Deformations of Cones

By M. Artin (M.I.T)

1. Deformations of isolated singularities.

Let X be an affine scheme of finite type over a field k, A a ring with an augumentation $A \to k$. By a deformation X_A of X over A, we mean a product diagram

$$X_A \leftarrow X$$

$$\downarrow \qquad \qquad X \simeq X_A \otimes_A k,$$
Spec $A \leftarrow$ Spec k

where X_A is <u>flat</u> over Spec A. If X_A^{\bullet} is another deformation of X over A, then X_A and X_A^{\bullet} are <u>isomorphic</u> if there exists an isomorphism $f: X_A \longrightarrow X_A^{\bullet}$ over A which induces the identity over Spec k.

Throughout this lecture, we assume the following:

- i) X has only isolated singularities.
- ii) A is an artinian local k-algebra with residue field k (e.g., $A = k[t]/t^n$ etc.).

We write X = Spec B with B = $k[x]/(f_1,...,f_q)$ where x = $(x_1,...,x_N)$ is a set of variables and $f_i \in k[x]$. For simplicity of notation, we set P = k[x] and

 $F = (f_1, ..., f_q) P$. For some integer p, we have a resolution

$$(1) P^{p} \xrightarrow{R} P^{q} \xrightarrow{f} P \longrightarrow B \longrightarrow 0$$

of B.

We note that any deformation X_A of X over A is an affine scheme ([EGA I.5.1.9]). So we can write X_A = Spec B_A with an A-algebra B_A such that $B_A \otimes_A k = B$. Moreover, X_A can be embedded in A_A^N = Spec P_A where P_A = A[x]. By an embedded deformation of X (with respect to A_A^N = Spec P) over A, we mean a closed subscheme X_A of A_A^N flat over Spec A which induces the subscheme X of A_A^N .

Proposition 1. The resolution (1) lifts to a resolution

(2)
$$P_A^p \xrightarrow{R_A} P_A^q \xrightarrow{f_A} P_A \longrightarrow B_A \longrightarrow 0.$$

In fact, the assertion is equivalent to the flatness of $\mathbf{X}_{\mathbf{A}}$ over Spec A

We consider the following three deformation functors:

Defs(X): A \longrightarrow the set of isomorphic classes of deformations of X over A.

Emb.Defs(X) : A \longrightarrow the set of embedded deformations of X over A.

Defs of Res : A \longrightarrow the set of isomorphic classes of liftings (2) of (1).

Then we have three natural morphisms of functors:

Corollary. These morphisms are smooth (see [F], Definition 2.2).

2. The tangent space of Defs(X).

Let $A = k[t]/t^2$ where t is a variable. The set of isomorphic classes of deformations of X over A is called the <u>tangent space</u> of the functor Defs(X). A deformation X_A of X over A is defined by $f_{A,i} \in P_A$ $(1 \le i \le q)$. We write

$$f_{A,i} = f_i + g_i t$$
 with $g_i \epsilon P$.

The flatness of X_A over Spec A is equivalent to the existence of an A-valued p×q-matrix R_A such that $R_A \equiv R \mod (t)$ and $f_A R_A = 0$, where f_A denote the vector $(f_{A,1},\ldots,f_{A,q})$. If we write $R_A = R + St$ with a k-valued p×q-matrix S, then the above condition is equivalent to gR + fS = 0. Hence, we have

 $f_A = f + gt$ defines a deformation of X.

 \Leftrightarrow gR = 0 mod F.

 \Leftrightarrow g defines a P-homomorphism $P^{q}/RP^{p} = F \longrightarrow B.$

 \iff g defines a B-homomorphism $F/F^2 \longrightarrow B$.

We define the normal sheaf by

$$N_B = N_X = Hom_B(F/F^2, B)$$
.

Then the tangent space of Emb. Defs(X) is isomorphic to $N_{\mathrm{B}}.$

Next we shall kill the effect of automorphisms of \mathbb{A}_A^N . Let h be an automorphism of \mathbb{A}_A^N over A which induces the identity on \mathbb{A}_k^N . Then h corresponds to $h: P_A \to P_A$ given by $h(x_i) = x_i + y_i t$ with $y_i \in P$. Hence $h^{-1}(X_A)$ is defined by $f + g't = f_A(x+yt)$. If we let J denote \mathfrak{f}_A

the matrix $(\frac{\partial f_i}{\partial x_j})$, then we have $g' = g + y^t J$.

$$0 \longrightarrow \Theta_{X} \xrightarrow{J} \Theta_{AL \mid X} \longrightarrow N_{X}:$$

We set $T_X^1 = \operatorname{Coker} (\Theta_{A \mid X} \longrightarrow N_X)$. Then the tangent space of Defs(X) is isomorphic to T_X^1 . We note that the support of T_X^1 is concentrated at the singular locus of X.

