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Cn the Key Assertions
Satoru Takasu (RIMS, Kyoto Univ.)
“1

HTRCDUCTICH: Floyd's original apnroach toward proving
correctness of programs has been devpendent upon the heuristic
sttachment of formulas between the statements of programs.
So far this requirement has been necessary when we attach a
formula to a2 loop so that this kind of attached formulas is

called & key assertion.

In this paper, we try to determine the key assertions. First
we reformulate the problem as to solve an equational system of
Floyd's vnredicates in which the strict verification conditionsE+j
aré considered to Dbe equatidns. To solve such equational
systems, 7€ propose g methgd of substitution in which the logical
equivelence is considered like an equality. Two examples are
given and they showed that our method works well. However,
in general it gives us the solutions expressed by formulas in
infinitary logic and there exists a corelation with Engeler's

L1l ~[3j,t103 . '
resulis. On the other hand, if the function defined by a
loop recursion is represeniable as a first-order formule within
the background methematical theory, then those formulaé in
infinitery logic reduee up to the formulas in first-order logic.
In particuler within the elementary number theory, our method
determing the ey assertions s first-order formules. The above

studies treate meinly the forward ceses so that the key assertions

determined are minimel in & sense. The backward cases will be
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1. Zgustional Systems of Floyd Predicstes
1.1, Flowcharts in & Lethemstical Theory
We assume throughout this peper that & mathematical theory T
and a model M of T are given within the first order predicate
logic.

A flowchart P in T consists of & finit number of function

boxes, decision boxes and arrows connecting these boxes, provided
that

(z) & function box contains an assignment statement v := f
where v is a variable and f is a term defined in T and for each
function box, there may be a finite number of incoming arrows
end only one out-going arrow;

(b) & decision box contains a quantifier-free formula of T
and for a decision box, there may be a finite number of incoming
arrows and only two outgoing arrows to which the truth values
of the formuls with resvect to M are preassigned; and

(c) we also assume that two boxes containing start and halt
respectively are given and the former hes only the outgoing arrow
and the latter has only the incoming arrows.

Furthermore, for e flowchart P we assume that the vector x
of input varisbles which never avppear in the left part of any
essignment ststement, the vector y of orogram variables and the
vector z of outrut variebles are given and the flowchart is
considered to compute a function

z =P(x): D — D
X Z

where the inout domzin Dy end the outvut domein D7 are assuned
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to be defined within the model

1.2. The Verification of & Flowchart P

Associated with the function z = P(x): D,— D, ,two formulas
@ (x) end V¥ (x,z) are assumed to be given where @(x) expresses
the input domain DX and ¥ (x,z) indicates the desired input-
output relation z = P(x) over D xD, when ¢ and Y~ sre interpreted
within the model M.

We define that

(i) P terminates over ® if for every input fé?DX , nemely

yﬁ(f ) is true, the computation of the flowchart terminates;:

(ii) P is partially correct with respect to ® and ¥ if

for every §: such that £ (§ ) is true, if the computation terminates,

then Y (&, P(§)) is true; and

(iii) P is totally correct with respect to ¢ and ¥ if for

every f such that §7(§') is true, the computation terminates and

Y (5, P(Z)) is true.

1.3. TIloyd Predicates

For each box B in & flowchart P, we attach one predicate
pB(X,y) 8t the common end point of its incoming arrows and one
predicate QB(x,y) 8t the initisl voint of its outgoing arrow
when B is 2 function box and two predicates qg(x,y) and qi(x,y)
when B is a decision box. The positions where predicates attached

ere shown in Fig.l.l. These predicates are called the PF-predicates

of the flowchart P.



|

i

oo
i

e -e-,»*“'\'/
B I .
%B IYES
A function box A decision box

&

Fig. 1.1. Attachment of F-predicates

1.4, Forwerd Substitutions

After the attachment of F-predicstes to the flowchart P, we
meke the following identifications:

(1) First we establish the following domein-range relation
for each box in the flowchart:

(12) TFor each function box B conteining an assignment statement
of the form

Vs 3= fB(X,yl',,,,,yn)

i
we set the vredicate qB(x,yj,...,yn) to be the formule
L]

(3 y]'_) pB(X’yl’“”yi""’yn)
N\ Ty = fB(Xaylya'v’y:{a'i‘ayn) .

