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0. Abstract

The space which is composed of the parameters of a
distribution, the‘ﬁarameter space, may be considered as a
Riemannian space by introducing an appropriate metric under
some conditions. Invariant quantities.in a geometry'haye'
very impoftant meanings in its application to various fields
of science. It is shown that a neceséary and sufficient
condition for existencg of covariance stabilizing trans-
formation is that the Riemann-Christoffel curvature tensor
calculated from the metric is zero. Some population spaces
with constant Gaussian curvatures which are immersed in
higher dimensional Euclidean spaces and the concept of
distance in population spaces are discussed with examples.
Finally the relations between this geometry and Fisher's
information matrix or the other definitions of distance or

divergence between two distributions are mentioned.
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1. Introduction

In this paper we consider a parameter space as a
Riemannian space by introducing a fundamental tensor of the
metric and discuss the statistical meanings of various
invariant quantities in the RiemanniAan space. - The inverse
of a covariance matrix of a real-valued random vector whose
asymptotic distribution is a Normal distribution is used as
a fundamental tensor of the metric in section 2.

In section 3, thg Riemann-Christoffel curvature tensor
which is a typical'invéfiant quantity in a Riemannian space
is interpreted. It is shown that the condition for existence
of a covariance stabilizing transformation is that all
components of the Riemann—Christoffel curvature tensor are
zeros, and that a condifion given by Holland (1971) in two
dimensional case is equivalent to our condition.

In section 4, by calculating Gaussian curvatures of
some parameter spaces, it 1s shown that parameter spaces of
a multinomial distribution and one dimensional normal dis-
tribution have positive and negative constant Gaussian
curvatures respectively. Since a Riemannian space with a
constant curvature may be interpreted as a fundamental
hyperquadric of a higher (by one) dimensional Euclidean
space, the coordinates of the FEuclidean space in which the
Riemannian space is immersed are given.

In section 5, it is shown that a statistic with asymp-
totically constant variance is formed by a transformation

associated with geodesics in the parameter space. Such
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transformations are given with respect to the same examples
as in section 4. Finally in section 6, the relation between
this geometry and Fisher's information matrix is discussed.

Details of tiresome calculations will be given in fhe
appendices.

The idea that a parameter space may be regarded as a
Riemannian space by introducing an appropriate metric has
been proposed by Rao (1945) and Yoshizawa (1962) using
Fisher's information matrix. Rao gave a solution for geo-
desics in the case of a parameter space composed of the
parent mean and standard deviation of a normal distribution
in more complicated form than ours and tried to use it for
testing in large samples without noticing its asymptotically
constant variance. Yoshizawa, at the suggestion of Professor
Moriguti, gave some examples of spaces with constant Gaussian
curvatures and discussed their statistical meanings.

Recently Holland (1971) considéred an asymptotic concept
of a covariance stabilizing transformation and'gavé a nec-
essary and sufficient condition for its existence. The
author studied this problem again receiving impetus from

Holland's paper.
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2. Introduction of a fundamental tensor of the metric

Let X and 6 be a real valued p-dimensional random
vector with coordinates xi and a p~dimensional parameter with
coordinates ei, respectively. This vector parameter, 0,
varies over D, an open, simply connected region of RP.
Finally, assume that /ﬁ(xn—e) has an asymptotic multivariate
Normal distribution with zero mean vector and a non-singular

covariance matrix, i.e.

(1) ' £[/r_1(xn_é)] > N(0,2(8))

where I(6) is positive definite for all 8§ € D.
Let 8' be a new p-dimensional coordinate system trans-
formed one to one by

(2) : g' = f(8).

It is easily seen that /ﬁ(f(xn)-f(e)) has an asymptotic
multivariate Normal distribution with zero mean vector and

a non-singular covariance matrix, i.e.

(3) £/E{f(xn)—f(e)] + N(0,z'(8))
where , _

' _ 08" 26"
() r'(g) = <5§—-)z(e)(é~6—)

1]
and (%%—) means the Jacobian matrix of the transformation (2)

under conditions that all partial derivatives ae'l/aek exist
and that the Jacobian is not zero (see Holland [19711).
Let g*J and g'®J denote the elements of £(§) and I'(9)

respectively. We may rewrite (4) as
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grid o gkt 36't 3917

56K 307

(5)

where Einstein summation convention®* is used. We sghall use
this convention hereafter. From (5) it is seen that gtd is
a contravariant tensor of the second order.

