteristics is omitted,

(i) to extend our theory to overdetermined systems,

and
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(iv) to give global existence theorems.

©specially he placed emphasis on problems (i) and
(iv) at that occasion. '

4 complete result is given by Sato [6] , concerning
problem (iii) and a result is given by the present speaker
concerning problem (iv) (Kawai .[4] , [5] ).

Now in this lecture we will explain how problem (iv)
is deduced from the local theory of linear differential
equations.

fiore complete arguéments shoﬁld be given in our
forthcoming papers (Kawai E6JV) and this,lectuée should

be regarded as a survey one,

§1. Global existence of real aﬁélytic solutions of
single linear differential equation with constant
coefficients. |

As is well known the topological structure of the
space of real analytic functions on an open set is rather
complicated, hence even Professor Ehrenpreis;~who
initiated-and completea,the general theory of linear

differential equations with constant coefficients in the

framework of distributions with Professors Malgrange,

- Hormander and Pélamodov, seens at preSent‘té have
abandoned to attack the problem of global'existéhce of
real enalytic solutions. (Cf. Ehrenpreis [2] , [3] ).
But we can treat this problem without much difficulty
by the aid of the theory of hyperfunctions and that of
sheaf CL~, at leas%f%gg%estrictourselves to the
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consideration of the operators satisfying suitable
regularity conditions which allow us to consider the problems
geometrically. In a sense our method can be regarded-as
"method of algebraic analysis" contrary to "method of
functional analysis", which is developed, for example, in
Hormsnder [1] , Palamodov [1] , Ehrenpreis [3], etc.
(The word "algebraic analysis" seems to go baék to Euler
but it haS»récently been endowed with positive meanings by
Professor Sato, who aims at the Renaissance-of classicél
analysis).

We first examine in the Special case whether the
theory of hyperfunctidns is useful to investigate the-
problem of global existence of real analytic solutions.
In faét‘we easily ﬁn@ersféhd_thatyit.is very powerfﬁl‘in
therfollowing'special'éése; i.e., the case when the operator
P(D) is elliptic. ‘/

Of course in this case -there is a decisive result:

due to Malgrange [l] ; i.e.,

Theorem  (Malgrange [1] ). For any open set Q in

R™, P(D)u=f has a solution u(x) in CL(KZ) for any datum
f(x) in Q ().  Here Q(Q') denotes the space of real
ahalytic functions'dejined on fZ .

Now we show how We/can prove this deep theofeﬁ‘withf\
ease 1if we assugerthat.fz is relaﬁivaly‘cdmpact;. The

essence of the proof is, as desoribedfbelow, the flabbians’
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of sheaf of hyperfunctions, which we denote by 13 in the
sequel.
Our proof is divided into two parts. TFirst we remenmber

the following lemma due to John [l] .

Lemma 1. If the linear differential operator P(D)
is elliptic, then we can find a hyperfunction ©(x) defined
on R™ satisfying |
(1) B(DIE(x)= §(x)
and

(ii) E(x) is real analytic outside the origin.

This lemma can be proved by many methods: for example,
one can use the fact that the non-characteristic Cauchy problem
in the complex domain has the entire solution as far as all the
data given are entire functions, the linear differential
operator under consideration is of constant coefficients’and
the initial hypersurface is a hyperplane. (Cf. Leray [2J
Lemma 2.1). Then one can use the celebrated reasonings of
John [1] <Chapter 3 to comstruct E(x). (Cf. John [1]
pp.66‘-~ 72). Another proof is given by the following way:
First construct the elementary solution EO(X) of Pm(D), the

principal part of P(D), in the form

- j . Pl (x, EIHI)F(E),

(—2f i)™ (2 (E)+10)
1€1=1

where ) . |
-1)3 1 (g-1)r T (5 ©)