-

(1v) For each decision box B contzining a formula tB(x,y),

11
[®

. . + - - .
he nredicates qE(x,y) and qB(x,y) are set to be the formules

25(x, 7 A t5(x,7)  end pplx,y)a 7 t5(x,y)

one 2rrow incoming to & tox B

o hA- 4 S e Py A 4 -
o no¥ &, we idenitify o. with =, .
= o o
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(2b) If = bvox T hes more than one incoming arrows from Ajseney

A (k==2), we identify pg with qu\/quv/...\/qu.

(2¢) If B is the start-box of P, then we identify g with ¢ (x).

1.5, Backward Substitutions

Similerly to the forward substitutions, we make the identification:
replacing (lz) and (2¢) by the followings respectively:

(1a') For each function box containing an assignment statement
of the form |

yii= fB(x,yl,...,yn)
we set the predicate pB(x,yl,...,yn) to be the formula
qB(X’yl""’fB(X’yl’°°"yn)’°"’yn)°

(2¢') If B is the halt-box of P, then we identifyjpB(X,y) with

the formula V¥ (x,z).

l.6. Zguational Systems of F-predicates

Let Bl’ B2, cee Bk be the function boxes, Cl’ 02,..., Ch

the decision boxes, BO the start-box of a given flowchart P, and
(91507) 5000y (P50y)5
(Op19 %1 0%2) s w00 0 (PrensSiion 10 Geon)

the P-predicates of Bl""’Bk’CI’°"’Ch respectively. The

forward substitutions can be expressed as the following equational

system of F-predicates:
= P(r)

=I1(03750 090 0(7))
a; =1 (pg)



p..= '*(Q‘{l""’ e (i ))

q, = M (Dk

Pr1 = D (G oo G (e
1 = Mgy (Ppgyy)

ern = M p(0y,q)

Pr4n = Lk+h(qk+h1’""qk+hr(k+h))

where qij is one of Gpseees By the obvious substitutions

k+h*

we hzve the forward egquetional system “FP of F-predicates:
G = N (9)
q2 = NZ(QZW_’ oo ’QZI‘(Q))

® 6 0 06 009 06060 9000 0600000 00 e

Ueron = Meron(Gpon 1900+ Yeeon r(ke2n)’
where Ni are the logicel formules depending on the contents of

boxes and the fiow of control.
Similery we obtein the beckward equational system BBy of

F

-predicates which contzins Y (x,z) instead of ?J(X).

1.7. TUtilization of the Equetional System for the Verification
o nrove the vartisl correctness of o flowchart P with respect
to ¢ end ¥, there need the following two stevs:

(i) Deternine the P-»redicates g es first order

o Gpion
formules sztisfying EFp or EEP;
(ii) Prove the logical imolication

ap(x,7) DV (x,2) (for the case of ZFp)

or
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£ (x) D pilx,y) (for the case of EB

4

p)
where ® is the box direcily connected to the halt-box and S
is the box directly connected from the start-box. These formulas

will be called the implication formula of the system EFP or LBP

respectively.
Our study will concern with. the step (i) since the step (ii)
is known to be done by some proof procedures such as the resolution

principle when a solution of the step (i) was found.
2. Methods of Solutions

2.1, Method of Substitutions

Our equational system EFP (or EBP) concists of the first-order
formulas involving the logical equivalences which are considered
as a kind of equality. Therefore we may substitute the F-predicates
by formulas as far as the latters are connected with the formers
by logical equivalences provable at least in the model M under
consideration. If we can connect each F-predicate +to a formula
without containning unknown F-predicates by this process of
substitution, the latter formula is a golution of our equational
system.