Let g3 be components of the inverse matrix I(8), i.e.

ij S §

(6) g 813 ék
where 5;'3 are Kronecker deltas. Since it is seen from (5)
and (6) that the law of transformation of 853 to g'ij is

k L
96 98
7) !.= ————. ————
( gl] gkl 3911 3913

gij is a covariant tensor. It is also positive definite.

Therefore we may take fOPmally as the basis of the metric
of a parameter space, a space of parameter 6, a real funda-
mental quadratic form

(8) ¢ = gijdeldeJ

The tensor gij is called the fundamental tensor of the metric.

If element of length ds is defined by

2 _ 1.3
ds® = g;.do"de

noticing that g:3 is positive definite, from (7) it is seen
that ds? is invariant under the transformation (2). This
definition of ds may_be acceptable as an extension of the

concept of concentration matrix by Dempster [1969]. When 6

ofs

* When the same letter appears in any terms as a subscript

and superscript, it is understood that this letter is summed

up for all the values, say p, which this letter takes. k and

2 in (5) are the examples of such letters, called dummy indecies.
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is a mean vector of a multivariate Normal distribution with
constant I this distance is no mure than Mahalanobis'
generalized distance (Mahalanobis [19361]).

Invariant quantities in a geometry have very important
meanings in its application. In the follecwing chapters we

will discuss statistical meanings of several geometrical

concepts in parameter space as a Riemannian space.

3. Riemann-Christoffel curvature tensor and covariance

stabilizing transformation

Holland [1971] defined a covariance stabilizing trans-

formation f as a set of functions (2) which satisfies

= § N

gij'ae'k 50'% _ x
set  3pd L

(10)

We may rewrite this condition as

20" 367

(1) g.. & — 22 _ =
1] 51K 51

= &

from (86).

A space which has Gt as the fundamental tensor of the
metric is called a Euclidean space. Therefore the condition
(10) or (11) for existence of a covariance stabilizing trans-
formation may be replacea by the condition that a Riemannian
space be Euclidean. Since it is well known that the latter
condition is that the Riemann-Christoffel curvature tensor

vanishes(e.g. see Veblen [1933], pp 69-71), we obtain the

following theorem.
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Theorem 1: The necessary and sufficient condition that
a covariance stabilizing transformation exists is that all
components of the Riemann-Christoffel curvature tensor are
equal to zero, i.e.
(12) | Rhijk = 0,
where

_ 9 rs 3 ras vqurd 2 .

0gs:, 08sy 0L
(14) [i3,k] = p(—3keJk_L,
509 36T 38

(15) | (£33 = ' 13,1,

[ij,k] and {ij} are called Christoffel 3-index symbols of
the first and second kinds, respectively.
From the definition (6) we find that the componépts of

Riemann-Christoffel curvature tensor satisfy the following

identities:
Rpijk ® “Rinjie

(16) Ryisk = “Rnikse
Rpisk & Rsxnio

and

(17) 0.

Rpijk * Bnyki ¥ Rpgis
The number of independent components of Riemann-Christoffel
curvature tensor is at most pz(pz-l)/l2 due to the identities

(16) and (17). 1In the two dimensional case

Ri212  Rpyo1 ® “Rygpy = -Royqy
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and the other components are zero. Therefore we may write

the condition (12) in two dimensional case as

(18) : R1212 = 0.

The equivalence between (18) and the condition obtained

by Holland [1971] will be shown in Appendix A.

4. Gaussian curvature and space with a constant curvature

Baussian curvature defined as

Rhijk
€hi8ik " 8nkBi]

(19) K =

has an important role in Riémannian geométry.' In particuiar
a p-dimensional Riemannian space with constant Gaussian
curvature can be immersed in ptl dimensional Euclidean spacé
and can be interpreted as a fundamental hyperquadric of the
Euclidean space. The hyperquadric is defined by

p+l

(20) I e, (z)7? = % ,
a=1

where ca's are plus or minus one according to the character
. - a .
of the fundamental form and z 's are a set of solutions of -

the equations

2 o o
3 2 _ 9z {h } o

(21) s -2} = -Kg.:z", (a=1l,...,p+1)
0307  ae" 1]

(See Eisenhart [1926]). The left-hand of the above equation

(21) is called covariant differentiation with respect to a

tensor gij and denote:d by za,ij
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Example 1: A parameter space of means of a p-dimensional
Normal distribution with constant covariance matrix I.

The fundamental tensor of the metric is the inversé of
. It is obvious that this space is Euclidean since the
fundamental tensor is constant and it may be diagonalized
by simple transformation. Of course, K is zero in this

case.