P .(T)- _ | |

J a d N 3 o

Zi ios T-———%Tu (1+ --—- +«3,) T (3<0)
J* [ )

and 0 (g ) denotes the volume element of the unit sphere,
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ice., ( E):%} <"1)J—l ajd g’jl_ /\ "".' A dé;j.-l N

dga}l/\ - A dgn. Next constmct the required E(x) by

the successive approximation starting from Eo(x), or more

precisely from

1
(2w )" By(&)

én_m ((%C?) [}

where z and C; denote the complexifications of x and E;
respectively. Note that Pm(c:) never vanishes as far as &
is sufficiently néar to the real unit ball {G€ R" “ﬁ! 18
by the assumption of ellipticity. The convergence-of the
successive approximation is easy to check, and it is also
easy to verify that E(x) has all the reguéred properties.
Secondly we use the flabbineés’of sheaf {3 to obtain
a hyperfunction sz), which is defined on R" and satisfies

the following conditions:

(1) Its support is contained in fz , the closure of (2 .

(ii) It coincides with f£(x) in fz .

fand
Then using f(x) we define u(x) by the integration
//iE(x-y)f(y)dy. This integration is well defined as an

integration along fiber (Sato [1] ), since the. support of
E(y) is compact by the d-finition. On the other hand by
property (i) of &(x) we have P(D)u(x):g(x) and by property
(ii) of _(x) and the property of g(x) we see that u(x) is

real snalytic 511(2 . Thus if we consider the restriction
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of u(x) to €2 , which we denote by u(x) again, u(x) is a

real analytic solution of the equation P(D)u=f.

This proof of the existence theorem in the elliptic
case teaches us the following facts:
(1) Flabbiness of sheaf &3 allows us to pass the
technical difficulties by, especially it reduces

all the problems to the boundary.

(ii) The informations which the "good'" elementary
solutions have (property (ii) in the above case)
are used in the course of integrations and give us
a good solution of P(D)u:f.

These observations oblige us to want to consider more
geneﬁal differeﬁtial operators, not necessarily elliptic:
in fact we have "good" elementary solutions for the
differential operator P(x,DX) satisfying the following
conditions (1) and (2), which exist globally if the-
operator P(X,DX) is of constant coefficients. (Kawai [l] ).
e also remark that we can treat more general class of
operators first considered in Andersson Ll] (see also
Kawai [5] ’ [5} ) sincé in this section Qe”restrict
ourselves to the case where the differential operators are
with constant coeificients,which is a easy case from the
view-point of construction of elementary solutions.

(1) The principal symbol Pm(x,f,) of P(x,v, ) is real.

(2) - Pm(x,éa) is of simple characteristics, i.e.,
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grada’Pm(x,é,) does not vanish whenever Pm(x,E;)=O

for any point (X,€,> in the real cotangential

sphere bundle.

Now, what is the good property presented by the elementary
solutions constructed in Kawai [1]? It is described

in the following lemma.

Lemma 2. ILet P(D) be a linear differential operator
with constant coefficients satisfying conditions (1) and (2).
Then there exist two hyperfunctions E 4 (x) and E_(x) such
that
(1) P(D)E + (x)= 6 (x) holds
and ‘
(ii) S.8.E+(x) is con’céined in i(x,ﬁ JE S*Rnl:{:O or -

=%t gradaPm(E) with $20 and P (§)=0 §

respectively, where S*R™ denotes the cotangential
sphere bundle of RY and S.S.E + (x) denotes the
support of E+ (x) regarded as sections‘of sheaf CZ .
(0. sato (4] ). s

The proof of this lemma was rather implicit in Kawai [ 1] ’
especially concerning the global existence of E t(x),

; however B
gAY is.easy‘to prove this lemma using the successive
approximation method as 1s sketched in the proof of Lemma 1,

since the operator P(D) has constant coeffiéients,'
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We believe that such an elementary solution as is
given by Lemma 2 is very good and that all the informations
about the operator P(D) should be deduced from it, and the
belief in the good elementary solution has its reward as is

described in this report.