First, using the above process of substitution, we may reduce
the number of F-predicates in the system EFP (or EBP) when we
select the cutpoints on the arcs of the flowchart in such a way
that every loop includes at least one such cut point and compose
the functions of assignment statements between the cut points.

Affer this, there remains to determine the F-predicates

agttached to the loops, namely the key assertions, which are
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minimal or maximal if we use EFP or EBP respectively. To
determine the key assertions, the vrocess of éubstitutions
seems not to work by a first glance., However this will work
well in the following exemples where we introduce a technique
meking explicit the number of visit to the loop during the pasit
computation or the future computation in the case of EFP or EEP
respectively. For the general case, we shall introduce another
method in the next sectibn by which our method of substitutions
is also Jjustified.

In the following examples and in the next section, we shall g
use essentially the folloWing concept known in mathemetical 1ogi§:]

Definitiens: Let-T be 2 mathematical theory and M 2 model of T.
We assume that 2 correspondence between mé M and a term m in T

is given (for example nutural number m and numeral m = O(m)

where O(m) is the result of m fold epplications of successor
function to 0). A function f(xl,...,xn) defined within M is

j&:2) : :
said to be representable in T if there exists a well-formed

formula ‘F(Xl,.a.,xn,x ) with n+l free variables such thet

n+1
for any (ml,...,mn)éan,
(1) if m ;= f(my,eee,m,q) then b T (T eeesy, ), and
(2) 5 (3=, T (xyyeeerx ) -

Example 1. We consider the flowchart of Fig.2.1 which compute

X 4. To this flowchert we attach the predicate ¢ (x)= x>0,
p(x,yl,yz)zg Y1 =1 A Yo = X, W(x,z) = (z =x!) and
Q(x,yl,yz) is considered to be unknown. Now we modify the
flowchart of'Fig.Z.l to the flowcharf of Fig. 2.2 introducing

an suxiliary verigble i. We attach the predicates '?(x), V’(x,z),
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Fig.2.1. A flowchart to compute x!
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Fig.2.2., MNodified flowchart
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P(x,yl,yg,i)'z’ ¥1=1A¥,=xA1=0, and ;(X,y'l,yrz,i) is to ve

determined. Note that the predicates g and & are related by

the formula o

_alxygy)= i\z/l w(X,59,¥5,1)
where i\él denotes the infinite disjunction. Therefore q(x,yl,y2)
is not & first-order formula but a formula in infinitary logic if
the size of eacﬁ;?c;“;r;ila Q(X,yl,y2,i) depends on the variable i.
Now the system EFP of the flowchart of Fig.2.2 becomes:
(1) Q(X,yl,yz,i)EEj 23z, 3z, '
(P(x,27,25,3) VQx,27,25,3))
2 Z,% OA J=1-1A Y= 2, X zsz2=z2—1
and
(2) Q(x,yl,yg,i)/\ Yo=0Az=y, D)ﬂ(x,z).
As 2 background mathematical theory, we assume the elementary
number theory in which z=x! is revresentable by a first-order
formula so that z=x! can be treated as a first-order formula.
To determine Q(x,yl,yz,i), we may rewrite (1) for each numeral

T>0 2s follows:

{0 Ty = 5 (g 0Dy (71D (151D o
A Yél:]e:-)o A (l}: yZ(Li~ 2( yél -1)
A yé“: yﬁl—l)—l
R o SRR e ) EERA Ll &l R
1¢‘(Y,Y£l),3’§12 1= = y(o)— Jgo) P(X,J§O),y2( ), 0)

yéO)ﬂt 0 /\y§1): y§0)x yéo)