Example 2: The trinomial distribution
Let nTn have a trinomial distribution. The parameter

space, D, is given by:

1

D = {(62): 0150 and 8t+p2<1}.

Standard theory implies that

£[/E(Tn-e)] + N(0,5(8))

where
oL(1-0T) —o1p?
() = ”

—elp 02¢1-02)

Therefore, the fundamental tensor of the space is given as

follows:
1-2 1
_ -1 | et(1-0t-6?) 1-91-92
(g..) = 5(o) =
lJ l
1 1-8
1-61-92 62(1-61-92)
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Holland [1971] showed that there exists no covariance

stabilizing transformation in this case and Yoshizawa [1962]

obtained the Gaussian curvature as

K =

=i

This space has a positive constant Gaussian curvature
and may be regarded as a sphere in a three dimensional
Euclidean space. The coordinates of the Euclidean space are

obtained as a set of solutions as follows:

(22) zl = 2JGT1 22 = 2V6§: 23 = 2%63:

where 83 = 1—81—62 (See Appendix B). From (20) the equation

of the sphere is

2

L2 4 252 4+ (232 -y,

2

(23) D

that 1is,

This fact gives a convenient interpretation of the parameter
space of a trinomial distribution.

The results-obtained here can be extended to the
parameter space of the multinomial distribution (See

Appendix B).

Example 3: The Normal distribution N(u,Oz)

2

Let 61 and 8° be the mean p and variance 02 respectively.

The fundamental tensor of the metric is given as follows:

1 1
=5 g =g =0, g = —F
52 12 21 22 2 (522

€11 ~

-10-
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The only one independent components of the Riemann-

Christoffel curvature R1212 is
1
R = - 53
1212 u(62),3
and Gaussian curvature is
_ R1212 1
X = = -5 .

£1182278172891

Therefore no covariance stabilizing transformation exists.
Since this space has a negative constant Gaussian curvature it
may be regarded as a hyperbolic surface in a three dimensional

Euclidean space. The coordinates of the Euclidean space are

given as
1
2t = 8 - £,
Y
1,2 /.2 2
(2'4) 22 - (e ) ~2 + 8 - H -2 + .

g
o5 le2 VI 2/20 V2
3 b2 Je? | 240

s)
) /62 V2 2V 20 V2

’

solving the equations (21) and comparing the fundamental

forms of the Euclidean space and of the Riemannian space.
The equation of the hyperbolic surface is given by

1,2

(25) (zH? + (25?2 - (252 = oo,

..11_‘-
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5. Distance and geodesics

The distance between two points in a parameter space
has a meaning as a kind of measure for the difference or
divergence between two distributions. The distance may be
naturally defined as the arc of geodesic curve between two
points due to the theory of Riemannian geometry.  The
elements of length ds is defined by (9) and the arc of
geodesic curve is given by the solution of the following
equations: |

a%et aed aeX

: L -
(26) 3 5 + {jk} as—-d—g— = 0.
s

These ‘equations are Euler's equations of the integral
. ‘ .

R [/ aet aed |
8 -F g5 ¢ at 9t

t
: 1 o :
where t*is a parameter which defines real curve. Along the

geodesic we have

(27) g, S S0 =1,

If we put new coordinates associated with the geodesic

passing through the particular point 6, such that

gri o [ a8t

(28) gg—- o S

the arc of the geodesic may be expressed as

2 _ i,43
(29) S = (gij)o g'-oe'

-12-
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Notice that this form may be interpreted as an extension of
Mahalanobis' generalized distance. Moreover if we transform

8'* to 8"1 such that 6"1 will express the arc of the

geodesic, the fundamental form of 6"' is reduced to
(30) ¢ = (a2 4 ggsde"“de"B (2,822,...,p)

(See Eisenhart [1926], P. 57). From the form (30) it is
seen that if we use the transformation gl we may get a
transformation of random variables which obeys asymptotical

Normal distribution with unit variance. Therefore
2
ns (xn.eo)

will obey Chi-square distribution of one degree of freedom

asymptotically. Then we have
Theorem 2: Under. the assﬁmpfion (l) substifuting 90 in ©

(3L nsz(xn:eO)

asymptotically obeys Chi-square distribution of one degree
of freedom, where s(ezeo)lis the geodesic given as the
solution (26) using the inverse of the asymptotic variance
of v/n X as a fundamental tensor.