For example, assume that X is normal and that dim X \ge 2. We set U = X - (singular locus). Since $T_X^1 = 0$ on U, we have an exact sequence

(*)
$$H^{0}(U, \Theta_{X}) \longrightarrow H^{0}(U, \Theta_{A}|U) \longrightarrow H^{0}(U, N_{X})$$

$$\longrightarrow H^{1}(U, \Theta_{X}).$$

Since depth $O_{X,x} \ge 2$ for any $x \in X$, the restriction maps $H^0(X, \Theta_X) \longrightarrow H^0(U, \Theta_U)$ and $H^0(X, \Theta_{A \mid X}) \longrightarrow H^0(U, \Theta_{A \mid U})$ are bijective. Hence we can identify T_X^1 with a subspace of Coker $(H^0(U, \Theta_{A \mid U}) \longrightarrow H^0(U, N_X))$.

Theorem 1. (Schlessinger) If X is an affine scheme over a field k with only isolated singularities, then there exists a formal versal deformation of X parametrized by a complete local ring R.

For the proof, see [F], Proposition 3.10. A formal versal deformation of X means a <u>hull</u> of the functor Defs(X). By the definition of a hull, if we let m denote the maximal ideal of \hat{R} , we have

 $m/m^2 \simeq tangent space of Defs(X) \simeq T_X^1$.

Problem. Compute Â.

We say that X is <u>unobstructed</u>, if the functor Defs(X) is smooth, or equivalently, if \hat{R} is a formal power series ring.

In the following cases, X is unobstructed.

- (i) X is a complete intersection.
- (ii) (Schaps) X is a Cohen-Macaulay subscheme of codimension 2 in an affine space.
- 3. Deformations of cones.

Let Y be a smooth subscheme in \mathbb{P}^{m} , C the cone

over Y in \mathbb{A}^{m+1} , and $\overline{\mathbb{C}} = \mathbb{C} \cup \mathbb{Y}_{\infty}$ the cone over Y in \mathbb{P}^{m+1} . We ask to relate deformations of C, Y, and $\overline{\mathbb{C}}$. We assume that Y is arithmetically normal (i.e., the systems of hypersurfaces of any degree are complete), or equivalently, C is normal. Let v be the vertex of C and $\overline{\mathbb{C}}$, $\mathbb{U} = \mathbb{C} - \mathbb{V}$, and $\overline{\mathbb{U}} = \overline{\mathbb{C}} - \mathbb{V}$. We set

$$L = \mathbb{P}^{m+1} - v = \text{line bundle } O_{\mathbb{P}^{m+1}}(1),$$
 $V = L - (0-\text{section}).$

Then
$$L = \underline{Spec} S(O(-1)) = \underline{Spec} \begin{pmatrix} 0 \\ \Phi \end{pmatrix} O(n)$$
 and $n=-\infty$

 $V = \frac{\text{Spec}}{\text{n}} \oplus 0$ (n) is the \mathbb{G}_{m} -bundle associated to L.

For any sheaf $\, \, {\rm M} \,$ on $\, {\rm I\!P}^{\, m} \,$, we have

$$H^{q}(L, \pi^{*}M) = \bigoplus_{\substack{n=-\infty \\ n=-\infty}}^{0} H^{q}(\mathbb{P}^{m}, M(n)),$$

$$H^{q}(V, \pi^{*}M) = \bigoplus_{\substack{n=-\infty \\ n=-\infty}}^{\infty} H^{q}(\mathbb{P}^{m}, M(n)),$$

where π denote the natural projections onto \mathbb{P}^{m} .

Letting $\theta_{\text{X/Y}}$ denote the sheaf of derivations of X over Y, we have the standard exact sequence

$$0 \longrightarrow_{\pi^*O_{\text{TP}^m}} \longrightarrow_{\pi^*O(1)^{m+1}} \longrightarrow_{\pi^*O_{\text{TP}^m}} \longrightarrow_{0}$$

$$0 \longrightarrow_{\pi^*O_{\text{TP}^m}} \longrightarrow_{\pi^*O(1)^{m+1}} \longrightarrow_{\pi^*O_{\text{TP}^m}} \longrightarrow_{0}$$

Moreover, letting N_U and N_Y denote the normal sheaves of U and Y in V and ${\rm I\!P}^m$, respectively, we have a commutative diagram

where all vertical and horizontal lines are exact. We note that the sequence (*) is derived from the second vertical line in (**). Thus we get a commutative diagram

This shows that T_C^1 is graded as $\bigoplus_{n=-\infty}^{\infty} T_C^1(n)$.

Let $Hilb(\overline{\mathbb{C}})$ and Hilb(Y) denote the Hilbert functors of $\overline{\mathbb{C}}$ and Y in \mathbb{P}^{m+1} and \mathbb{P}^m , respectively.