A Y§1)= yéO)_ 1



From the background methemsticel theory we have

(1—¢) (1)+1, (i-1) 1)/(J(1)+1) ,

=Y I ‘
él 2)*f2‘»*} 2, y§1'2}; l)/(y(l)+l)(y§i)+§),
yéo) ”yél)fl_, yio)s (1) /(y(l)+l>(y(l)+2). (y(l)+i)
By the definition of the predicate P, we have y(o) and X%=y§0)

s0 that there holds

(1) 1). R

v (y 1y = x!.
Therefore if we make the successive substitutions to the first
formula of (3) using the rest of formulas we have

o0, D= GO 1 = xn Tyl

so that
(o)
a(x,y7,7,) = \/ (75 (g1 )= x! A T= =-y,)
4 9 1’ 2 -— J-—- 1 2 ’ 2
= < 1) — 1
= Jl” (yZ') X.
since 51= X=y, is true for the unigue value if x and yo are given,
Now it is clear that the implication formula of EFP holds.
We consider the following system EBP of the flowchart of Fig.2.1l.
(This time Fig.2.2 is unnecessary.)
p(x7y195’2)/\572 = 02D ¥(x,z)A 2=Yo5
(2,77, 7,)A T3 0 2 alx,y7,55)
Q(X,yl’yz)/\ Yo = 0 E.\{/‘(X,Z)/\ 7 = y2
(X, T TN ToF 0 = alx,577 x 75,7,-1).
To determine q(x,yl,yz), we utilize the orocess of substitution
as follows:
<K’J173’2)m C'(nylyyz)/\ YQ“O Voa(x,y 17y2)/\ yZ#‘ 0
=Wy A 7o=0V a(x,5(y1,57,),8(y,)) A y,% 0

[t

© % 00200 0 0600000060060 000506060900 e
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= i\;ZIC)%\P-(}:,f(*)(Jj 7372>7€ (l)(:brg))/\ f’"(i)(Yv'))—— 9

VoG ), g(k+l)(y2))/\5ib £ 0% 0
ceea(4)

-------

where f(l) znd g(l) are derined by setting
1

F(y,¥.)=vy x 750 &lyy)=7,-

and
f(O)(yl’y2):;yl7
f(i)(yl’yz)zf(f(i—l)(YJ_’yz}’g(i_l)(yg))a
£(i)(y2):= g(ﬁ(i'l)(yg)).
We set oo ,
E{x,71,57,) = ;EZ&%"4f(x,f(i)(yl,y2),g(i)(yz))/\g(i)(yg)::o

A Lay ;«;”’@2)#0)} :

From (£) it iz clesr thet there holds

K(%,71,7,) D alx,71,5,) -

Cn the other hind we hove

C(Xaylay2)3 K(nyj ’372)
. %

P . 1) - . PR . 1

our model cince g( )(yg) cdecrecses when 1 increases. IHence

o

wve have

\/ (7., x y?)x'(y?—1)==x!,4 Jom2 =0



=y, x(ypl) ==t .
Therefore the minimal and maximel key essertions are the some
for this case. Note also that the implication formulas of our
system EBP involving the infinite disjunction K(X’yl’yZ) clearly

expresses the termination of our program.

Exemple 2. We consider the flowchert of Fig.2.3 which computes

gcd(m,n). To this flowchart we attach the formulas:

#(mnyn) = m >0 A n>0,
o(m,n,c,d,r)= c=m A d=nA @(m,n)

\P(m,n,d)Ezcizgpd(m,n)

and the predicate ¢(m,n,c,d,r) is to be determined. (
s(m,n,c,d,r) will be used when we consider EBP.) Wle further
paremetrize the predicates p and q‘to the predicates P and §
resvnectively, introducing & control variable i which expresses

the number of visits to the loop.
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Fig.2.3. A flowchart to compute gecd(m,n)
Ve have the system ’“FP as follows:
«(X,7,0) = c=mAd=n Ai=0A ¢(m,n) ,
Wx,y,1)=3c'zd'3r'. uix,c',da’ ,‘rv' ,i-1)A r=remn(c,d)
Ac=d'Ad=r y
(3r'. Wlmyn,c,d,r',i) 4 r=rem(c,d) Ar=0)>D d=gcd(m,n)
where z= (m,n) and y=(c,d,r). For each numeral 1, we rewrite
E‘P as follows:
f;‘(m,n,o(i) ,d(i>,z_"(‘i),'i_)