It is known that the equation (27) may reduce to

(32) - dz 0

-13-
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with respect to the coordinates z® of the Euclidean space
in which a Riemannian space with a constant Gaussian curvature
iz immersed. There are two cases to be considered according

to the sign of K..

1°. K>0. In this case we have
o _ay2 _ % . 2 /Ks
(33) an(z —zo) = g sin® ——,
a
where zg is the value of z% at a point 6, From (20) we may
rewrite (33) as
(3u4) kic z%z% = cos/K s.
a o
2°. K<0. Similarly we have
o_,0y2 _ _ 4 . 2 /-Ks
(35) an(z -zo) = 7 sinh 5 >
a
(36) chazazg = coshy/=Ks
a

Example 4: The trinomial distribution of the example 2.

From the example 2, the arc of geodesic is given by:

(37) s = 2 cos ( \/elei " \/8292 +\/e3ec3) > ,

substituting (22) and K = 1/4 in 34. 1In the case of multi-

nomial distribution we have

(38) s = 2 cos_lz 6%

a

eOL
e]

The half of s has been introduced as a measure of

divergence by Bhattacharyya [1942].

-14-



From theorem 2 it is seen that the asymptotic variance

of

(39) 2cos°lZJ§a6a

6]

~

is 1, where 8% is the usual maximum likelihood estimator of 8%.

Example 5: The Normal distribution of the example 3

Since the Gaussian curvature K is negative constant
-1/2, substituting (24) in (33), we obtain the arc of geodesic

as follows:
2 2,2
(u=n ) +2(o+07)
(40) s = V2 cosh™t o °_ .

4000

The statistic associated with the geodesic is
- 2 2, 2
(x-uo) +2(Sn+00)

ujgz-do

and by the theorem 2 it has asymptotic unit variance, where

' = 2 2 -1
(41) /Hs(xn,sn: po,oo) = ¥/2n cosh

= 2 . .
X, and Sn are the sample mean and variance respectively.

6. Fisher's information

Fisher's information matrix in several parameters are

b

defined by:

(42) 3 - g (BlogtL 310g‘L>
apt 367

where L is the likelihood function of pafameters gt
(Fisher [1921]). Tt is easily shown that I'J is a covariant

tensor under transformations of parameters. Rao [1945] and

-15-
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Yoshizawa [1962] used Iij as the fundamental tensor of a
parameter space. The inverse of the matrix.Iij gives the
lower bound of the variance of the estimators 6 under some
regularity condition by Rao-Cramer inequality. The funda-
mental tensors of the metric in the examples here are
quite the same as Fisher's information matrix and they are
rather easily calculated directly from (42) or from the
following formula equivalent to (42) in the case that

maximum likelihood estimators are used:

. 2
1) - _g d"log L
P ERELE,

Anyway this geometry of parameter spaces is concerned with

asymptotic variance and the limit of this method should be
considered in this point.

Finally notice that the various definitions of distance
or divergence between two distributions, e.g. Kullback's
divergence [1959] and Matusita's [1955], are often locally

equivalent to Fisher's information.

-16-
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Appendix A: A proof of the equivaler '~ between Holland's

theorem and the theorem 1 in this paper.

Holland's condition for existence of a covariance

stabilizing transformation in two dimensional case is

3672 36 L 30 36
r oa 2a da oa
.9 [ 1 N ( 11 12) ‘v a ( 21 _ 22) }
gl Let(AY 712\ .2 Sol 22\ 2 2oL ,

where A is any matrix (2x2) that satisfies

(A1) O D B s S B A N (aa2l Y
So7 LdeT@y 11 1 21\ T2 )

(A-2) A'A = 5(8) 1

Our condition (12) is reduced to

R
(A=3) K = 1212 =0

in two dimensional case and Gaussian curvature K may be

written as follows:

g g g
(A-y) K = L 9 ( 12 11 1 22)

2/ Lagl VE 882 /5 oapt

g11

. 8 ( 2 %815 1 9817 By 8gll)‘J
7 - ’

362 \vg a8t JE 96° Vg 9871

811

(See Eisenhart (1940), p. 154 Ex. 10) We will prove that

(A-4) is equivalent to (A-3) using the form (A-4).

-18-
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We may assume that A(8) is an upper triangular matrix

without loosing generality.