We first consider the solvability in (QL(X) for
compact set K in R®. Here O_(K) denotes the space of

real analytic functions on K, i.e., lim (KV), where
VoK

V denotes a complex neighbourhood of K and @-(V) denotes
the space of holomorphic functions on V. This problem
has its own interests as well as it plays a role as a

lemma to our final object of solving the equation P(D)u=f

in Q(Q_) for an open set (2 .

Theorexﬁ 5. Assume that K is the closure of relatively
compact open set (2 ={x ’ P (x)< O}, where @ (x) is a
real valued real analytic functiozi defined near K satisfying
gradxgv £0 on QQ , the boqndary of {2 . Suvpose that the
compact set K satisfies the following geometrical ‘condition
(3) and that the differential operator P(D) satisfies
conditions (1) and (). Then for any £(x) in a(K) we

cen find u(x) in (Q (@) such that ¥(D)u=f holds in £ ..

(3) For any x, in Oi¢ +the bicheracteristic curve of P(D)
b, e A igsuing from
K ‘.\‘}_o Y g—'- (:.\.LX @ “‘:;X )

) never intersects {) .
CA

(Xo’gradx C? | X=X

- -



The proof of this theorem is given just in the same
way as in the second ?art of our proof of the existence
theorem in elliptic case by the use of either one of the
good elementary solutions given in Lemms- 2. In fact the
smoothness of the boundary and the regularityvqfff(x)
permit us o extend £(x) to R® by f(x)@(-?(x)), where 6

denotes the l-dimensional Heaviside functioﬁ.‘ Note that

5.8.(£(x) O (-$(x))) is contained in { (x,&)e s*kY x € 29,

E =igradfo(x)}. Then we can apply Sato's lemma on the
regularity of the integrabtion along fibef (Sato [4]
Corollary 6.5.3) to the integration

v[E(x—y)ny)@(-g?(y))dy and obtain the required result.

This proof of Theorem 3 needs only one of good

elementary solutions given in Lemma 2, but this contradicts
our sense of»symmetry: We ﬁust use both goodvelementary'
solutions, because neither one is better than thé other.
This belief in‘both good elementary solutions is rewarded

again, i.e., we can improve Theorem % as follows.

Theorem 4. In Theorem 3 the condition (3) on {2 can

be weskened to the following.

(4) For any x, in dQ the bicharacterestic curve of P(D)

b(X01 gra¢x9>lx=x0) issuing from (x,, gradxg>‘xzxo)

intersects §2 in an open interval.

117
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Proof of Theorem 4, We denote f(x) 9 (- ¥P(x)) by T (x).

By condition (4) we have the dgcotmposn.ti n_of
ra
=i(x, & GS*an’XE R, P (&)= into the form N,V N_,
{Gx, &) (&)= a§ o, the form N,
where N ={(x, £)e b*ta“]x €38R , P (E)=0 and half of the

bicharacteristic curve t© grad g P (E)(t 20) does not

tgrad P(x)
intersect Qi and N-= {(x, )E S*[Rnlx €9, P (é',) O,\ang

half of the bicharacteristic curve & grad £ Pm(a Y(££0)

does not intersect {2 {. Since sheat (C is flabby
(Kashiwara fl] ), we can find hyperfunctions ?.‘.'.(x) and ’f__(x)
such that S.S.(F(x)-F4(x)-F_(x))=F, 5.8.7,(x)n NCN, and
S.S.E‘-(x)nNCN_. Then applying Sato's lemma on the
regularity of the integral along fiber to

v(x)= \Ex(x~7) %(;Y)dﬁ‘ gE—(x-y)’E-(y)dyo

we find S.S.v(x)n S*.Q =g. Note that the above integration

is well defined as that of the section of sheaf C .

