ある種の共役類について

埼玉大 教育 稲垣信夫

§1 序

Avinoam Mann は On subgroups of finite Groups II （J. Alg. 22, 1972, pp. 233–240）の中で可解群 G の部分群 H と、G の Sylow systems との間の関係づけに着目して種々の部分群を導入した。以下でここで導入された部分群を定義する。γ で G の Sylow system とするとき、H の G の Sylow system となる場合は Sylow system γ は H の中で reducible という。M_0 と H の中で reducible な G のすべての Sylow systems の集合とする。G は共役を作する方法で G のすべての Sylow systems 上で transitive であるが、上の M_0 で含む最少の imprimitivity の集合を M と定義し、これと M_0 で含む最少の block となることにする。そのとき MQ の stabilizer $Q(H)$ と定める。M_0 と $Q(H)$ の間に次の関係が知られている 即ち M_0 は $Q(H)$ の中で reducible な G のすべて
この Sylow systems の集合である。また M_c の stabilizer を $L(H)$ とおく。

つきに G の部分群 H と K が G の中で役立っていることを以下で定義する。すなわち H の中で reducible な G の Sylow systems の集合全体が K のそれと一致する場合である。この定義は R. Carter にあたっている。A. Mann はこの役立つの中に最大元が唯一存在することを示した。これを $M(H)$ とおく。もっともよい定義した $L(H)$ は $N_G(M(H))$ である。

$Q(H)$ については A. Mann によって多くのことが知られているが。$M(H)$、$L(H)$ についてはあまりよく知られていない。

§2. 定理について

定義 G と K が G の中で abnormal とは $<H, H^g>$ が
定義 G と K が G の中で pronormal とは H と K^g に対
して $H^g = H^c$ となれる適当な定数が $<H, H^g>$ の中にとれる
こと。
定理

$G \subseteq H$, M_0 は上記のものをとする。このとき以下は同値である。

1. M_0 が block を作っている。
2. $M(H)$ は abnormal
3. $M(H)$ は pronormal

さらにこのとき $L(H) = Q(H) = M(H) \trianglelefteq H$。

証明の概略

1. M_0 が block を作っているとすると M_0 は $Q(H)$ の中で reducible の Skolem system の全体と一致するから $Q(H) \subseteq M(H)$。一方 $Q(H) = \{ g | M_0^g = M_0 \} = L(H) \trianglelefteq M(H)$ より $Q(H) = M(H) \trianglelefteq H$。このとき $Q(H)$ が abnormal は知られているから $M(H)$ は abnormal である。

2. $\rightarrow 3$. abnormal から pronormal は定義より明らか。

3. $\rightarrow 1$. $M(H)$ が pronormal とすれば $M(H) ~ M(H)^g$ より 通常の $G \leq M(H)$, $M(H)^g$ の中より取得
$M(H)^g = M(H)^g$ とし $\exists s \in G \subseteq N_G(M(H))$ なる $G = \langle M(H), M(H)^g \rangle$ がこのような型に置け

実験により A. Mann の定理の応用で $N_q(M(H)) \leq Q(M(H))$ にある。一方 $Q(M(H))$ の定義より $N_q(M(H)) \leq Q(M(H))$ であるから $N_q(M(H)) = Q(M(H))$ である。また $M(H)$ の定義より $Q(M(H)) = Q(H)$ であるから $Q(H)$
M(H) とある。ここで Q(H) で reducible な Sylow system の集合で M とされれば 上記より M は M(H) で reducible とあるから M \leq M_0 \quad 一方 M \geq M_0 \iff M = M_0 \quad と仮定 block を作る。