Then the components of A are

expressed as follows:

(A-5)

411 T Y811 >
€19
a = a = 0
12 > 49y J
"811

/ 7
a = g _.g_].'_z_: ._g...
22 gy; Je&1a

22

Partially differentiating the both sides of (A-5), we obtain

9a;;  q 98y
55 - 55 >
27811
81, 1 38y, 1 8y 983
(A-s) ae - Be - 7 36 s
Y811 £117811
%32 _ 1/811 (3g22 _ 2812 3815 (81242 3813
00 2l g a0 817 99 g11 36 >

where 6 may take

either 6% or 82. Substituting (A-5) and

(A-6) in (A-1), and using det(A) = /g we rewrite (A-1) as

-19-



5 [_; e | 2 811 1 %81p  Bip 38y
2 1117 7 T il
39 /g L/EEZ 38 /EII ;) 2gll/§II 30

o0 [_;. 812 1 %831 1 %8, 1 81y 281
T 2 T '3 I
307 “/g | /g 1 | 2/E1 20 ve1y 98 811v811 9°

_ /g1 [Bi1 (2822 _ 221 %815 [B1p) % 2814
€11 24 & g0t 811 3ot g11 a0t ]

After simple algebra we get

0 [ﬁl 8812 %811 817 9813 }
30 Lyg \ael 2082 2811 391

2 1

_ 9 [ 1 [ 812 %811 38y ]
3ot Lovg | 811 96 30

It is easily seen that the above equation is equal to K=0.

-20-
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Appendix B: The multinomial dis*ribution

Let the likelihobd of a multinomial distribution be

' p*+l x.
(B-1) L= 7 160
PH x.! =1
i=1 *

where 6's are p+l parameters and x's are random variables.
Notice that we use subscripts for parameters in order not
to confuse superscripts and squares, etc. The first p
parameters are used for the coordinates of the population
space since

(B—Z) 26- = 1

1°. Fundamental tensor of the metric.
By calculating Fisher's information matrix, the funda-

mental tensor of the metric is given as below:

0110541 1 1 ... 1°
®1%p41 Op+1 Op+1 Op+1
1 01%9,41 1 ... 1
(B-3) (gg4) = b1 920041 541 Op+1
1 1 S |
5 L 5.0
p+]_ P+]_ . P p+1

The covariance matrix of the usual estimators xi/n, i.e.,

the inverse of (gij) is

-21-



f@l(l—dl) ~1162 -elep
—8182 62(l~62) -ezep
(B-4) (g™
-0 6 -6 0 . e 6 (1-6_)
pl p 2 P )

2¢, Christoffel's 3 index symbols.

From (B-3) Partial derivatives of g

.. are
1]
-
1 1 ..
vy SRR R
p+l ei
Sg'i.
(B-5) rd = ¢
o6
k 1 .
5 s otherwise,
ep+l
L

From the definition (14) and (15) Christoffel's 3 index

symbols of the first kind are

-
1 1 1 -
ARy ey S ERE S bl
6% 8
i ptl
(B-6) [ij,k] = j
% 21 s otherwise,
6
ptl

and Christoffel's 3 index symbols of the second kind are

-22-
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T i#]3,
8P+l
(8-7)  {}.} el 1y iy s
- .. A \™F ° ~Jdo 2
ij ﬁ 2 6]?_ 6P+l
6.  1-8
1 .
s 1=3=2
| T, T

3°. Riemann-Christoffel curvature tensor

In two dimensional case, i.e. in the case of the
trinomial distribution, Riemann-Christoffel curvature tensor

&
is from (13)

' _ 3 ) 2 [}
(B-8) Rypqp = 531[22,1]-555[21,1]+{21}[12,2]—{22}[11,21
) _%. 1, %11, %2 2
- - 73 " 78 2 26, 26
e 0., 3 203 3
) ) 1-8
1, 1 1, 1 1 1 2 2. 1
- —5(z= + =) (- + =) = ( )
2 92 8," 2 g7 e2 20, 292 292
1 3 3
= l ‘
46,08,6,
Therefore
R
- 1212 _ 1
(B-9) K= =225 = ¢

In p dimensional case it is seen from the identities
(16) that Rhijk is equal to zero if h = i or j = k. Under

the condition h # i and j # k, noticing that

3 s D s )
‘a“é';]'[lk,h] - s'é—k-[lj,h] =0

-23-



R 's are calculated as follows:

nijk
[ o n=j, ik
R = ..._.._._l__._
hlh}_< H6p+16h
° h#j, izk
(B-10) ' 1
Rh... = R'hi' = Ty —"
. 13+ 1hi]. ptli
© h=j, i=k
1 1 1 1 1 1
: R, ... = ={(5z= + Y (= + ) - }
hihi L-ro. S 6 S 2
L i “ptl "h ptl ep+l

Therefore it is easily seen that Gaussian curvature

. R

(B-11) K = ik = % .
€ni8ik~8hkBi ]
4°. Coordinates of a Euclidean space in which the

population space of multinomial distribution is immerséd,
Let z% denote the coordinates of the Euclidean space.
- z%'s are given as a set of solutions of (21), i.e.