Therefore we have P(D)v(x)z}'(x)-l—g(x),_ where g(x) is real
analytic in R®. Here we have used the fact that HI(R®, QL)
vanishes. Then restricting g(x) to a closed ball B cbntaining

K in its interior, we can apply Theorem 3 to find w(x) which

is real analytic in the interior of B and satisfies P(D)w(x)=g(x)
thére. Thus subtracting w(x) from v(x), we find the required
u(x), -which is real énalytic inQ and ‘satisfies P(D)u(x):f(x)

there. This completes the proof of Theorem 4.

In an obvious way we can modify the form of Theorem 4

- 10 -



to obtain the results which assures the existence of the
solution u(x) in a(K), We refer the reader to Kawai [4]

Theorem 1' about the modifications.

Remark, Since the space a(K) has a natural s_tructre
as a topological vector space, i.e., a(K) is a DFS-space,
Serre's duality theorem holds for the pair ( a(K), BK)’
where §3 g denotes the space of hyperfunctions with support
in K. Then Serre's duality theorem shows that the éxistence
of solutions in (L(X) can be deduced by the unique
continuation theorem concerning hyperfunction solutions.

On the other hand the unique continuatioﬁ theox;em féllows
easily from Theorem 3.3' in Kawai [1] in a precise form
using the notion of bicharacteris‘tics. Thus we héve‘ the

following theorem.

Theorem 5. ILet K be a compact set in R™ and the
operator P(D) s_atisfy conditions (1) and (2). Suppose
that condition (5) below holds. Then P(D) (Q(X)=(QL(K)
holds. ' 7,,_A T
(5) Foi- any (x,%€) in /S,*,Rn such that x belongs to
ChK, the convex hull of K, but not to K, and
such that £ satisfies Pm'( £)=0, there is a point
Y outside ChK for which the ,segment Xy does not inter=
sect K and is contained in the bicharacteristic

curve of P(D) issuing from (x, §).

-1 -
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We omit the proof of this theorem in this lecture

since it essentially uses "functional analysis". We only

remark the following two facts which are related to

Theorem 5.

(4)

(B)

Analogue of Theorem 4 can be proved even if X is

a closure of an open set CZ , whose regularity at

the boundary is not necessarily assumed. In fact it

is sufficient in this case to assume the follewing

condition (6) instead of comdition (&4):°

(6) Any bivharacteristic cﬁrve of P(D) intersects
X in an open interval.

‘he validity of this statement is obvious from the

method of the proof of Theorem 4, if we remark the

fact that sheaf (® is flabby. In this case,

however, we need not assumelf(x) belongs te Cl(K),

since we extend £(x) to R™ using the flabbiness of

sheaf 3 . Hence this analogue of Theorem # should be

regarded as\an existence theorem for CL(KZ) rather

than CZ,‘CK).' (Cf. Theorem 9 in the below).

If we allow the principal symbol of ¥(D) to be

complex valued, then we have the following

thecrem 6. Before statving Theorem 6 we prepare a

notioh regarding bicharacteristics of r(D). In

ordef to define the notion we assume in the

sequel that the principal symbol Pm(e;) has the

form Am(é‘)i-iBm(é;), where A end B are real

valued, and that
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(7) gradE:Am and gradEBm are linearly independent
whenever P ( € )=0, & #£O.. |
Using these assumptions on P (¢ ) we can define

the bicharacteristic plane N £%) of P(D)
2

(x,
though (xo,ff) by the 2-dimensional linear variety
passing through X, which is spanned by

grad £ A

. . o ‘
m’§=%° and grangmlF’:ao o where Pm(& )=0

holds.
Preparing this notion, we have the following

theoren.

Theorem 6. Let the operator P(D) satiéiy condition
(7) and let the compact set K in R™ satisfy the
following condition (8). Then P(D)(Q(K)= Q(K) holds.
(8) For any bicharacteristic ﬁlane j\ of P(D),
/L(\(ChK—K) has no relatitively compact

component.