= Elc(i"l) 3@.(1_1)5 r(i_l)- ‘Q(ﬁi,n.,c(i—l>,d(i-l) ’r(i—l>’§)
A I'<i):: rem(c(i"l),d(i—l))/\ r‘(i)zxz 0

Aol gli-1), (1) (5) )

$ & 0 8 8 000000800 e0e et
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Q(mynvc(l)’d(l)’r(l)’l)
= 30(0)3 d(o). C(O): m/\d(o)z nAm>0An>0
A r(1)==rem(cgo)d(o))/\r(l)%=0
A () 4(0) g1 L)

If we set
a(0)=:o,
(0=,
a(o)=fl,
(0= g,
and
o(1) = (-1 oo (im1) 4(i-1)y,  (3-1)
b(i)=; E(l—l)-quo(c(i_l),d(i_l))Xb(i”l)

o(1) = (1) ’

—

p(1) = (i-1),
then there hold

oo DDy ana

alV= DI where §=0,1,2,.... .
Since a(j), b(j), g(j) and h(j) are recursively defined functions
of my, n, and j, they are representable in the e}ementary number

theory so that we have

Q(m,n,c,d,r,i)= c=g(i)m+g(i)n A d=a(l)m+b(l)n

A rT=dAar¥0A m>0An >0
where i is & proper variable of the predicate Q. Therefore we

have
Co

N
i=1

= 34i.1i21 A4 ¢(m,n,c,d,r,i) .

a(m,n,c,d,r)= ¢(m,n,c,d,r,i)

Now it is cleer that the implication fomula of EFP(q) or EFP(Q)
T
holds if one knows the theorem
32 3b3Iz3Ib . c=amtbn A d=amtbnAr=90

D a = gcd(m,n) .



we use s(m,n,c,d,r) instezd of q(i,n,c,d,r):
o(m,n,c,d,r)fn s(m,n,c,d,ren(c,d)),
Mmggmhp)An#3_~Mupqm_“@ﬂcQ)L
s(m,nyc,d,r)A r=0 =Y (m,n,d)

First we have the followings by the »process of suvistitution:
s(m,n,c,d,r)=s(m,n,c,d,r)A r=0Vs(m,n,c,d,v)A T+0,
.NW( n, A r=0Valr,n,rlc,a,7),e(c,d,r),h(c,d,r H,

3

0

® £ 0 5 @ € 92 5 8 60 60 400 O s * SO S E O @I

r

.\/{ﬂ{m n, V( >(c w\}/\n(l)(c d,r)=0

| A ( /\ n{3) (e, a,m)% 0) 1
§=0

Il

&)

=0
where f(i), g(i> end n(2) cre defined by setiing
f(c,d,r)=¢d, g(c,d,r)=r, h(ec,d,r)=ren(d,r),
znd
f(o)(c,d,r)==c, ﬂ(Q)(c d,r)=d, (O)(c,d r)=r

c,d,r)=f(f >(C,d,”) (1= 1>(c d,r), pli- 1)(c,c r)),
,d,r):gr(f<i;l}(c,d,$ (] 1)(0 r)yf‘(l 1/((3 d ?C')),

”(i)(C,évaf):h(f(i—.l)(Cy('ﬂ")y{:<l 1}(0 17T)sh(l—l)(01dyr))-

I we acke exniicit the oneraticns, then tne nreviously defined
N . <N
- 1 ! 0 -
fonetions n<“), b(J) (J) ..... c<°} where thelir crguments ore

T 3 LI L . _ N P . S b I < Yy
¢ «nd 4 this time instezd of 11 ond n resnectively, define the

sbove functiorns, nsmsly we hove



”(J)(c,k,r)‘— é(j) c + b(j) a,
5(3)(c,d,r)== 2 (3) c + p(3) g ,
h(j)(c,d,r)=: a(j+1) c + b(j+l) d.

