Finite groups with Sylow 2-subgroups of type A_{16}

Hiroyoshi Yamaki

Department of Mathematics, Osaka University

A 2-group is said to be of type X if it is isomorphic to a Sylow 2-subgroup of the group X. If G is a group with a Sylow 2-subgroup S of type X, we say that G has the involution fusion pattern of X if for some isomorphism θ of S onto a Sylow 2-subgroup of X, two involutions a, b of S are conjugate in G if and only if the involutions $\theta(a)$, $\theta(b)$ of $\theta(S)$ are conjugate in X. Also we say that a group G is fusion-simple if $G = O^2(G)$ and O(G) = Z(G) = 1.

Now we have obtained the following:

THEOREM A. Let G be a fusion-simple finite group with

Sylow 2-subgroups of type A₁₆. Then one of the following holds:

- (1) $G \cong A_{16} \quad \underline{\text{or}} \quad A_{17}$
- (2) $G \cong A_9 \cdot E_{256}$, the split extension of an elementary abelian group E_{256} of order 256 by A_9 with the action afforded by the 8-dimensional irreducible GF(2)-representation, or
 - (3) G has the involution fusion pattern of Ω_9 (3).

Here Ω_9 (3) denotes the orthogonal commutator group of degree 9 over the field of 3-elements and $A_{\rm m}$ the alternating group on m-letters.

In the process of proving Theorem A we obtain the following characterization.

THEOREM B. Let G be a finite group with Sylow 2-subgroups of type A_{16} . If G has the involution fusion pattern of A_{16} , then $G/O(G) \stackrel{\triangle}{=} A_{16}$ or A_{17} .

Proof of the Theorem A is obtained in the following way which appears to be rapidly becoming standard(cf. Gorenstein-Harada[5], [6], Solomon[9]). Let S be a Sylow 2-subgroup of G and A be the unique elementary abelian subgroup of S of order 256. At first we show that the fusion of elements of S is controlled by $N_G(A)$ and $N_G(Z_2(S))$ where $Z_2(S)$ is the second center of S, using results of Alperin[1] and Goldschmidt[2] on conjugation family. Since S/A is of type A_8 , the structure of $N_C(A)/C_C(A)$ which is isomorphic to a subgroup of GL(8,2) is determined by theorems of Harada[7] and Gorenstein-Harada[5],[6]. Then the fusion possibilities of involutions follow immediately. Here we can prove that if A is strongly closed in S with respect to G, then G = $N_G(A) \cong A_9 \cdot E_{256}$ by a recent result of Goldschmidt [4]. Characterization theorems of Gorenstein-Harada[5],[6] and Solomon[9] permit the determination of $C_{C}(a)/O(C_{C}(a))$ for all involution a in S. Now O is an A-signalizer functor and a signalizer functor theorem[3] implies that $W_A = \langle O(C_G(a)); a \in A^{\#} \rangle$ has odd order. It follows that $N_{\mathbf{G}}(W_{\mathbf{A}})$ is strongly embedded in G provided $W_n \neq 1$. Since G has more than one conjugacy class of involutions, $W_A = 1$. Therefore $O(C_G(a)) = 1$ and Kondo's characterization theorem[8] implies that $G \stackrel{\triangle}{=} A_{16}$ or A_{17} .

References

- [1] J.L. Alperin, Sylow intersections and fusion, J. Algebra, 6 (1967), 222-241.
- [2] D. Goldschmidt, A conjugation family for finite groups, J. Algebra, 16 (1970), 138-142.
- [3] _____, 2-signalizer functor on finite groups, J. Algebra, 21 (1972), 321-340.
- [4] , 2-fusion in finite groups, (to appear).
- [5] D. Gorenstein and K. Harada, On finite groups with Sylow 2-subgroups of type A_n, n=8,9,10,11, Math. Zeit., 117 (1970), 207-238.
- [6] ______, Finite groups with Sylow 2-subgroups of type PS_p(4,q), q odd, J. Fac. Sci. Univ. Tokyo, (to appear).
- [7] K. Harada, Finite simple groups whose Sylow 2-subgroups are of order 2⁷, J. Algebra, 14 (1970), 386-404.
- [8] T. Kondo, On the alternating groups III, J. Algebra, 14 (1970), 35-69.
- [9] R. Solomon, Finite groups with Sylow 2-subgroups of type A_{1,2}, J. Algebra, 24 (1973), 346-378.