We have not yet proved this theorem without using
the duality fheorem. A little wesker theorem is
obtained byAa direct method similar to the proof of
Theorem 3% using'the elementary solution in

Kawai (4] Theorem 2.

Now we go on to the problem of global existence of

solutions in (J(QQ) for an open set (2 . A complete

- 1% -
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result is obteined if (2 is in m2, hence we first state the

theoren.

Theorem 2. For any linear differential operator
with constant coefficients P(D) we have P(D)Q(_Q_):Q(Q)
if a relatively compact open set,fz i.n!R2 satisfies the
following condition:
(9) | Any characteristic line of P(D) intersects 2 in an

open interval.

The proof of this theorem relies on the fact that
explicit construction of elementary solutions of P(D) is

possible for any P(D) in the 2-dimensional case.

We can also prove that the converse of the theorem
is true at least if P(D) is homogeneous. In fact we have

the following theorem.

Theorem 8. Let P(D) be a homogeneousklinear
diiferential operator with constant coefficients defined
on R™. Assume ﬁhat P(D)Cl(fZ);(2£§2) holds for a domain
£l=§%4 ?(x)< Oi, where 9b(x) is a real valued real analytic
function defined near fi. satisfying grad???(x)#b on O .
Then for any characteristic boundary point x_, i.e., the

boundary point where Pm(gradxf?(x)lxzxo)=o holds, the

characteristic hyperplane through Xy i.e.,
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{x ‘ {x-%, gradx?(x) , x:xo> =O} , does not interset

(Rnr-§2,)r\N in a compact set for any compact

neighbourhood N of Xoye

The existence of a special null-sclution of P(D)
proves this theorem and we omit the details., We hopé that
the assumption on homogeneity of P(D) will be- redundant
and that the characteristics should be replaced by the
bicharacterics, though we have not yet proved them because

of some technical difficulties.

On the contrary, we have the following Theorem 9 as
an affirmetive answer to the global existence of real

analytic solutions.

Theorem 9. Let the operator P(D) satisfy condition
‘oundary
(1) and (2) and let a relatively compact open set with smoot
satisfy the following condition (10). Then;P(D}(zﬁgZ)=(2(£l)
holds. o ‘
(10) Any vicharacteristic curve of P(D) intersects fz

in an open interval.

‘The proof of this theorem is just the same as that

of Theorem 4. (Cf. Remark (A) after Theorem 5).

Since Theorem 9 seems to require too much information
concerning the global shape of Q , we modify Theorem 9

as follows.

- 15 -
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Theorem 10. Assume the same conditions on #(D) as

in vheorem 9. Let a relatively compact open set SZ have
the form {x“? (%)< 02 for a real valued real analytic
function P (x) defined near E? satisfying gradx<? (x)#0
on J . If the open set (2 satisfies both condition (4)
in Theorem 4 and condition (11) below, then
PO)YA(Q)=A(Q) noias.
(11) There exists a family of open setS'{Nji gll
which satisfy the following{ For any point x
in 91 we can find some j such that for any

bicharacteristic curve b(x £ ) of P(D) through
9
(x, &) b(x,i )F‘((Z —fx?)f\Nj is connected,

where Nj is a neighbourhood of x.

The proof of this theorem is similar to that of

.

Theorem 4, so we omit ‘the details.

Rémérk. As is remarked before Lemma 2, we can
generalize Theorems 4, 9 and 10 for a wider class
o1 linear differentiasl operators with constant
coefficients not necessarily safisfying conditions
(1) and (2). ¥We omit the details here and refer %o
Kawai {5] fo: it. We however emphasize the fact that
one of vhe advantages of hyperiunction theory appears
wher. one tries to sbtate tue Htheorems usin
cn the principsl part of (D) only. ithus in fawai [5]
1o condition on lower order terms-is needed. hisg

fact is sometimes remrrkably uscful irn trezting



125

overdetermnined systems with constant coefficients.