Therefore the suffix j cen be considered as & vroper variable
of predicates.

low we set

(2] . : )
K(m,n,c,d,r)= vV { \V(m,n,g(l)(c,d,r))
i=0
. i =1 .
A n e a,m=0A0 N nl(e,a,m+0) .

J=0
Then from (*) we have K(m,n,c,d,r)>D s(m,n,c,d,r) . On the

other hend

g(l)zz I’(—)m(0,d)< 5(0)2 d,
g(j+ll= S(3+1) o, 3+ 4
— ) - quo(e(D), (D) (D)),

v ) sue(s (D), (D)),
23 o w 200a = guo (=D 1)y (0D esp(Da)
;—..f(a) quo(£(3) (J))U(J)
= rem(£(3) 2(3)y < (3)
nanely,
o= 5.0 5 5o
tnd therefore

s(myn,c,d,r) D 3 j. h(j)(c,d,r)==-6

there holds

0
o
b
Fse
9
cb

s(m,n,c,d,r) > K(m,n,c,d,r).
Hence we have

s(n,n,c,d,r) = X(m,n,c,d,r) .
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Using the properties of gcd we have
‘V(m,n,g(i)(c,d,r))A<h<i)(c,d,r)=:0
= gcd(f(i)(c,d,r),g(i)(c,d,r)) ==g(i)(c,d,r)
A g(i>(c,d,r)==gcd(m,n)/\h(i)(c,d,r)==O
= gcd(c,d)::gcd(m,n)/\g(i)(c,d,r)==gcd(m,n)
An{t) e, a,r)=0
;7;10 w3 (c,a,r) %0
= Vi, j«i>nI(c,a,r)%0
so that we conclude
s{myn,c,d,r) = gcd(m,n)=gcd(c,d)
AN 3i. g(i)(c,d,r)==gcd(m,n)/\h(i)(c,d,r)==0
AVi. j<i>n((c,a,r)%0 .
Here we note that the implication formula of EBP clearly describes

the termination of P.

2.2. A General Considerztion for the Forward Cases

It is known thaéséor any given flowchart there exists an
equivelent flowchert having 2 single looo. Therefore we consider
the typical flowcharts (&) and (b) of Fig.2.4, where predicates
p(x,y) end o(x,y) are attached and c(x,y) is to be determined.
We transform these flowcharts to the flowcharts (a) and (b) of
Fig.2.5, introducing new intiger variable i to express the
number of visits to the loopf) The vredicates P(x,y,1) and
Q(x,y,1) corresvond to the predicates »n(x,y) and o(x,y)
respectively where they are related by the formulas

P(x,y,i) =o(x,y)A1=0

and

This meazns that our underlying logic is the meny sorted logic.



Fig.2.4, Typical Flowcharts

o

is=i+] ie=

P(X,y,i)

Q(ny’i)

Fig.2.5. Augmented Typical Flowcharts
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[oa)
o(=,y)= il/l G(x,v,i).

ere given s follows:
(a) P(x,7,i)=vo(x,y)A i=0
G(x,7,1)=3 2. (P(x,2,i-1)V G(x,z,i=1))
N y=F(z,z) N(x,2)
(v) P(X,y,il):-s p(x,yIA1i=0
w(x,y,i)=3z.(?(x,2,i-1)V 4(x,z,i~1))
N y=F(x,2) A (5 (x,5) V(7 (x,7) A t,(x,5)).
The zhove systems cen be rewritten for eazch numeral m as follows:
Ax,y,m)=3 zl.ig(x,zl,m-l)/\ ._i(}:,;)r,zl) ,
=3 zk,_a.i;(x,zz,m—z)/\ }i(x,y,zg),

ld(::v:,zm_l,l)z = zm.P(}:,zm,O)/\ ;{(X,y,zm) ,

() Z(x,7,2)= y =F(x,2)At(x,z) , ond
(0) Uzyyym)= 7 =Flx,2) AL GV 75 (2, 7)) Aty (x,7)).