Theorem 2. (1) (Pinkham) If $T_C^1(n) = 0$ for n > 0, then the natural morphism

$$Hilb(\overline{C}) \longrightarrow Defs(C)$$

is smooth.

(2) (Schlessinger) If $T_C^1(n) = 0$ for $n \neq 0$, then every deformation of C is a cone, namely the natural morphism

$$Hilb(Y) \longrightarrow Defs(C)$$

is smooth.

Proof. (1) It suffices to prove the following:

- (i) The tangent map is surjective.
- (ii) Let A' \longrightarrow A be a small extension of artinian local k-algebras with residue field k, $C_A \in Defs(C)_A$ (= A-valued point of Defs(C)), $C_A \in Defs(C)_A$, and $\overline{C}_A \in Hilb(\overline{C})_A$ such that C_A , induces C_A over Spec A and \overline{C}_A induces C_A on C. Then we can find $\overline{C}_A \in Hilb(\overline{C})_A$, which induces \overline{C}_A over Spec A (see [F], Definition 2.2).

In order to prove (i), we note that

$$H^{0}(\overline{C}, N_{\overline{C}}) \simeq H^{0}(\overline{U}, N_{\overline{U}}) = \bigoplus_{n=-\infty}^{0} H^{0}(Y, N_{Y}(n)),$$

and that

$$\bigoplus_{n=-\infty}^{\infty} H^{0}(Y, N_{Y}(n)) = H^{0}(U, N_{U}) \longrightarrow T_{C}^{1}$$

is surjective. Hence the hypothesis implies that the tangent map $H^0(\overline{C}, N_{\overline{C}}) \longrightarrow T^1_C$ is surjective.

(ii) In general, the obstruction ξ for extending \overline{C}_A to \overline{C}_A , lies in $H^1(\overline{C}, N_{\overline{C}})$. Since we have depth $O_{C,z} \ge 2$ for any point zeC, we have an injection

$$H^{1}(\overline{C}, N_{\overline{C}}) \longrightarrow H^{1}(\overline{U}, N_{\overline{U}}) = \bigoplus_{n=-\infty}^{0} H^{1}(Y, N_{Y}(n))$$

$$H^{1}(U, N_{U}) = \bigoplus_{n=-\infty}^{\infty} H^{1}(Y, N_{Y}(n)).$$

The existence of $C_{A^{\dagger}}$ implies that the image of ξ in $H^1(U, N_U)$ is zero. This proves the existence of $\overline{C}_{A^{\dagger}}$. The proof of (2) is similar, so we omit it. q.e.d.

Corollary. In the above situation, assume that dim Y \geq 2 and that $O_Y(1)$ is sufficiently ample in the sense that

$$H^{1}(Y, O_{Y}(n)) = 0$$
 for $n \neq 0$,
 $H^{1}(Y, \Theta_{Y}(n)) = 0$ for $n \neq 0$.

Then every deformation of C is a cone.

Finally we study the special case: Y is a rational curve in \mathbb{P}^m of degree m with a generic point $(1, t, t^2, \ldots, t^m)$.

Y is defined by

Theorem 3. If Y is a rational curve in \mathbb{P}^m of degree m, then the natural morphism

 $Hilb(\overline{C}) \longrightarrow Defs(C)$

is smooth.

This follows from $H^1(Y, O_Y(n)) = H^1(Y, O_Y(n)) = 0$ for n > 0.

We refer to the result of Nagata [N]: Let X be a surface in \mathbb{P}^{m+1} of degree m.

- (1) If X is singular, X is a cone over the singular point.
- (2) If X is non-singular, X is a scroll, i.e., a rational ruled surface embedded linearly on fibres, unless m=4 and X is the Veronese embedding of ${\rm I\!P}^2$.

Using this fact, Pinkham proved

Corollary. Let $M = Spf(\hat{R})$ be the parameter space of a versal deformation of C.

- i) For m = 2 or 3, M is smooth.
- ii) For m = 4, M has two components of dimension 3 and 1, which correspond to scrolls and Veronese embeddings of \mathbb{P}^2 , respectively.
- iii) For m > 4, M_{red} is smooth of dimension m 1, but \hat{R} has non-zero nilpotent elements.

(Notes by E. Horikawa)

References

- [EGA] Grothendieck, A., Éléments de géometrie algébrique I. Publ. I.H.E.S., <u>4</u> (1960).
- [LS] Lichtenbaum, S. and Schlessinger, M., The cotangent complex of a morphism. Trans. Amer. Math. Soc., 128 (1967), 41-70.
- [N] Nagata, M., On rational surfaces I. Mem. Coll. Sci. Univ. Kyoto, Ser. A, 32 (1960), 351-370.
- [F] Schlessinger, M., Functors of artin rings. Trans.

 Amer. Math. Soc., 130 (1968) 208-222.