§2. Globel existence of real analytic solutions of single

linear differential equations with real analytié coefficients.
The reasonings of §1 depends on the global existence of

good elementary solutions of the differentiél operator P(D).

But if we want to treat the operators with variable céefficieﬁts,

then there appears a difficulty: the arguements of Kawai [1]

[ 2 ] show only local existence of elementary solutlons

except some trivial cases, e.g. a linear dlffe;entlal operator

with its principal part being of constant coefficients and

the coefficients of lower order terms being entire functions.

By this reason in the variable coefficient case we ‘must content

ourselves with the semi-global versions of Theorems 4,9 and

10 ét resent, i.e., we must consider all the problems in

subsets of a fixed open set V in Bn, not R™ itself, even

if the coefficients of P(X,DX) are real analytic in a larger

set than V. Of course the open set V depends on the Opérator

under consideration. Such results are unsatisfactory,

hence we will not discuss them any more here. However there

is a case where the elementary solutions exist globally,

hence all arguements in §1 succeed: globally hypefbolic

operators in the sense of Leray [1]. (Cf. also Bruhat [1]).

If we combine dur construction of local elementary solutions -

snd investigations of their properties developed in

Kawai [1] with Leray’s penetrating study of emissions,

which are closely related to bicharacteristics, then

we have the following Lemma 11l. (Concerning the defini-

Jion of global hyperbolicity and the related topics

- 17 -
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we refer to Leray [l] and Bruhat [l] . See also nawai [b] ).
Lemma 11l. Assume that the linear differential operator
P(X,DX) is globally hyperbolic on reazl analytic complete
Riemanian manifold V. Then we have an elementary solution
i(x,y) for (x,y)€ VX V satisfying the following conditions:
supp E(x,y) C E:(y), where Ez(y) denotes the

(123
emission of y.

508.E(x,37) C [ (2,7} &, 2)€8*(vx )| x5, &= 7"
{Gors &, 0es (x| (x, &) and (3,-7)

(1%
are on the same bicharacteristic strip of

2(x,0,) with x € E) § -
Thus we have a global elementary solution in this
Therefore we can prove analogues of Theorems 4,9

Oof

We omit the details and refer to Kawei [5] .

case.
and 10.
course the assumption of hyperbolicity also allows us to
treat the Cauchy problems for such operators both in the
of
in our
hyper-

framework of real analytic functions and in that
no part

hyperfunctions. A remarksgble fact which appears’
treatment of Cauchy problems in the framework of
solutions and

functicns is firstly that bicharacteristics play
domain of
own essintial role only

when we decide the existence

secondly that they play their
when we decide the domeins where the unigueness of
About the details we also refer to

solutions holds.

-~awai (jj .
- 18 -



§3. Global existence of real analytic solutions of systems
of linear differential equations with constant coefficients.
The investigations of the problems stated in the
title of this section are still progressing, hence we cannot
give the final theorems but only sketch two methods which
are expec%ed to give the compi%?results and, in fact, have
given results in some special cases. Since wéAwant to
explain the main ideas and do not try to giwve complete
arguements in this section, we assume some additional
conditions concerning the algebraic structure of the systems
under consideration in order to avoid the technical .
difficulties. That is, in Theorem 12 we assume that the
system of compatibility conditions has one generator and
in Theorems 13 and 14 we assume that the systen under
consideration has only one unknown function. We remark
that some trivial cases which can be treated by Jjust the
seme method as developed in 81 may be omitted by these

assumptions: the typical example is a system whose adjoint

operator is an (over-)determined system of linear differential

operators. But we hope the most typical features of the
system of linear differential-operators appear clearly
even if we assume these conditions.