2_a P o
9" 2 9z ¢h 1 o'
L em—{i.} = = T 8542

;985 p=1%% 1 ]

It is easily seen that a set of solutions is given as

z% = cvea s 0=1,...,p+l.

-24-
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Appendix C: The normal distribution N(u,02)

Let 61 and 62 be u and o2 respectively. We shall use
91 and 92 for 6% and 6% because of practical convenience in

algebra.

1°. Fundamental tensor of the metric
Standard theory implies that
8 0
(c-1) £(8) = = (gt
0 205
Therefore the fundamental tensor of the metric is

1 1
(€-2) 811 7§, 812 T 81 ° 0, 8, = pyv Al
2

2°. Christoffel's 3 index symbols.

Since partial derivatives by 6, .and 62 are zeros éxcept

that
og og
11 . 1 22 _ 1
(C-3) };-8-2—— s - —67', and 362 = ’e—§ 9
2 2

from (14) and (15) Christoffel's 3 index symbols of the first
and second kinds are as follows:

First kind:

[11,1] = o,
[11.2] = —57,

26,

_ !
(Ct) [12,1] = [21,1] = - %,

[12,2] = [21,2] = o0,
[21,1] = 0,
[22,2] = :lg,

292



Second kind:

{71} = 0,

(1) = 1,

1 1 1

(20} = (30 = = o,
(C=5) 21 21 292

2y = (2 =0,

{3, = 0,

2 1

2= -Li

22 62

3°, Riemann-Christoffel curvature tensor

Substituting (C-4) and (C-5) in (13), we obtain

= =2 122,11- =2021,1]

R 9
1212 © 38y 36,

+{%l-}[ZLQ,l]+{gl}[12,2]-{%2}[11,1]__{3’2}[11’2]

= -3 G - o
62 2 282 2 282
_ 1
==
482

Ther~fore no covariance stabiiizing transformation exists.

Gaussian curvature becomes

-26-
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4°. Coordinates of a Euclidean space in which the

population space is immersed.

Let z* denote the coordinates of the Euclidean space.

From (21) z® must satisfy the following equations:

8 2
‘ 3z% Bza z
3
36% 332 262
< 522% 1 8z | .
b}
361362 262 391
822“+ 1 3z% _ &
2 6, 9 N 2 °
392 2 2 492

From the third equation it is seen that z® must be of the

form
f(el) (6.3 /5
+ g(8 8

where f and g are some functions of only 6 Substituting

1.
it in the first and second equations, it is seen that f(el)

and g(el) must satisfy

o

Hh

[aN
0Q

|

N a—e——O.

Q,

D
N

=)

Therefore z% must be of the form

2
aa61+ba61+d

By

)
+ 2au/§2.
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Since the fundamental form of the Euclidean space is of

the form

1.2 2.2 3,2
cl(dz )¢+ cz(dz Yo+ cg(dz )

¢, and ¢, are plus or minus one, comparing it with

1 "2 3
the fundamental form of the Riemannian space

where c¢

1 2 1 2
5—(d61) t = (d62)

2 262
we obtain that cl=c2=-c3=l and that
1 9
Z :"'""—,
"9,
02-2 /oo
z2 _ 1 + 2
o= 9
226, V2
02+2 /BT
z3 - 1 + 2
2/7/62 V2

It is easily seen that the coordinates satisfy (20), i.e.

(21242922252 = L - o,

P L

5°. Transformation by geodesic
It is seen from (24) that the arc of geodesic from
2 .

(anao) to‘(u,cz) is

(u-u ) +2(o2+g )

40‘00

s = /7 cosh™t

-28-
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By the law of transformation (5), if we use s as a

transformation it follows that

2
g1t = o7 (352 4 o5t ( 9s )

Since partial derivatives s by u and o are

ds _ 1 2(“-uo)
38 - 7 : ,
ou sinh®— LHmo

V7
5 1 402-[(u—u )2+2(02+02)]
_E = /7 (e} (o] ,
90 ‘sinhS- ucoaz '

V2

it is seen that
g’ll = 1.

This fact shows that theorem 2 is certainly valid in this

case.,
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