“herefore the »rocess of substitution gives us the solution:

1 Zpeen.. 37 . (}i(::,y,zl)/\ ;1(:{,21,22)

N\ e ./\.‘&(:v-:,zm_l,zm)/\ P(;:,zm,u))
wihere we note thet for each numeral = the right hend side of =
iz = well-formed formula whose size is depending on m. The
ect imnlies that the verisble 1 of L (xz,y,1) is improner, ncmely

it exorezses, in cenersl, the numbering of the secuence of

FoY “ Yy e - . 3 e e B 5 B .
formules so thet 5, (x,7) is, in genersl,the nroper
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By these otservetion a problem arises, namely "Under what
condition does the parameter i become = proper varizble of the
opredicate T 7 " . To examine'this.problem, we rewrite the
solution as follows (we consider only the case (2) since the
cese (b) can be treated similarly):
| (x,y,m)= 3 2y 325 o0 FZ.
| (y==F(X,zl)A zl==F(X,22)/\...,«zm_l=:F(x,zm))
A (t(x,zl) /\t(x,zg)/\ . /\t(x,zm)) .
We define G(x,y,m) by setting
G(X,5,0) =y
G(x,y,m)::F(X,G(x,y,m—l)), m=1, 2, 3,040

and we call if{ the function defined by a loop-recursion. Now

we assume thet this function G is representable in the background
mathematical theory T and let |’ (x,v,1i,z) be the representing
first-order formula. Under this assumption and at least in the
model M of T, there holds:

W(x,y,1)=z. T(x,2,1,7)A ¥ §. (j< iDt(x,6(x,2,3))
so that i is a proper variable of Q. Note that in this case
we mey write

ao(x,y)==31i. o(x,y,1).

The function G defined by a loop-recursion is always representable
within the elementery number theory T, provided that the one-step
function F is representable in T. Therefbre for the programé
comouting recursive functions, the minimel key assertions can

be determined as first-order Formulas.
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2
)

. Unicueness @nd Beth's Definability (Forwerd Cases)

o

Returning to the senerel setting, we have the vproblem whether
our solution is unicue or not uo to the vrovable (in I) logical
equivalences. 3efore get into this problem, we mention the
Tollowing well-known theorem in mathématical logic:

[¢3
Betn's Definapility Theorem: Let A ve a set of closed formulas,

< an n-ary prédicate symbol of 1anguage(/¢) and Aﬁ' the set of

formules obtained by substituting for § in each formula of A

an n-ary predicate symbol §' which does not occur in 1anguage(ﬂL).

Then if Q(xl,...,xn):j Q'(Xl,...,xn) is a consequence of AU 41,

there is e formula P such that language(ES)g;language(/¢),

L& langusce(P ) end Vxl VX?... Vxn. Q(Xl,...,Xn)‘:"iﬁ is a
consequence of _}4.
. 93

It is 2lso knovwn thet the formula $ can be explicitly constructed
from & prbof scheme of the seguent
A/\;(xl,...,xn)~%-A':)Q'(Xl,...,xﬁ)
where & is the conjﬁnction of the formulas in /¢', A' is the
conjunctioi of the formulas in A' =nd the vroof scheme itself
is constructed within the symmetric Gentzen system.

4

now going back to our system IF, of fieg.2.5, we prove the

sequent
Ly o (2,0) —> R%(C,H) o

where we set -~
W — /\ V‘ V-, - (_,. < ):B < ( . )
7 i AV e v W)= Ze 25 1\, 7,20,
i‘]__l(x,y 2)= o4 (x,2) AX(x,7,2),