The first approach is the one concerning the existence
of solutions in CL(K) for compact set X in R®. This
‘method is essentially due to Ehrenpreis [1] o [3] ana

is a direct extension of the proof of Theorem 5. That is,

it uses the pairing of (Cl(K),&aK) and Serre’s duality theorem, -

Then it is easy to reduce the existence theorem to the

- 19 -
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problem of support of solutions and we obtain the following:

Theorem 12. Denote by MO the system of linear differen-

tial operators with constant coefficients and by Ml the system
which gives its compatibility conditions. Assume that tMl, the
adjoint operator of Ml, has only one unknown function. Let K
be a comact set in R™ satisfying the following conditions (14)
and (15). Then Ext (1, (L(X))=0 holds.
(14) There exists a real valued real analytic function

(j’(x) which is defined in a neighbourhood of ChK, the

convex hull of K, and satisfies
(a)  {=x|gEg1f K, |x] § (g 2§ =onk,

and

(b) gradXSO (x)#£0 in ChK-X.

(15) The system tl‘«?l is hyperbolic with respect to
grad So(x)\xzxo for any x, satisfying Cf(xo)=t
with 1< t< 2.

The proof of this theorem is cbtained by the method
of pie-nibbling due to Ehrenpreis [1] , [3] . By the way
ol the proof condition (b) can be weakened but we will

not discuss it any more in this lecture.

The second approach is concerning the existence of
reel znalytic sclutions on an cpen seb Q and it can be
summarized schematically as follows: if we can solve the

system of linear differential eguations in the space of
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hyperfunctions (or that of distributions or that of ™
functions ete.), then using the flabbiness of sheaf &3 and
that of sheaf C; we can solve the system.in the space of
real enalytic functions assuming some additional "convexity”
conditions on the boundary of (2 . We hope that the
solvability in the space of hyperfunctions will be obtained
under the least restrictive conditions on the "convexity"
of.fz and that this method will give us the complete .
result, though we have not arrived there,"Note that,

fdr example, we need no "local convexity" conditions to
solve the system of lineatr differential equations with
constant coefficients if the space dimension n is equal to 2.

By this method we have the following theorems:

Theorem 13. Consider en overdetermined systenm Mo with

one . unknown function. ‘Letgz be a relatively compact

convex open set in R". Then we have Extl(MO, CL(§2))=O, if

we can find a polynomial P_ whose homogeneous part satisfies

o}
conditions (1) and (2) in §1 in the generators of the

ideal in the polynomial ring A=C [E"l’ --—-,E n}corresponding
to the system Mo under consideration, i.e., assume thatl,
representing M, as A<7 , Where ;{ is an ideal in A, we

can find polynomials Po, —-—— Pk so that the ideal
generated by them coincides with g and that PO satisfies
conditions (1) and (2).

Theorem 14. TFor any overdetermined system Mo of

- 1 -
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linear diferential operators with constant coefficients
and one unknown function, we can find a nowhere dense subset

5 ef g™

, the (n-l)~dimensional co-sphere, such that the
following nolds: If a relatively compact open set {2 in R™

has the form (\l {A' (x, §3> < CJ" E,jé Sn-l_s’ °j> O%
=

(%]

for some positive integer N , then ExtlfMo, CL(EZ))=O holds.

The proof of these theorems is given by the method
analogous to that employed in +the prodf of Theorem 4, if we
take into account of Komatsu’s result that Extl(Mo, £ (2))=0
holds for any Moyand for any convex open set fz in R™.

(Cf. Komatsu (1], (2] ). of course these forms of |
presentation§ of the theorems are very unsatisfactory from
the aethetical viewpoint. In fact we have some recipes for
generalizing these results using the notion of the
bicharacteristics concerning the overdetermined systems,
but we cannot make them applicable at present since we
have almost no results concerning the global existence of
hyperfunction solutions except for Komatsu’s one or those
which can be easily deduced from it only by the algebraic
arguemens. Hence the present speaker wishes to return to
these problems at the-occaéion of the next symposium,
which will be held in rnext iarch. Please sive him Time

enough until then.
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