b
3D .
7 at= .\?\Eipﬂy. gi(z,z) =3z, Yi_l(x,y;z),

() = g (x2) A L2y, 2)
g)(f ) =Ry, ,0) :ié(x,y .
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Q. (6, 8m) ZAND
Qo (&, ) XA, fores, o) = { X (@, B, Bm )
AL Yila, s ) = Vo (@, fn) . 7A
3T (s o 3 30,7
0 5y Velo, e 2) —> Ve (4, i, 20, 7AT
{@ “(a, /3,,,.,)=72>’/ap,.-, z) ?
A Fz Yo la B, B) > Q4 v 7R/(a,fu-r) /Zﬂ.z??_@»,/ﬁrw,zel_»,,?ﬁ'
FE Vo (G, Br-1. B, @, (a, /9.,-,)2
A, {732 o (@1, 2), 7@ (&, ﬁm-/)j Q /a /53.-,)—»@@ Prei), @/, ;nﬁ)gng(a s %), 74

A G Q/a /;‘,,,.,) 327;, /a Bt Z)@, (Ao ) > O (4 P12 &, (aﬁn.,)$?z?’(a B, 8D, 7/1'
A, @(ﬁﬂm_,) —> Q ‘(4. /3»w) 747

| Q (a /,,m_/) ZAND
A @) (5 fon), X Lo, foros, o) > K (5 B2 pn) ]

{Q/"(a N s
A, @n-ia, ,5,)_»»_“_,\_{[41 bB)—> L X4, 6,5 oS s 2 A
A, B (a b /:’,/ — Y,,_, (a, b B, 7/}"_
,4 )i,.,.,m 4, /:’,) — Jz)/,,;,/a 4 2), By L
A Tz )2,_, (ﬂ b, %) — Tz f»m_, /a b, 2), 7A

Z(Q L (0,6 72Ye0ms (0, 6,2) )AND
(7Q (0.8), 332 Ves (26,20 ) ,7A’

A, 72// (a, 6,2) = (,, (a 8),

72 Ven ,/a b, 2) Qe (4, b) 2"’?
A {751%..,/4 62), 78 (4, A)) Qum (4, é)wa@ (a A) O,,, (a, &4;32}/-,/4‘ s2), 7/}’
A, Onlab)=a2)m (4.6, 2), Qm (4, 6)—> QJa,4), O (a, !)$32?/.,(4 6.2), 74"
A, Qm , é»/~ 32/ . 4, z,),Q (4.6 )—> Qo (0,6), 733y Om(2.3) ¥37 s (1.3, 2, 7,4'

A, Vb Qm 22 ;)*527’-, (x. yz) Ol 4)—> Q| @.6) EPET TNy, EDV S YR 7/?’
Ajjd\/; O (1;)3227/-;(&’} z/ 9 /4 b)—"Q/[k &), V:zsy@(,y);-gg‘f_,[z A

/\V1 VJQm(X 7j~32>/_,l1] 2), Qmla. b—Q, (a ) V:ua/O P E "u)/ (J 7 E)
A @nla, b)) —> QL (ab) 747

Tig.2.6. FProof scheme to prove the unigueness



The wrool schena of the #bove secuent is chown in Pig.2.6.

Tere we note thet the treatements of /N and ; gre gimilar to
that of ¥V i and 2i resvectively. From the oroof scheme we read
out thet the solution constructed from the schema is identicel
with ‘he solution obtained by the nrocess of substitution and
thaet size of the »proof schema itself devends on the number m

o that +the si

O]
N

e of G _(x,y) devends on m in general.
dda

[t

Summerizing the aboves we have:

Theorem 1. For a given-flowchart, there exists an eguivalent
flowchart for which the minimal key sssertion can be determined
s en infinite disjunction of first-order formulas and these
first-order formulas setisfying the sitrict verification conditions

are unigue up to the logical eguivalences,

Theorem 2. If the function defined by & loovp recursion is
representeble in the background mathemsticsl theory T, then the
minimel key essertion of the loop can be determined as a first-
order formule. In particular, il T 1s the elementary number
theory, then every minimel ey eszertion of = Drogrém can be
cetermined ss a filrst-order formule nrovided that each Tunction

bvox computes & recursive function.
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